Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Disclosures
Acknowledgments
Conflicts of Interest
References
- Serban, D.; Papanas, N.; Dascalu, A.M.; Stana, D.; Nicolae, V.A.; Vancea, G.; Badiu, C.D.; Tanasescu, D.; Tudor, C.; Balasescu, S.A. Diabetic retinopathy in patients with diabetic foot ulcer: A systematic review. Int. J. Low Extrem. Wounds 2021, 20, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Role of self-care in management of diabetes mellitus. J. Diabetes Metab. Disord. 2013, 12, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hailu, F.B.; Moen, A.; Hjortdahl, P. Diabetes Self-Management Education (DSME)—Effect on knowledge, self-care behavior, and self-efficacy among type 2 diabetes patients in Ethiopia: A controlled clinical trial. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2489–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomky, D.; Cypress, M.; Dang, D.; Maryniuk, M.; Peyrot, M. The American Association of Diabetes Educators Position Statement: AADE7 Self-Care Behaviors. Diabetes Educ. 2008, 34, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Marincic, P.Z.; Hardin, A.; Salazar, M.V.; Scott, S.; Fan, S.X.; Gaillard, P.R. Diabetes self-management educa-tion and medical nutrition therapy improve patient outcomes: A pilot study documenting the efficacy of reg-istered dietitian nutritionist interventions through retrospective chart review. J. Acad. Nutr. Diet. 2017, 117, 1254–1264. [Google Scholar] [CrossRef]
- Mikhael, E.M.; Hassali, M.A.; Hussain, S.A. Effectiveness of diabetes self-management educational programs for type 2 diabetes mellitus patients in Middle East countries: A systematic review. Diabetes Metab. Syndr. Obes. 2020, 13, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Bukhsh, A.; Lee, S.W.H.; Pusparajah, P.; Schmitt, A.; Khan, T.M. Psychometric properties of the Diabetes Self-Management Questionnaire (DSMQ) in Urdu. Health Qual. Life Outcomes 2017, 15, 200. [Google Scholar] [CrossRef]
- Serban, D.; Vancea, G.; Balasescu, S.A.; Socea, B.; Tudor, C.; Dascalu, A.M. Informed consent in all surgical specialties: From legal obligation to patient satisfaction. Rom. J. Leg. Med. 2020, 28, 317–321. [Google Scholar] [CrossRef]
- Schmitt, A.; Gahr, A.; Hermanns, N.; Kulzer, B.; Huber, J.; Haak, T. The Diabetes Self-Management Questionnaire (DSMQ): Development and evaluation of an instrument to assess diabetes self-care activities associated with glycaemic control. Health Qual. Life Outcomes 2013, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.P.; Wu, L.F.; Su, Z.F.; Zhou, Q.H. Development of a diabetes education program based on modified AADE diabetes education curriculum. Int. J. Clin. Exp. Med. 2014, 7, 758–763. [Google Scholar]
- Zheng, F.; Liu, S.; Liu, Y.; Deng, L. Effects of an outpatient diabetes self-management education on patients with type 2 diabetes in China: A randomized controlled trial. J. Diabetes Res. 2019, 2019, 1073131. [Google Scholar] [CrossRef]
- Jurca, C.; Bembea, M.; Pallag, A.; Mureșan, M.; Szilagyi, A.; Balmoș, A.; Pop, O.; Jurca, A.; Dobjanschi, L. Pharmacotherapeutical considerations in the treatment and management of neonatal hyperammonaemia. Farmacia 2018, 66, 216–222. [Google Scholar]
- Nitescu, M.; Furtunescu, F.L.; Otelea, M.; Rafila, A.; Streinu-Cercel, A. Prevalence of metabolic syndrome parameters in a Romanian population of young adults. Rom. Rev. Lab. Med. 2012, 20, 21–28. [Google Scholar]
- Czupryniak, L.; Barkai, L.; Bolgarska, S.; Bronisz, A.; Broz, J.; Cypryk, K.; Honka, M.; Lalic, N.; Martinka, E.; Rahelic, D.; et al. Self-monitoring of blood glucose in diabetes: From evidence to clinical reality in Central and Eastern Europe—Recommendations from the international Central-Eastern European expert group. Diabetes Technol. Ther. 2014, 16, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Reimer, A.; Hermanns, N.; Huber, J.; Ehrmann, D.; Schall, S.; Kulzer, B. Assessing Diabetes Self-Management with the Diabetes Self-Management Questionnaire (DSMQ) can help analyse behavioural problems related to reduced glycemic control. PLoS ONE 2016, 11, 0150774. [Google Scholar] [CrossRef] [Green Version]
- Bukhsh, A.; Khan, T.M.; Sarfraz Nawaz, M.; Sajjad Ahmed, H.; Chan, K.G.; Goh, B.H. Association of diabetes knowledge with glycemic control and self-care practices among Pakistani people with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2019, 12, 1409–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwedes, U.; Siebold’s, M.; Mertes, G.; SMBG Study Group. Meal-related structured self-monitoring of blood glucose: Effect on diabetes control in non-insulin-treated type 2 diabetic patients. Diabetes Care 2002, 25, 1928–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zugravu, C.A.; Baciu, A.; Patrascu, D.; Tarcea, M.; Pantea Stoian, A. Depression and diabetes: Are there any consequences on self-care? Eur. J. Public Health 2012, 22, 272. [Google Scholar]
- Timar, B.; Timar, R.; Schiller, A.; Oancea, C.; Roman, D.; Vlad, M.; Balinisteanu, B.; Mazilu, O. Impact of neuropathy on the adherence to diabetes-related self-care activities: A cross-sectional study. Patient Prefer. Adherence 2016, 10, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, K. The Association between the Triglyceride to High-density Lipoprotein Cholesterol Ratio and Low-density Lipoprotein Subclasses. Intern. Med. 2020, 59, 2661–2669. [Google Scholar] [CrossRef]
- Rizzo, M.; Berneis, K. Who needs to care about small, dense low-density lipoproteins? Int. J. Clin. Pract. 2007, 61, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Bayram, F.; Kocer, D.; Gundogan, K.; Kaya, A.; Demir, O.; Coskun, R.; Sabuncu, T.; Karaman, A.; Cesur, M.; Rizzo, M.; et al. Prevalence of dyslipidemia and associated risk factors in Turkish adults. J. Clin. Lipidol. 2014, 8, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Nikolic, D.; Patti, A.M.; Mannina, C.; Montalto, G.; McAdams, B.S.; Rizvi, A.A.; Cosentino, F. GLP-1 receptor ago-nists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2814–2821. [Google Scholar] [CrossRef]
- Abate, N.; Sallam, H.; Rizzo, M.; Nikolic, D.; Obradovic, M.; Bjelogrlic, P.; Isenovic, E. Resistin: An Inflammatory Cytokine. Role in Cardiovascular Diseases, Diabetes and the Metabolic Syndrome. Curr. Pharm. Des. 2014, 20, 4961–4969. [Google Scholar] [CrossRef]
- Berneis, K.; Rizzo, M.; Stettler, C.; Chappuis, B.; Braun, M.; Diem, P.; Christ, E.R. Comparative effects of rosiglitazone and pioglitazone on fasting and postprandial low-density lipoprotein size and sub-classes in patients with Type 2 diabetes. Expert Opin. Pharmacother. 2008, 9, 343–349. [Google Scholar] [CrossRef]
- Dascalu, A.M.; Tudosie, M.S.; Smarandache, G.C.; Serban, D. Impact of COVID-19 pandemic upon ophthalmological clinical practice. Rom. J. Leg. Med. 2020, 28, 96–100. [Google Scholar] [CrossRef]
- Banerjee, M.; Chakraborty, S.; Pal, R. Diabetes self-management amid COVID-19 pandemic. Diabetes Metab. Syndr. 2020, 14, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Li, Q.; Zhang, Q.; Lin, W.; Weng, J.; Li, L.; Chen, G. Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: A retrospective study in a single center. medRxiv 2020, 3, 20048579. [Google Scholar] [CrossRef]
- Grabowski, D.; Overgaard, M.; Meldgaard, J.; Johansen, L.B.; Willaing, I. Disrupted self-management and adaption to new diabetes routines: A qualitative study of how people with diabetes managed their illness during the COVID-19 lockdown. Diabetology 2021, 2, 1. [Google Scholar] [CrossRef]
- Mukona, D.M.; Zvinavashe, M. Self—Management of diabetes mellitus during the COVID-19 pandemic: Recommendations for a resource limited setting. Diabetes Metab. Syndr. 2020, 14, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Brenk-Franz, K.; Strauss, B.; Tiesler, F.; Fleischhauer, C.; Ciechanowski, P.; Schneider, N.; Gensichen, J. The influence of adult attachment on patient self-management in primary care—The need for a personalized approach and patientcentred care. PLoS ONE 2015, 10, 0136723. [Google Scholar] [CrossRef]
- Vincze, A.; Losonczi, A.; Stauder, A. The validity of the diabetes self-management questionnaire (DSMQ) in Hungarian patients with type 2 diabetes. Health Qual. Life Outcomes 2020, 18, 344. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Pan, J.H.; Chen, D.; Chen, J.; Chen, F.; Hu, T.T. Efficacy of lifestyle interventions in patients with type 2 diabetes: A systematic review and meta-analysis. Eur. J. Intern Med. 2016, 27, 37–47. [Google Scholar] [CrossRef]
- Stoian, A.P.; Banerjee, Y.; Rizvi, A.A.; Rizzo, M. Diabetes and the COVID-19 Pandemic: How insights from recent experience might guide future management. Metab. Syndr. Relat. Disord. 2020, 18, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Pantea Stoian, A.; Pricop-Jeckstadt, M.; Pana, A.; Ileanu, B.V.; Schitea, R.; Geanta, M.; Catrinoiu, D.; Suceveanu, A.I.; Serafinceanu, C.; Pituru, S.; et al. Death by SARS-CoV 2: A Romanian COVID-19 multicentre comorbidity study. Sci. Rep. 2020, 10, 21613. [Google Scholar] [CrossRef]
- Utli, H.; Vural Doğru, B. The effect of the COVID-19 pandemic on self-management in patients with type 2 diabetics. Prim. Care Diabetes 2021, 15, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Corrao, S.; Pinelli, K.; Vacca, M.; Raspanti, M.; Argano, C. Type 2 Diabetes Mellitus and COVID-19: A Narrative Review. Front. Endocrinol. 2021, 12, 609470. [Google Scholar] [CrossRef] [PubMed]
- Al Mahmeed, W.; Al-Rasadi, K.; Banerjee, Y.; Ceriello, A.; Cosentino, F.; Galia, M.; Goh, S.Y.; Kempler, P.; Lessan, N.; Papanas, N.; et al. Cardiometabolic Panel of International experts on Syndemic COVID-19 (CAPISCO). Promoting a Syndemic Approach for Cardiometabolic Disease Management during COVID-19: The CAPISCO International Expert Panel. Front. Cardiovasc. Med. 2021, 8, 787761. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit of Measure | HbA1c <7 (n = 75) | HbA1c ≥ 7 (n = 84) | p-Value |
---|---|---|---|---|
Sex (men) | % | 50.00 | 50.67 | 0.97 |
Age | Years | 64.48 ± 8.43 | 59.14 ± 12.38 | <0.01 * |
Living Environment (urban) | % | 76.00 | 58.33 | 0.01 * |
Type 2 diabetes mellitus | % | 91.66 | 100.00 | 0.87 |
BMI | kg/m2 | 29.76 ± 5.68 | 30.45 ± 7.33 | 0.50 |
HbA1c | % | 6.27 ± 0.57 | 8.87 ± 1.60 | <0.01 * |
DSMQ SUM Score (max = 10) | Points | 6.99 ± 1.42 | 6.32 ± 1.54 | <0.01 * |
DSMQ HEALTHCARE USE Score (max = 10) | Points | 7.54 ± 1.56 | 6.98 ± 1.87 | 0.04 * |
DSMQ PHYSICAL ACTIVITY Score (max = 10) | Points | 5.86 ± 3.45 | 5.36 ± 3.16 | 0.34 |
DSMQ DIETARY CONTROL Score (max = 10) | Points | 6.39 ± 2.69 | 5.68 ± 2.26 | 0.07 |
DSMQ GLUCOSE MANAGEMENT Score (max = 10) | Points | 7.28 ± 1.29 | 6.91 ± 1.81 | 0.13 |
Diabetic neuropathy | % | 42.67 | 54.76 | 0.12 |
Diabetic retinopathy | % | 18.67 | 33.33 | 0.03 * |
Diabetic nephropathy | % | 18.67 | 30.95 | 0.07 |
Cardiovascular disease | % | 23.81 | 25.33 | 0.82 |
Ischemic heart disease | % | 25.33 | 32.14 | 0.34 |
Hypertension | % | 66.67 | 89.33 | <0.01 * |
Heart failure | % | 10.67 | 14.29 | 0.45 |
LDL-cholesterol | mg/dL | 102.52 ± 45.19 | 115.22 ± 51.97 | 0.10 |
Triglycerides (Q1, Q3) | mg/dL | 79.75 (68.5, 98.7) | 111.5 (90.2, 134.8) | <0.01 * |
HDL-cholesterol | mg/dL | 44.72 ± 13.07 | 44.52 ± 11.03 | 0.91 |
TRIG/HDL | 3.28 ± 1.87 | 4.23 ± 4.0 | 0.01 * | |
OAD | % | 78.67 | 61.90 | 0.02 * |
GLP-1 receptor agonists | % | 6.67 | 4.76 | 0.60 |
Long-acting Insulin | % | 24.00 | 63.10 | <0.01 * |
Rapid-acting Insulin | % | 6.67 | 30.71 | <0.01 * |
Independent Variable | B | Standard Error | LCL | UCL | p-Value | R2 |
---|---|---|---|---|---|---|
DSMQ Glucose Management Score | −0.09 | 0.08 | −0.24 | 0.06 | 0.2451 | 0.008 |
DSMQ Dietary Control Score | −0.14 | 0.06 | −0.25 | −0.03 | 0.0145 * | 0.037 |
DSMQ Physical Activity Score | −0.09 | 0.04 | −0.17 | 0.00 | 0.0468 | 0.025 |
DSMQ Healthcare Use | −0.06 | 0.08 | −0.22 | 0.10 | 0.4677 | 0.003 |
DSMQ SUM SCORE | −0.30 | 0.09 | −0.48 | −0.12 | 0.0014 * | 0.06 |
Independent Variable | B | Standard Error | LCL | UCL | p-Value |
---|---|---|---|---|---|
DSMQ SUM SCORE (max = 10) | −0.32 | 0.08 | −0.48 | −0.16 | 0.0001 * |
Sex | 0.34 | 0.26 | −0.17 | 0.85 | 0.1845 |
Age | 0.01 | 0.01 | −0.01 | 0.03 | 0.4378 |
Living environment | −0.53 | 0.26 | −1.05 | −0.01 | 0.0464 |
Type of diabetes mellitus | −1.65 | 0.66 | −2.95 | −0.36 | 0.0129 * |
Obesity | 0.17 | 0.26 | −0.33 | 0.67 | 0.5044 |
TRIG/HDL-cholesterol ratio >= 3.5 | 0.87 | 0.24 | 0.40 | 1.35 | 0.0004 * |
Oral antidiabetic drugs | 0.61 | 0.35 | −0.09 | 1.31 | 0.0861 |
GLP-1 receptor agonists treatment | 0.09 | 0.53 | −0.97 | 1.14 | 0.8682 |
Long-acting insulin | 0.88 | 0.31 | 0.27 | 1.50 | 0.0053 * |
Rapid-acting insulin | 1.62 | 0.40 | 0.83 | 2.41 | 0.0001 * |
Independent Variable | B | Standard Error | LCL | UCL | p-Value |
---|---|---|---|---|---|
DSMQ SUM SCORE (max = 10) | −0.2835 | 0.0789 | −0.4394 | −0.1275 | 0.0004 |
Type of diabetes mellitus | −1.3355 | 0.6374 | −2.5948 | −0.0762 | 0.0378 |
TRIG/HDL-cholesterol ratio >= 3.5 | 0.7690 | 0.2409 | 0.2932 | 1.2449 | 0.0017 |
Long-acting insulin | 0.7009 | 0.2949 | 0.1184 | 1.2835 | 0.0187 |
Rapid-acting insulin | 1.2528 | 0.3764 | 0.5092 | 1.9964 | 0.0011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popoviciu, M.S.; Marin, V.N.; Vesa, C.M.; Stefan, S.D.; Stoica, R.A.; Serafinceanu, C.; Merlo, E.M.; Rizvi, A.A.; Rizzo, M.; Busnatu, S.; et al. Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study. Healthcare 2022, 10, 174. https://doi.org/10.3390/healthcare10010174
Popoviciu MS, Marin VN, Vesa CM, Stefan SD, Stoica RA, Serafinceanu C, Merlo EM, Rizvi AA, Rizzo M, Busnatu S, et al. Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study. Healthcare. 2022; 10(1):174. https://doi.org/10.3390/healthcare10010174
Chicago/Turabian StylePopoviciu, Mihaela Simona, Violeta Nicoleta Marin, Cosmin Mihai Vesa, Simona Diana Stefan, Roxana Adriana Stoica, Cristian Serafinceanu, Emanuele Maria Merlo, Ali A Rizvi, Manfredi Rizzo, Stefan Busnatu, and et al. 2022. "Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study" Healthcare 10, no. 1: 174. https://doi.org/10.3390/healthcare10010174