Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem
Abstract
:1. Introduction
2. Preliminaries and Some Basic Tools
3. Existence and Uniqueness Results
- (i)
- , ;
- (ii)
- is a compact and continuous operator;
- (iii)
- is a contraction.
- : Let f be a continuous function bounded with a continuous function ; then,
- : the function g is bounded and satisfies ,
- : The function satisfies ∃, such that
4. The Criterion for (HU) Stability
- (i)
- for every ,
- (ii)
- .
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Valerjo, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Bitsadze, A.; Samarskiim, A. On some simple generalizations of linear elliptic boundary problems. Dokl. Math. 1969, 10, 398–400. [Google Scholar]
- Konjik, S.; Oparnica, L.; Zorica, D. Waves in viscoelastic media described by a linear fractional model. Integr. Spec. Funct. 2011, 22, 283–291. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Alsharif, A. Existence result for fractional-order differential equations with nonlocal multi-point-strip conditions involving Caputo derivative. Adv. Diff. Equ. 2015, 2015, 348. [Google Scholar] [CrossRef]
- Jia, M.; Gu, X.; Zhang, X. Nontrival solutions for a higher fractional differential equation with fractional multi-point boundary conditions. Bound. Value Probl. 2012, 2012, 70. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A.D. On the solutions of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction Engineering and Molecular Properties; Keil, F., Mackens, W., Voss, H., Werthers, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Gaul, L.; Klein, P.; Kempffe, S. Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5, 81–88. [Google Scholar] [CrossRef]
- Glockle, W.G.; Nonnenmacher, T.F. A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanics. In Fractal and Fractional Calculus in Continuum Mechanics; Carpinteri, C.A., Mainardi, F., Eds.; Springer: Vienna, Austria, 1997. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Metzler, F.; Schick, W.; Kilian, H.G.; Nonnenmache, T.F. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 1995, 103, 7180–7186. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J.L.G. Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized φ-RL-Operators. Symmetry 2021, 13, 532. [Google Scholar] [CrossRef]
- Chinoune, H.; Tellab, B.; Bensayah, A. Approximate solution for a fractional BVP under φ-Riemann-Liouville operators via iterative method and artificial neural networks. Math. Meth. Appl. Sci. 2023, 46, 12826–12839. [Google Scholar] [CrossRef]
- Rehman, M.; Khan, R. Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Appl. Math. Lett. 2010, 23, 1038–1044. [Google Scholar] [CrossRef]
- Salem, A.H. On the fractional m-point boundary value problem in reflexive Banach space and the weak topologies. J. Comput. Appl. Math. 2009, 224, 565–572. [Google Scholar] [CrossRef]
- Zhao, K.; Gong, P. Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equations. Bound. Value Probl. 2015, 2015, 19. [Google Scholar] [CrossRef]
- Zhao, K.; Liang, J. Solvability of triple-point integral boundary value problems for a class of impulsive fractional differential equations. Adv. Diff. Equ. 2017, 2017, 50. [Google Scholar] [CrossRef]
- Zhao, K. Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 2015, 30, 208–223. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 2012, 218, 8526–8536. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multi-point boundary conditions. Bound. Value Prob. 2018, 2018, 4. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y. Positive solutions of higher order nonlinear fractional differential equations with changing-sign measure. Adv. Diff. Equ. 2012, 2012, 71. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55, 1263–1274. [Google Scholar] [CrossRef]
- Reunsumrit, J.; Sitthiwirattham, T. Existence results of fractional delta-nabla difference equations via mixed boundary conditions. Adv. Differ. Equ. 2020, 2020, 370. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Delta and Nabla Caputo Fractional Differences and Dual Identities. Discr. Dynam. Nat. Soc. 2013, 2013, 406910. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. A Comparison Result for the Nabla Fractional Difference Operator. Discr. Dynam. Nat. Soc. 2023, 3, 181–198. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence of Positive Solutions for a Class of Nabla Fractional Boundary Value Problems. Fractal Fract. 2025, 9, 131. [Google Scholar] [CrossRef]
- Fard, H.S.; Dastranj, E.; Jajarmi, A. A Novel Fractional Stochastic Model Equipped with ψ-Caputo Fractional Derivative in a Financial Market. Math. Meth. Appl. Sci. 2025. [Google Scholar] [CrossRef]
- Shammakh, W.M.; Alqarni, R.D.; Alzumi, H.Z.; Ghanmi, A. Multiplicity of solution for a singular problem involving the φ-Hilfer derivative and variable exponents. AIMS Math. 2025, 10, 4524–4539. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Ulam, S. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed point results on δ-symmetric quasi-metric space via simulation function with an application to Ulam stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait Mohammed, H.; Mirgani, S.M.; Tellab, B.; Amara, A.; Mezabia, M.E.-H.; Zennir, K.; Bouhali, K. Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics 2025, 13, 1450. https://doi.org/10.3390/math13091450
Ait Mohammed H, Mirgani SM, Tellab B, Amara A, Mezabia ME-H, Zennir K, Bouhali K. Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics. 2025; 13(9):1450. https://doi.org/10.3390/math13091450
Chicago/Turabian StyleAit Mohammed, Hicham, Safa M. Mirgani, Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, and Keltoum Bouhali. 2025. "Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem" Mathematics 13, no. 9: 1450. https://doi.org/10.3390/math13091450
APA StyleAit Mohammed, H., Mirgani, S. M., Tellab, B., Amara, A., Mezabia, M. E.-H., Zennir, K., & Bouhali, K. (2025). Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics, 13(9), 1450. https://doi.org/10.3390/math13091450