Next Article in Journal
Precision Fixed-Time Formation Control for Multi-AUV Systems with Full State Constraints
Previous Article in Journal
Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem

1
Applied Mathematics Laboratory, Kasdi Merbah University, BP511, Ouargla 30000, Algeria
2
Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
3
Department of Mathematics, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(9), 1450; https://doi.org/10.3390/math13091450
Submission received: 6 April 2025 / Revised: 21 April 2025 / Accepted: 25 April 2025 / Published: 28 April 2025

Abstract

:
In this study, we investigate the existence, uniqueness, and Hyers–Ulam stability of a multi-term boundary value problem involving generalized φ -Riemann–Liouville operators. The uniqueness of the solution is demonstrated using Banach’s fixed-point theorem, while the existence is established through the application of classical fixed-point theorems by Krasnoselskii. We then delve into the Hyers–Ulam stability of the solutions, an aspect that has garnered significant attention from various researchers. By adapting certain sufficient conditions, we achieve stability results for the Hyers–Ulam (HU) type. Finally, we illustrate the theoretical findings with examples to enhance understanding.

1. Introduction

The field of fractional calculus has garnered significant attention from researchers due to its extensive applications in addressing practical problems across various domains such as viscoelasticity, biological sciences, ecology, and aerodynamics. Numerous studies have shown that fractional-order differential equations offer versatile methods to tackle intricate issues in statistical physics and environmental science. For example, the evolution of fractional calculus is elaborated in [1], while [2] highlights some groundbreaking applications in the field. Specific applications can be found in [3,4] and the related references. The emergence of fractional-order differential equations with boundary value problems has been notable, with multi-point boundary conditions and integral boundary conditions becoming focal points of research. The investigations presented in [5,6] are particularly commendable. Despite this, the majority of researchers tend to focus exclusively on either integral conditions or multi-point conditions. The study of non-linear fractional-order differential equations has been extensively explored due to their applications in the modeling of viscoelasticity [7]. Various methods have been developed to address damping in mechanical systems using fractional operators [8]. The fractional calculus approach has also been applied to protein dynamics [9] and continuum mechanics [10]. In addition, significant contributions have been made in the theory of fixed points [11] and in the relaxation of polymers [12].
Recent studies have investigated numerical solutions for multi-term fractional boundary value problems [13], including those with φ -Riemann–Liouville operators [14]. The existence and uniqueness of solutions for multi-point boundary value problems have also been well documented [15,16]. Several works have focused on the positive solutions of fractional differential equations [17] and the solvability of specific classes of impulsive fractional differential equations [18]. In particular, Zhao et al. have contributed significantly to the study of integral boundary value problems for higher-order nonlinear fractional differential equations [6,19]. The eigenvalue problems for singular higher-order fractional differential equations have also been explored [20].
Moreover, the existence results for fractional differential equations with integral and multi-point boundary conditions have been established [21]. The study of higher-order nonlinear fractional differential equations with changing sign measures has provided valuable information in the field [22], and multiple positive solutions for singular fractional differential equations have been found [23]. In recent decades, many mathematicians have investigated the existence and stability of solutions to their proposed FBVPs; among them, Rezapour et al. [13] studied the following multi-term fractional BVP in 2021:
D 0 + ϱ ; φ u ( z ) = h z , u ( z ) , D 0 + κ 1 ; φ u ( z ) , D 0 + κ 2 ; φ u ( z ) , , D 0 + κ n ; φ u ( z ) , u ( 0 ) = 0 , u ( 1 ) = p I 0 + μ ; φ k 1 ξ , u ( ξ ) + q I 0 + ν ; φ k 2 η , u ( η ) ,
where 0 z 1 , 1 < ϱ < 2 , 0 < κ 1 < κ 2 < < κ n < 1 , ϱ > κ n + 1 , h : [ 0 , 1 ] × R n + 1 R , and k j : [ 0 , 1 ] × R R ( j = 1 , 2 ) are continuous functions; D 0 + ϱ ; φ , D 0 + κ 1 ; φ ,…, D 0 + κ n ; φ are the φ -RL-derivative, depending on an increasing function φ of order ϱ , κ 1 ,…, κ n respectively; and I 0 + γ ; φ is the φ -RL-integral, depending on the special function φ of order γ { μ , ν } , with μ , ν , p , q > 0 , 0 < ξ , η 1 , they discuss the existence and uniqueness of the last φ -FBVP, utilizing the conception of Banach’s principle fixed-point theorem, and they applied both of the numerical techniques DGJIM and ADM to find approximate solutions for the BVP and compare the results of these methods. For very recent papers that study the existence, uniqueness, and stability of both nabla and delta fractional difference problems, please see [24,25,26,27].
Jia, Gu, and Zhang [6] studied the following higher fractional differential equation with fractional multi-point boundary conditions using the reduced order method as follows:
D γ x ( z ) = f z , x ( z ) , D μ 1 x ( z ) , , D μ n 1 x ( z ) , 0 < z < 1 , x ( 0 ) = 0 , D μ i x ( 0 ) = 0 , D μ x ( 1 ) = j = 1 p 2 a j D μ x ( ξ j ) , 1 i n 1 ,
where n 3 , n N , n 1 < γ < n , and n l 1 < γ μ l < n l for all l = 1 , 2 , , n 2 , and μ μ n 1 > 0 , γ μ n 1 2 , γ μ > 1 , a j [ 0 ; + ) , 0 < ξ 1 < ξ 2 < < ξ p 2 < 1 , and j = 1 p 2 a j ξ j γ μ 1 1 . D γ is the standard RL-derivative, and f : [ 0 , 1 ] × R n R is a continuous function. They investigated the existence and uniqueness of a nontrivial solution by applying the Leray–Schauder nonlinear alternative and Schauder’s fixed-point theorem.
In [14], the authors used an iterative method to find an approximate solution to the following proposed problem:
D 0 + κ 1 ; φ D 0 + κ 2 ; φ u ( z ) = h z , u ( z ) , z O = [ 0 , 1 ] , u ( 0 ) = 0 , u ( 1 ) = λ I 0 + κ 3 ; φ g ξ , u ( ξ ) ,
where 0 < κ 1 , κ 2 , ξ < 1 , κ 1 + κ 2 > 1 , and h , g : [ 0 , 1 ] × R R are continuous functions, D 0 + κ ; φ is the φ -RL-derivative operator of order κ , and I 0 + κ 3 ; φ is the φ -RL-integral operator of order κ 3 > 0 and λ > 0 . To apply the numerical method, they transform the BVP (1) into an equivalent φ -fractional integral equation by using Banach’s principal fixed-point theorem. A unique solution to the problem was established. For more details on the reasons for considering the ϕ -Riemann–Liouville derivative in this boundary value problem and the physical or engineering significance of its results, please see [28,29].
All the results mentioned above motivate us to dedicate our energy to solving the following generalized φ -FBVP of the multi-point differential equation:
D 0 + κ ; φ x ( z ) = f z , x ( z ) , D 0 + κ 1 ; φ x ( z ) , , D 0 + κ n 2 ; φ x ( z ) , z O = [ 0 , 1 ] , x ( 0 ) = 0 , D 0 + κ i ; φ x ( 0 ) = 0 , 1 i n 2 , D 0 + ν ; φ x ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ x ( η j ) + x 0 ,
where
n 3 , n 1 < κ n , ν > 0 , p j ( 0 , ) , x 0 R
0 < η 1 < η 2 < < η m 2 < 1 , κ 1 < κ 2 < < κ n 2 ,
and f : [ 0 , 1 ] × R n 1 R is a continuous function. D 0 + γ ; φ , I 0 + β ; φ are, respectively, the fractional derivative and integral of order γ and β in the Riemann–Liouville sense, with respect to the increasing function φ . In the former, we provide the φ -integral equation, which is equivalent to the multi-term φ -RLFBVP (2); then, we study the existence and uniqueness of the solution by means of Krasnoselskii’s and Banach’s fixed-point theorems; and after that, we discuss the stability of our proposed problem.
Our work is organized as follows: In Section 1, we introduce the significance of fractional calculus and its wide-ranging applications in various fields. This section sets the stage for our study by discussing the motivation, relevance, and objectives of our research. Section 2 deals with the necessary mathematical background and basic tools required for our analysis. Section 3 presents the main results on the existence and uniqueness of solutions for the multi-term FBVP. In Section 4, we focus on the Hyers–Ulam stability of the solutions for the multi-point φ -Riemann–Liouville fractional boundary value problem. We explore the concept of Hyers–Ulam stability and its significance in the context of differential equations. This section includes sufficient conditions for the stability of solutions.

2. Preliminaries and Some Basic Tools

Definition 1
([30]). Let Φ : [ a , b ] R be integrable and φ C n [ a , b ] be an increasing mapping, such that φ ( z ) 0 for all z [ a , b ] . The φ-Riemann–Liouville integral of order ϱ > 0 of the function Φ is represented as
I a + ϱ ; φ Φ ( z ) = 1 Γ ( ϱ ) a z φ ( s ) φ ( z ) φ ( s ) ϱ 1 Φ ( s ) d s ,
and the φ-RL-derivative of order ϱ > 0 for the same function is defined by
D a + ϱ ; φ Φ ( z ) = 1 φ ( z ) d d t n I a + n ϱ ; φ Φ ( z ) = 1 Γ ( n ϱ ) 1 φ ( z ) d d z n a z φ ( s ) φ ( z ) φ ( s ) n ϱ 1 Φ ( s ) d s ,
where n 1 < ϱ n .
Lemma 1
([31]). For Φ : [ a , b ] R and ϱ > ν > 0 , the next property of semi-group is verified as follows:
I a + ϱ + ν ; φ Φ ( z ) = I a + ϱ ; φ Φ ( z ) I a + ν ; φ Φ ( z ) .
Definition 2
([32]). Let φ C m [ a , b ] with φ ( z ) 0 for all z [ a , b ] . Then, we define
A C m ; φ [ c , d ] = ϕ : [ c , d ] R a n d ϕ [ m 1 ] A C [ c , d ] , ϕ [ m 1 ] = 1 φ ( z ) d d z m ϕ ,
where
A C [ c , d ] = f : [ c , d ] R , f ( x ) = f ( c ) + c x g ( z ) d z , g L 1 ( [ c , d ] ) .
Lemma 2
([33]). Let ϱ > 0 and ν > 0 . If ω ( s ) = φ ( s ) φ ( a ) ν 1 , then
D a + ϱ ; φ ω ( s ) ( z ) = Γ ( ν ) Γ ( ν ϱ ) φ ( z ) φ ( a ) ν ϱ 1 ,
and
I a + ϱ ; φ ω ( s ) ( z ) = Γ ( ν ) Γ ( ν + ϱ ) φ ( z ) φ ( a ) ν + ϱ 1 .
As a particular case, we have
D a + ϱ ; z γ s γ ( ν 1 ) ( z ) = Γ ( ν ) Γ ( ν ϱ ) z γ ( ν ϱ 1 ) ,
and
I a + ϱ ; z γ s γ ( ν 1 ) ( z ) = Γ ( ν ) Γ ( ν + ϱ ) z γ ( ν + ϱ 1 ) .
Lemma 3
([34]). Let ϱ > n with n N . Then,
1 φ ( z ) d d z n I a + ϱ ; φ Φ ( z ) = I a + ϱ n ; φ Φ ( z ) .
Lemma 4
([34]). Let ϱ > ν , n 1 < ν < n , n N . Then
D a + ν ; φ I a + ϱ ; φ Φ ( z ) = I a + ϱ ν ; φ Φ ( z ) .
In particular,
D a + ν ; φ I a + ν ; φ Φ ( z ) = Φ ( z ) .
Lemma 5
([34]). Let ϱ > 0 and D a + ϱ ; φ Φ ( z ) A C n ; φ [ a , b ] L 1 [ a , b ] . Then,
I a + ϱ ; φ D a + ϱ ; φ Φ ( z ) = Φ ( z ) + i = 1 n k i ( φ ( z ) φ ( a ) ) ϱ i ,
where k i R for all i { 1 , , n } and n 1 < ϱ n .

3. Existence and Uniqueness Results

Proposition 1.
Let n 1 < κ n , with n 3 , and
0 < η 1 < η 2 < < η m 2 < 1 ,
0 < κ 1 < κ 2 < < κ n 2 < n 2 ,
n 3 < κ n 2 < n 2 .
Let p j ( 0 , ) , 1 j m 2 with m 3 , x 0 R , κ > ν > κ n 2 , and 1 < κ κ n 2 < 2 .
If the following condition holds:
κ n 2 ( n i 2 ) < κ i < κ n 2 ( n i 2 ) + 1 , i { 1 , 2 , , n 3 } ,
then a function x is a solution for the multi-term FBVP (2) if and only if x verifies y ( z ) = D 0 + κ n 2 ; φ x ( z ) , which satisfies the following integral equation:
y ( z ) = 1 Γ ( γ ) 0 t φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) ,
where γ = κ κ n 2 , γ i = κ n 2 κ i for every i { 1 , , n 3 } , γ 0 = κ n 2 , ν = ν κ n 2 , and
λ = j = 1 m 2 p j φ ( η j ) φ ( 0 ) γ ν 1 φ ( 1 ) φ ( 0 ) γ ν 1 0 .
Proof. 
For y ( z ) = D 0 + κ n 2 ; φ x ( z ) , then y ( 0 ) = D 0 + κ n 2 ; φ x ( 0 ) = 0 ; from Lemma 5, it follows that
I 0 + κ n 2 ; φ y ( z ) = x ( z ) + i = 1 n 2 k i ( φ ( z ) φ ( 0 ) ) κ n 2 i .
Then, we have
I 0 + κ n 2 ; φ y ( z ) | z = 0 = x ( 0 ) + k 1 ( φ ( z ) φ ( 0 ) ) κ n 2 1 | z = 0 + + k n 2 ( φ ( z ) φ ( 0 ) ) κ n 2 n + 2 | z = 0 = 0 ,
which implies that k n 2 = 0 . Consequently, in view of (3), by taking the operator D 0 + κ 1 ; φ to both sides of (4), we find
I 0 + κ n 2 κ 1 ; φ y ( z ) = D 0 + κ 1 ; φ x ( z ) + i = 1 n 3 k i Γ ( κ n 2 i + 1 ) Γ ( κ n 2 i + 1 κ 1 ) φ ( z ) φ ( 0 ) κ n 2 i κ 1 .
Then, we have
I 0 + κ n 2 κ 1 ; φ y ( 0 ) = D 0 + κ 1 ; φ x ( 0 ) + k 1 Γ ( κ n 2 ) Γ ( κ n 2 κ 1 ) φ ( z ) φ ( 0 ) κ n 2 κ 1 1 | z = 0 + k 2 Γ ( κ n 2 1 ) Γ ( κ n 2 κ 1 1 ) φ ( t ) φ ( 0 ) κ n 2 κ 1 2 | z = 0 + + k n 4 Γ ( κ n 2 n + 5 ) Γ ( κ n 2 κ 1 n + 5 ) φ ( z ) φ ( 0 ) κ n 2 κ 1 n + 4 | z = 0 + k n 3 Γ ( κ n 2 n + 4 ) Γ ( κ n 2 κ 1 n + 4 ) φ ( z ) φ ( 0 ) κ n 2 κ 1 n + 3 | z = 0 .
Hence, for κ n 2 n + 3 < κ 1 < κ n 2 n + 4 , we obtain
I 0 + κ n 2 κ 1 ; φ y ( z ) | z = 0 = k n 3 Γ ( κ n 2 n + 4 ) Γ ( κ n 2 κ 1 n + 4 ) φ ( z ) φ ( 0 ) κ n 2 κ 1 n + 3 | z = 0 = 0 ,
which makes k n 3 = 0 .
In the same way as from condition (3), for i { 1 , , n 4 } , we find
k n 2 = k n 3 = = k 2 = 0 ,
and for i = n 3 , we obtain
I 0 + κ n 2 κ n 3 ; φ y ( 0 ) = D 0 + κ n 3 ; φ x ( 0 ) + k 1 Γ ( κ n 2 ) Γ ( κ n 2 κ n 3 ) φ ( z ) φ ( 0 ) κ n 2 κ n 3 1 | z = 0 = k 1 Γ ( κ n 2 ) Γ ( κ n 2 κ n 3 ) φ ( t ) φ ( 0 ) κ n 2 κ n 3 1 | z = 0 = 0 ,
which means that k 1 = 0 . Finally, we obtain
I 0 + κ n 2 ; φ y ( z ) = x ( z ) ,
and
x ( z ) = I 0 + κ n 2 ; φ y ( z ) = I 0 + γ 0 ; φ y ( z ) , D 0 + κ 1 ; φ x ( t ) = I 0 + κ n 2 κ 1 ; φ y ( t ) = I 0 + γ 1 ; φ y ( z ) , = D 0 + κ n 3 ; φ x ( z ) = I 0 + κ n 2 κ n 3 ; φ y ( z ) = I 0 + γ n 3 ; φ y ( z ) , D 0 + κ n 2 ; φ x ( z ) = y ( z ) ,
where γ i = κ n 2 κ i for every i { 1 , , n 3 } and γ 0 = κ n 2 ; then, we have
D 0 + κ ; φ x ( z ) = D 0 + κ ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + n ; φ I 0 + n κ ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + n ; φ I 0 + n ( κ κ n 2 ) ; φ y ( z ) = D 0 + κ κ n 2 ; φ y ( z ) = D 0 + γ ; φ y ( z ) ,
where γ = κ κ n 2 , κ n 2 < ν and q 1 < ν < q , with q = [ ν ] + 1 , q N . Thus, it follows that
D 0 + ν ; φ x ( z ) = D 0 + ν ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + q ; φ I 0 + q ν ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + q ; φ I 0 + q ( ν κ n 2 ) ; φ y ( z ) = D 0 + ν κ n 2 ; φ y ( z ) = D 0 + ν ; φ y ( z ) .
Then,
D 0 + ν ; φ x ( 1 ) = D 0 + ν ; φ y ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ y ( η j ) + x 0 ,
where ν = ν κ n 2 and x 0 R . Consequently, our multi-point fractional boundary value problem (2) is equivalent to
D 0 + γ ; φ y ( z ) = f z , I 0 + γ 0 ; φ y ( z ) , I 0 + γ 1 ; φ y ( z ) , , y ( z ) , z [ 0 , 1 ] ,
under the conditions
y ( 0 ) = D 0 + κ n 2 ; φ x ( 0 ) = 0 ,
and
D 0 + ν ; φ y ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ y ( η j ) + x 0 .
For 1 < γ < 2 , f L 1 [ 0 , 1 ] × R n 1 and y A C n ; φ [ 0 , 1 ] , we apply the φ -RLFI I 0 + γ ; φ to both sides of Equation (5), and thus we find that
I 0 + γ ; φ D 0 + γ ; φ y ( z ) = I 0 + γ ; φ f z , I 0 + γ 0 ; φ y ( z ) , I 0 + γ 1 ; φ y ( z ) , , y ( z ) .
Then,
y ( z ) = I 0 + γ ; φ f z , I 0 + γ 0 ; φ y ( z ) , I 0 + γ 1 ; φ y ( z ) , , y ( z ) + c 1 φ ( z ) φ ( 0 ) γ 1 + c 2 φ ( z ) φ ( 0 ) γ 2 .
Hence, from the first boundary condition, we obtain
y ( 0 ) = I 0 + γ ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 0 + c 1 φ ( z ) φ ( 0 ) γ 1 | z = 0 + c 2 φ ( z ) φ ( 0 ) γ 2 | z = 0 = c 2 φ ( z ) φ ( 0 ) γ 2 | z = 0 = 0 ,
which gives c 2 = 0 ; therefore,
y ( z ) = I 0 + γ ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) + c 1 φ ( z ) φ ( 0 ) γ 1 ,
and from condition (6), we obtain
D 0 + ν ; φ y ( z ) = D 0 + ν ; φ I 0 + γ ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) + c 1 D 0 + ν ; φ φ ( z ) φ ( 0 ) γ 1 .
By κ > ν , it follows that κ κ n 2 ( ν κ n 2 ) > 0 , which means that γ ν > 0 . Hence, from Lemma 2, we obtain
D 0 + ν ; φ y ( z ) = I 0 + γ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) + c 1 Γ ( γ ) Γ ( γ ν ) φ ( z ) φ ( 0 ) γ ν 1 .
So, we find
D 0 + ν ; φ y ( 1 ) = 1 Γ ( γ ν ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + c 1 Γ ( γ ) Γ ( γ ν ) φ ( 1 ) φ ( 0 ) γ ν 1 ,
and, on the other hand, we have
D 0 + ν ; φ y ( η j ) = 1 Γ ( γ ν ) 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + c 1 Γ ( γ ) Γ ( γ ν ) φ ( η j ) φ ( 0 ) γ ν 1 .
Then, by the last boundary condition, we find
D 0 + ν ; φ y ( 1 ) = 1 Γ ( γ ν ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + c 1 Γ ( γ ) Γ ( γ ν ) φ ( 1 ) φ ( 0 ) γ ν 1 = j = 1 m 2 p j Γ ( γ ν ) 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + c 1 j = 1 m 2 p j Γ ( γ ) Γ ( γ ν ) φ ( η j ) φ ( 0 ) γ ν 1 + x 0 ,
which means that
c 1 Γ ( γ ) Γ ( γ ν ) j = 1 m 2 p j φ ( η j ) φ ( 0 ) γ ν 1 φ ( 1 ) φ ( 0 ) γ ν 1 = 1 Γ ( γ ν ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j Γ ( γ ν ) 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 .
By putting
λ = j = 1 m 2 p j φ ( η j ) φ ( 0 ) γ ν 1 φ ( 1 ) φ ( 0 ) γ ν 1 0 ,
we obtain
c 1 = 1 λ Γ ( γ ) Γ ( γ ν ) 1 Γ ( γ ν ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j Γ ( γ ν ) 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 = 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) .
Hence, Equation (7) can be expressed as
y ( z ) = 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) ,
where y ( z ) = D 0 + κ n 2 ; φ x ( z ) A C n ; φ [ 0 , 1 ] ; so, (8) is the integral equation, which is equivalent to Equation (5).
Conversely, let y ( z ) = D 0 + κ n 2 ; φ x ( z ) A C n ; φ [ 0 , 1 ] be a solution to Equation (5); then, we have
I 0 + κ n 2 ; φ y ( z ) = x ( z ) , I 0 + κ n 2 κ 1 ; φ y ( z ) = D 0 + κ 1 ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + κ 1 ; φ x ( z ) , = I 0 + κ n 2 κ n 3 ; φ y ( z ) = D 0 + κ n 3 ; φ I 0 + κ n 2 ; φ y ( z ) = D 0 + κ n 3 ; φ x ( z ) ,
and by applying the operator I 0 + κ n 2 ; φ to both sides of (8), we obtain
I 0 + κ n 2 ; φ y ( z ) = I 0 + κ n 2 ; φ I 0 + γ ; φ f z , x ( z ) , , D 0 + κ n 2 ; φ x ( z ) + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν n 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν n 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r x 0 Γ ( γ ν n ) × I 0 + κ n 2 ; φ φ ( z ) φ ( 0 ) γ 1 .
Thus,
x ( z ) = I 0 + κ ; φ f z , x ( z ) , , D 0 + κ n 2 ; φ x ( z ) + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r x 0 Γ ( γ ν n ) × I 0 + κ n 2 ; φ φ ( z ) φ ( 0 ) κ κ n 2 1 .
Taking the operator D 0 + κ ; φ to both sides, we find
D 0 + κ ; φ x ( z ) = D 0 + κ ; φ I 0 + κ ; φ f z , x ( z ) , , D 0 + κ n 2 ; φ x ( z ) + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r x 0 Γ ( γ ν n ) × D 0 + κ ; φ I 0 + κ n 2 ; φ φ ( z ) φ ( 0 ) κ κ n 2 1 = f z , x ( z ) , , D 0 + κ n 2 ; φ x ( z ) + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) κ ν 1 f r , x ( r ) , , D 0 + κ n 2 ; φ x ( r ) d r x 0 Γ ( γ ν n ) × D 0 + κ κ n 2 ; φ φ ( z ) φ ( 0 ) κ κ n 2 1 .
Then, by Lemma 2, we obtain
D 0 + κ ; φ x ( z ) = f z , x ( z ) , , D 0 + κ n 2 ; φ x ( z ) .
In checking the boundary conditions, we have
y ( 0 ) = D 0 + κ n 2 ; φ x ( 0 ) = I 0 + κ ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 0 + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν n 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν n 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν n ) φ ( z ) φ ( 0 ) γ 1 | z = 0 = 0 ,
and for any i { 1 , , n 3 } , we have
D 0 + κ i ; φ x ( z ) | z = 0 = I 0 + κ n 2 κ i ; φ y ( z ) | z = 0 = 0 ,
and
x ( 0 ) = I 0 + κ n 2 ; φ y ( z ) | z = 0 = 0 .
For t = 1 , we have
D 0 + ν ; φ x ( 1 ) = D 0 + ν ; φ I 0 + κ n 2 ; φ y ( z ) | z = 1 = D 0 + ν ; φ y ( z ) | z = 1 = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 + 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) κ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) κ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) D 0 + ν κ n 2 ; φ φ ( z ) φ ( 0 ) κ κ n 2 1 | z = 1
and we have
D 0 + ν κ n 2 ; φ φ ( z ) φ ( 0 ) κ κ n 2 1 = Γ ( κ κ n 2 ) Γ ( κ ν ) φ ( z ) φ ( 0 ) κ ν 1 .
We obtain
D 0 + ν ; φ x ( 1 ) = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 + 1 λ Γ ( κ κ n 2 ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) κ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) κ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν n ) × Γ ( κ κ n 2 ) Γ ( κ ν ) φ ( 1 ) φ ( 0 ) κ ν 1 = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 + φ ( 1 ) φ ( 0 ) κ ν 1 λ I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j x 0 ,
and, on the other hand, we have
D 0 + ν ; φ x ( z ) | z = η j = D 0 + ν ; φ y ( t ) | z = η j = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j + φ ( η j ) φ ( 0 ) κ ν 1 λ I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j x 0 .
Hence,
D 0 + ν ; φ x ( 1 ) j = 1 m 2 p j D 0 + ν ; φ x ( z ) | z = η j = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 + φ ( 1 ) φ ( 0 ) κ ν 1 λ I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j x 0 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j j = 1 m 2 p j φ ( η j ) φ ( 0 ) κ ν 1 λ I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | t = η j x 0 .
Thus,
D 0 + ν ; φ x ( 1 ) j = 1 m 2 p j D 0 + ν ; φ x ( z ) | z = η j = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j j = 1 m 2 p j φ ( η j ) φ ( 0 ) κ ν 1 φ ( 1 ) φ ( 0 ) κ ν 1 λ × I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j x 0 = I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = 1 + j = 1 m 2 p j I 0 + κ ν ; φ f z , I 0 + γ 0 ; φ y ( z ) , , y ( z ) | z = η j + x 0 .
Therefore,
D 0 + ν ; φ x ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ x ( z ) | z = η j + x 0 .
Now, we consider the Banach space C = C ( [ 0 , 1 ] , R ) of functions y with the norm y = max z [ 0 , 1 ] | y ( z ) | .
The objective here is to discuss the existence of fixed points of the operator K : C C , defined by
K y ( z ) = 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) .
Our discussion depends on two-based theories: Krasnoselskii’s and Banach’s fixed-point theorems.
Theorem 1
(Krasnoselskii [11]). Let B be a closed, convex, bounded, and nonempty subset of a Banach space E, and let k 1 and k 2 be operators, satisfying the following
(i) 
k 1 x + k 2 y B , x , y B ;
(ii) 
k 1 is a compact and continuous operator;
(iii) 
k 2 is a contraction.
Then, there exists x B , such that k 1 x + k 2 x = x .
Theorem 2
(Banach [11]). Let X be a complete nonempty metric space and k : X X be a contraction mapping; then, we can find a unique point y X with k y = y .
At first, we shall show our first existence theorem by utilizing the following conditions:
  • [ C 1 ] : Let f be a continuous function bounded with a continuous function g : [ 0 , 1 ] R + ; then,
    ( z , x 1 , , x n 1 ) [ 0 , 1 ] × R n 1
    | f ( z , x 1 , , x n 1 ) | g ( z ) ,
    where g C [ 0 , 1 ] ; R + and g = sup z [ 0 , 1 ] | g ( z ) | .
  • [ C 2 ] : the function g is bounded and satisfies r > 0 ,
    g 1 Λ r | x 0 | Γ ( γ ν ) | λ | Γ ( γ ) φ ( 1 ) φ ( 0 ) γ 1 ,
    where
    | x 0 | Γ ( γ ν ) | λ | Γ ( γ ) φ ( 1 ) φ ( 0 ) γ 1 < r ,
    λ = j = 1 m 2 p j φ ( η j ) φ ( 0 ) γ ν 1 φ ( 1 ) φ ( 0 ) γ ν 1 0 ,
    and
    Λ = ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν .
  • [ C 3 ] : The function f : [ 0 , 1 ] × R n 1 R satisfies ∃ M i > 0 , such that
    | f ( z , x 0 , , x n 2 ) f ( z , y 0 , , y n 2 ) | i = 0 n 2 M i | x i y i |
    for any i { 0 , , n 2 } and ( x 0 , , x n 2 ) , ( y 0 , , y n 2 ) R n 1 .
Theorem 3.
Suppose that the conditions [ C 1 ] , [ C 2 ] , and [ C 3 ] hold, and
Θ = φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) × ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν < 1 ,
where γ i = κ n 2 κ i ; i { 0 , , n 2 } ; κ 0 = 0 ; then, the multi-point FBVP (2) has at least one solution on [ 0 , 1 ] .
Proof. 
( i ) We set B = { y ( C [ 0 , 1 ] , R ) ; y r } ; r > 0 is a closed, bounded, convex subset of ( C [ 0 , 1 ] , R ) ; and let us define the operators k 1 and k 2 from (9) in this way K = k 1 + k 2 as follows:
k 1 y ( z ) = 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r ,
and
k 2 y ( z ) = φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) .
For any x , y B , and z [ 0 , 1 ] , we have
k 1 x + k 2 y = max z [ 0 , 1 ] 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) d r + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) max z [ 0 , 1 ] 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) | d r + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 | f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) | d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 | f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) | d r + | x 0 | Γ ( γ ν ) .
Therefore, from [ C 1 ] and [ C 2 ] , we find
k 1 x + k 2 y max t [ 0 , 1 ] 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 | g ( r ) | d r + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 | g ( r ) | d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 | g ( r ) | d r + | x 0 | Γ ( γ ν ) .
Then,
k 1 x + k 2 y g max z [ 0 , 1 ] 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 d r + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 d r + | x 0 | Γ ( γ ν ) g g 1 Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ 1 d r + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 d r + | x 0 | Γ ( γ ν ) g g ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν + | x 0 | Γ ( γ ν ) g .
Then,
k 1 x + k 2 y g Λ + | x 0 | Γ ( γ ν ) | λ | g Γ ( γ ) φ ( 1 ) φ ( 0 ) γ 1 r .
This means that k 1 x + k 2 y B .
( i i ) We prove that k 1 is continuous and compact. We have
k 1 y ( z ) = 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r ,
since f : [ 0 , 1 ] × R n 1 R is continuous, meaning k 1 is also continuous.
We set Ω = { k 1 y ( z ) ; y B } ; then, for all y B ,
k 1 y max z [ 0 , 1 ] 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) | d r g Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ 1 d r g Γ ( γ + 1 ) ( φ ( 1 ) φ ( 0 ) ) γ ;
then, Ω is bounded.
For all z 1 , z 2 [ 0 , 1 ] such that z 1 < z 2 , we have
| k 1 y ( z 2 ) k 1 y ( z 1 ) | = 1 Γ ( γ ) 0 z 2 φ ( r ) ( φ ( z 2 ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) d r 1 Γ ( γ ) 0 z 1 φ ( r ) ( φ ( z 1 ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) d r 1 Γ ( γ ) 0 z 1 φ ( r ) ( φ ( z 2 ) φ ( r ) ) γ 1 ( φ ( z 1 ) φ ( r ) ) γ 1 | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) | d r + 1 Γ ( γ ) z 1 z 2 φ ( r ) ( φ ( z 2 ) φ ( r ) ) γ 1 | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) | d r g Γ ( γ ) 0 z 1 φ ( r ) ( φ ( z 2 ) φ ( r ) ) γ 1 ( φ ( z 1 ) φ ( r ) ) γ 1 d r + z 1 z 2 φ ( r ) ( φ ( z 2 ) φ ( r ) ) γ 1 d r g Γ ( γ ) ( φ ( z 2 ) φ ( r ) ) γ γ + ( φ ( z 1 ) φ ( r ) ) γ γ 0 z 1 ( φ ( z 2 ) φ ( r ) ) γ γ z 1 z 2 g Γ ( γ + 1 ) ( φ ( z 2 ) φ ( 0 ) ) γ ( φ ( z 1 ) φ ( 0 ) ) γ + 2 ( φ ( z 2 ) φ ( z 1 ) ) γ .
Since φ is continuous, then | k 1 y ( z 2 ) k 1 y ( z 1 ) | 0 when z 1 z 2 , meaning Ω is equi-continuous; hence, by Arzelà–Ascoli’s theorem, the operator k 1 is compacted on B.
( i i i ) We show that k 2 is a contraction. For any x , y B , we have
k 2 x k 2 y = max z [ 0 , 1 ] φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) d r x 0 Γ ( γ ν ) φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) max z [ 0 , 1 ] φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 × | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) | d r + j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 × | f r , I 0 + γ 0 ; φ x ( r ) , , x ( r ) f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) | d r ;
hence, by exploiting [ C 3 ] , we obtain
k 2 x k 2 y max z [ 0 , 1 ] φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 i = 0 n 2 M i I 0 + γ i ; φ ( x ( r ) y ( r ) ) d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 i = 0 n 2 M i I 0 + γ i ; φ ( x ( r ) y ( r ) ) d r ,
where γ 0 = κ n 2 and I 0 + γ n 2 ; φ x ( r ) = x ( r ) , and we have
I 0 + γ i ; φ ( x ( z ) y ( z ) ) = 1 Γ ( γ i ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ i 1 ( x ( r ) y ( r ) ) d r max z [ 0 , 1 ] | x ( z ) y ( z ) | 1 Γ ( γ i ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ i 1 d r ( φ ( z ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) x y .
Then, we obtain
k 2 x k 2 y φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) x y 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 d r + i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) x y j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 d r φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 d r x y φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν x y .
This means that
k 2 x k 2 y Θ x y ,
where
Θ = φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) × ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν < 1 ;
thus, k 2 is contraction.
Therefore, using Krasnoselskii’s fixed-point theorem, we can conclude that the operator k 1 + k 2 possesses at least one fixed point, which implies that the boundary value problem (2) has at least one solution on the interval [ 0 , 1 ] . □
Let us now examine the uniqueness of the solution to φ -FBVP (2).
Theorem 4.
Assume that [ C 3 ] and the following condition:
Δ = i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) × ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν < 1 .
Then, the FBVP (2) possesses a unique solution in [ 0 , 1 ] .
Proof. 
We can show that the operator K : A A defined in (9) is a contraction map; thus, we have
K y ( z ) = 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 f r , I 0 + γ 0 ; φ y ( r ) , , y ( r ) d r x 0 Γ ( γ ν ) ,
where we have A = A C n ; φ [ 0 , 1 ] for any y 1 , y 2 A .
| K y 1 ( z ) K y 2 ( z ) | 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 | f r , I 0 + γ 0 ; φ y 1 ( r ) , , y 1 ( r ) f r , I 0 + γ 0 ; φ y 2 ( r ) , , y 2 ( r ) | d r + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 | f r , I 0 + γ 0 ; φ y 1 ( r ) , , y 1 ( r ) f r , I 0 + γ 0 ; φ y 2 ( r ) , , y 2 ( r ) | d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 × | f r , I 0 + γ 0 ; φ y 1 ( r ) , , y 1 ( r ) f r , I 0 + γ 0 ; φ y 2 ( r ) , , y 2 ( r ) | d r .
Hence, by exploiting [ C 3 ] , we obtain
| K y 1 ( z ) K y 2 ( z ) | 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 i = 0 n 2 M i | I 0 + γ i ; φ y 1 ( r ) y 2 ( r ) | d r + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 i = 0 n 2 M i | I 0 + γ i ; φ y 1 ( r ) y 2 ( r ) | d r + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 i = 0 n 2 M i | I 0 + γ i ; φ y 1 ( r ) y 2 ( r ) | d r 1 Γ ( γ ) 0 z φ ( r ) ( φ ( z ) φ ( r ) ) γ 1 d r i = 0 n 2 M i ( φ ( t ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) y 1 y 2 + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) 0 1 φ ( r ) ( φ ( 1 ) φ ( r ) ) γ ν 1 d r i = 0 n 2 M i ( φ ( z ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) y 1 y 2 + j = 1 m 2 p j 0 η j φ ( r ) ( φ ( η j ) φ ( r ) ) γ ν 1 d r i = 0 n 2 M i ( φ ( z ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) y 1 y 2 ( φ ( z ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( z ) φ ( 0 ) γ 1 | λ | Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν i = 0 n 2 M i ( φ ( z ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) y 1 y 2 .
Then,
K y 1 K y 2 i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) × ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν y 1 y 2 ,
by setting
Δ = i = 0 n 2 M i ( φ ( 1 ) φ ( 0 ) ) γ i Γ ( γ i + 1 ) ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) × ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν < 1 .
Thus, we obtain
K y 1 K y 2 Δ y 1 y 2 ;
then, the operator K is a contraction, meaning it has a unique fixed point y in A. Hence, FBVP (2) has a unique solution in [ 0 , 1 ] . □
Example 1.
Consider the following φ-FBVP:
D 0 + 4.8 ; z 2 + 1 x ( z ) = 2 z + 1 25 cos ( x ( z ) ) + 1 20 sin D 0 + 1.5 ; z 2 + 1 x ( z ) + 1 8 sin D 0 + 2.1 ; z 2 + 1 x ( z ) + 1 16 tan 1 D 0 + 2.9 ; z 2 + 1 x ( z ) , x ( 0 ) = D 0 + 1.5 ; z 2 + 1 x ( 0 ) = D 0 + 2.1 ; z 2 + 1 x ( 0 ) = D 0 + 2.9 ; z 2 + 1 x ( 0 ) = 0 , D 0 + 3.7 ; z 2 + 1 x ( 1 ) = 16 D 0 + 3.7 ; z 2 + 1 x ( 1 20 ) + 2 D 0 + 3.7 ; z 2 + 1 x ( 1 10 ) + 1 .
In this example, we have n = 5 , φ ( z ) = z 2 + 1 , κ = 4.8 , κ 1 = 1.5 , κ 2 = 2.1 , κ 3 = 2.9 , m = 4 , and ν = 3.7 ; then, γ = κ κ 3 = 1.9 , ν = ν κ 3 = 0.8 , γ ν = κ ν = 1.1 , η 1 = 1 20 , η 2 = 1 10 , p 1 = 16 , p 2 = 2 , and x 0 = 1 .
For z [ 0 , 1 ] , we set
f z , x ( z ) , D 0 + 1.5 ; z 2 + 1 x ( z ) , D 0 + 2.1 ; z 2 + 1 x ( z ) , D 0 + 2.9 ; z 2 + 1 x ( z ) = 2 z + 1 25 cos ( x ( z ) ) + 1 20 sin D 0 + 1.5 ; z 2 + 1 x ( z ) + 1 8 sin D 0 + 2.1 ; z 2 + 1 x ( z ) + 1 16 tan 1 D 0 + 2.9 ; z 2 + 1 x ( z ) ;
then, for every ( z , x 1 , x 2 , x 3 , x 4 ) [ 0 , 1 ] × R 4 , we have
| f ( z , x 1 , x 2 , x 3 , x 4 ) | g ( z ) = 2 z + 1 25 + 1 20 + 1 8 + π 32 = 2 z + π 32 + 43 200 , z [ 0 , 1 ] ,
which gives
g = π 32 + 443 200 ;
hence, by computing λ from condition [ C 2 ] , we obtain
λ = 16 1 20 2 1.1 1 + 2 1 10 2 1.1 1 ( 1 ) 1.1 1 9.050399035 .
From Theorem 3, and with M 0 = 0.04 , M 1 = 0.05 , M 2 = 0.125 , M 3 = 0.03125 π , we find
Θ = ( 1 ) 0.9 | λ | Γ ( 1.9 ) 0.04 ( 1 ) 2.9 Γ ( 3.9 ) + 0.05 ( 1 ) 1.4 Γ ( 2.4 ) + 0.125 ( 1 ) 0.8 Γ ( 1.8 ) + 0.03125 π ( 1 ) 0 Γ ( 1 ) × ( 1 ) 1.1 1.1 + 16 1 20 2 1.1 1.1 + 2 1 10 2 1.1 1.1 0.03027 < 1 ;
therefore, by applying Krasnoselskii’s fixed-point theorem, we can assert that the fractional boundary value problem (11) has at least one solution on the interval [ 0 , 1 ] .
Example 2.
Consider the following φ-FBVP:
D 0 + 3.7 ; z 2 x ( z ) = 1 3 3 sin D 0 + 1.3 ; z 2 x ( z ) cos ( z 2 1 ) 4 e x ( z ) 2 + 1 + 1 6 e z cos D 0 + 1.9 ; z 2 x ( z ) + π 3 5 Γ ( 2.1 ) z 2.2 x ( 0 ) = D 0 + 1.3 ; z 2 x ( 0 ) = D 0 + 1.9 ; z 2 x ( 0 ) = 0 , D 0 + 2.6 ; z 2 x ( 1 ) = 2 1 5 1 5 D 0 + 2.6 ; z 2 x ( 0.2 ) + 6 3 10 6 5 D 0 + 2.6 ; z 2 x ( 0.3 ) + 36 100 Γ ( 1.4 ) ,
In this example, we choose n = 4 , κ = 3.7 , κ 1 = 1.3 , κ 2 = 1.9 , and ν = 2.6 ; m = 4 , p 1 = 2 1 5 1 5 , p 2 = 6 3 10 6 5 , and η 1 = 0.2 ; and η 2 = 0.3 , x 0 = 36 100 Γ ( 1.4 ) , and φ ( z ) = z 2 . Therefore, we obtian γ = κ κ 2 = 1.8 , ν = ν κ 2 = 0.7 , κ 2 κ 1 = 0.6 , γ ν = κ ν = 1.1 . For z [ 0 , 1 ] , we have
f z , x ( z ) , D 0 + 1.3 ; z 2 x ( z ) , D 0 + 1.9 ; z 2 x ( z ) = 1 3 3 sin D 0 + 1.3 ; z 2 x ( z ) cos ( z 2 1 ) 4 e x ( z ) 2 + 1 + 1 6 e z cos D 0 + 1.9 ; z 2 x ( z ) + π 3 5 Γ ( 2.1 ) z 2.2 ;
then, for every ( z , x 1 , x 2 , x 3 ) [ 0 , 1 ] × R 3 , we have
| f ( z , x 1 , x 2 , x 3 ) | g ( z ) = 1 3 3 + c o s ( z 2 1 ) 4 e + 1 6 e z π 1 + 3 5 Γ ( 2.1 ) z 2.2 , z [ 0 , 1 ] ,
and so
g = 1 3 3 + 1 4 e + 1 6 π 1 + 3 5 Γ ( 1.4 ) .
From condition [ C 2 ] , we have
λ = 2 1 5 1 5 ( 0.2 ) 2 0.1 + 6 3 10 6 5 ( 0.3 ) 2 0.1 ( 1 ) 0.1 = 1.16265
Λ = ( 1 ) 1.8 Γ ( 2.8 ) + ( 1 ) 0.8 | λ | Γ ( 1.8 ) ( 1 ) 1.1 1.1 + 2 1 5 1 5 ( 0.2 ) 2 1.1 1.1 + 6 3 10 6 5 ( 0.3 ) 2 1.1 1.1 1.5553014 ,
and with M 0 = 2 e 3 2 4 , M 1 = 1 3 3 , and M 2 = 1 12 ( π 1 ) 3 2 , from Theorem 4, we obtain
Δ = 2 e 3 2 4 ( 1 ) 1.9 Γ ( 2.9 ) + 1 3 3 ( 1 ) 0.6 Γ ( 1.6 ) + 1 12 ( π 1 ) 3 2 ( 1 ) 0 Γ ( 1 ) × Λ 0.443487 < 1 ;
thus, by applying Banach’s fixed-point theorem, we can deduce that the fractional boundary value problem (12) has a unique solution on the interval [ 0 , 1 ] .

4. The Criterion for (HU) Stability

Fractional differential equations are crucial in mathematical analysis and the modeling of physical phenomena, and they have been extensively examined from various perspectives. One key aspect that has received significant attention is the stability analysis in the Hyers–Ulam sense [35,36]. The original definition of Hyers–Ulam stability has been expanded to more general forms with time [37,38]. In this section, we establish certain sufficient conditions to derive Hyers–Ulam-type stability results for our primary problem.
Definition 3
([35]). Consider the Banach space C = C ( [ 0 , 1 ] , R ) and an operator K : C C . The operator equation
K y = y ,
is considered to be Hyers–Ulam-stable if
| y ( z ) K y ( z ) | ϵ
for all z [ 0 , 1 ] , which implies that there exists a constant P K > 0 such that for any y C [ 0 , 1 ] , R satisfying (13), one can find a unique solution y ^ C [ 0 , 1 ] , R of the operator Equation (13), provided that for any z [ 0 , 1 ] , we have
| y ( z ) y ^ ( z ) | P K . ϵ .
Definition 4
([39]). Consider the operator K : C C . Inspired by Definition 3, we define the operator equation
y ( z ) = K y ( z )
as Hyers–Ulam-stable if, for the inequality
| y ( z ) K y ( z ) | ϵ , z [ 0 , 1 ] ,
we can find a constant P K , such that for y satisfying (14), there exists a unique solution y ^ of the operator Equation (14), provided that for any z [ 0 , 1 ]
| y ( z ) y ^ ( z ) | P K . ϵ .
Theorem 5.
Assume that ϕ C ( [ 0 , 1 ] , R ) is a solution of the inequality (15) satisfying the following conditions:
(i) 
| ϕ ( z ) | ϵ for every z [ 0 , 1 ] ,
(ii) 
D 0 + κ ; φ x ( z ) f z , x ( z ) , D 0 + κ 1 ; φ x ( z ) , , D 0 + κ n 2 ; φ x ( z ) ϕ ( z ) = 0 , for every z [ 0 , 1 ] .
Then,
| y ( z ) K y ( z ) | Λ ϵ , z [ 0 , 1 ] ,
where y ( z ) = D 0 + κ n 2 ; φ x ( z ) with
Λ : = ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 | λ | Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν ,
and K denotes the operator defined in (9).
Proof. 
Based on condition ( i i ) and for every z [ 0 , 1 ] , we have
D 0 + κ ; φ x ( z ) f z , x ( z ) , D 0 + κ 1 ; φ x ( z ) , , D 0 + κ n 2 ; φ x ( z ) ϕ ( z ) = 0 ,
x ( 0 ) = 0 , D 0 + κ i ; φ x ( 0 ) = 0 , 1 i n 2 , D 0 + ν ; φ x ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ x ( η j ) + x 0 .
From Proposition 1 and by assuming that y ( z ) = D 0 + κ n 2 ; φ x ( z ) , the solution of φ -FBVP (16) can written as
y ( z ) = 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s + 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 ϕ ( s ) d s + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s + 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 ϕ ( s ) d s j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 ϕ ( s ) d s x 0 Γ ( γ ν ) ;
then, we have
| y ( z ) K y ( z ) | = y ( z ) 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ( s ) , , y ( s ) d s x 0 Γ ( γ ν ) = 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 ϕ ( s ) d s + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 ϕ ( s ) d s j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 ϕ ( s ) d s 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 | ϕ ( s ) | d s + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 | ϕ ( s ) | d s + j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 | ϕ ( s ) | d s ;
hence, by using condition ( i ) , we obtain
| y ( z ) K y ( z ) | ( φ ( z ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν ϵ ( φ ( 1 ) φ ( 0 ) ) γ Γ ( γ + 1 ) + φ ( 1 ) φ ( 0 ) γ 1 λ Γ ( γ ) ( φ ( 1 ) φ ( 0 ) ) γ ν γ ν + j = 1 m 2 p j ( φ ( η j ) φ ( 0 ) ) γ ν γ ν ϵ ,
which leads to
| y ( z ) K y ( z ) | Λ ϵ , z [ 0 , 1 ] .
Theorem 6.
Under the hypotheses of Theorems 4 and 5, the solution of φ-FBVP (2) is Hyers-Ulam-stable.
Proof. 
Let x C ( [ 0 , 1 ] , R ) be one of the solutions of the following inequality:
D 0 + κ ; φ x ( z ) f z , x ( z ) , D 0 + κ 1 ; φ x ( z ) , , D 0 + κ n 2 ; φ x ( z ) ϵ , z [ 0 , 1 ] ,
and let x ^ C ( [ 0 , 1 ] , R ) be the unique solution of the problem
D 0 + κ ; φ x ^ ( z ) = f t , x ^ ( z ) , D 0 + κ 1 ; φ x ^ ( z ) , , D 0 + κ n 2 ; φ x ^ ( z ) , t [ 0 , 1 ] , x ^ ( 0 ) = 0 , D 0 + κ i ; φ x ^ ( 0 ) = 0 , 1 i n 2 , D 0 + ν ; φ x ^ ( 1 ) = j = 1 m 2 p j D 0 + ν ; φ x ^ ( η j ) + x 0 ;
then, by Proposition 1, the solution y ^ ( z ) = D 0 + κ n 2 ; φ x ^ ( z ) can be expressed as
y ^ ( z ) = 1 Γ ( γ ) 0 z φ ( s ) ( φ ( z ) φ ( s ) ) γ 1 f s , I 0 + γ 0 ; φ y ^ ( s ) , , y ^ ( s ) d s + φ ( z ) φ ( 0 ) γ 1 λ Γ ( γ ) 0 1 φ ( s ) ( φ ( 1 ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ^ ( s ) , , y ^ ( s ) d s j = 1 m 2 p j 0 η j φ ( s ) ( φ ( η j ) φ ( s ) ) γ ν 1 f s , I 0 + γ 0 ; φ y ^ ( s ) , , y ^ ( s ) d s x 0 Γ ( γ ν ) .
Then, we obtain
| y ( z ) y ^ ( z ) | = | y ( z ) K y ^ ( z ) | = | y ( z ) K y ( z ) + K y ( z ) K y ^ ( z ) | | y ( z ) K y ( z ) | + | K y ( z ) K y ^ ( z ) | ;
hence, Theorem 5 and the inequality (10) lead to
y y ^ Λ ϵ + Δ y y ^ ,
which gives
y y ^ Λ 1 Δ ϵ .
Therefore, the solution of φ -FBVP (2) is Hyers-Ulam-stable. □

5. Conclusions and Perspectives

In this work, we have explored the existence, uniqueness, and Hyers–Ulam stability of solutions for a multi-point φ -Riemann–Liouville fractional boundary value problem (FBVP). By leveraging fixed-point theorems such as Banach’s and Krasnoselskii’s, we established the conditions under which unique solutions to the FBVP can be guaranteed. Our analysis provided detailed proofs and propositions that validate the theoretical findings, ensuring a rigorous mathematical framework. Furthermore, we delved into the concept of Hyers–Ulam stability, demonstrating its significance in the context of differential equations. We identified sufficient conditions for the stability of solutions and illustrated these theoretical results with practical examples. This comprehensive approach ensures that the theoretical contributions are robust and applicable to real-world problems.
Future research can extend this work by generalizing the results to higher-dimensional problems, developing numerical methods to approximate solutions, exploring different boundary conditions, and applying the theoretical framework to real-world problems. These directions will enhance the applicability and robustness of the current theoretical contributions.

Author Contributions

Methodology, K.Z.; writing—original draft preparation, H.A.M., A.A. and M.E.-H.M.; writing—review and editing, B.T., K.B. and S.M.M.; visualization, K.Z.; supervision, K.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).

Data Availability Statement

Data are contained within the article.

Acknowledgments

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
  2. Valerjo, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
  3. Bitsadze, A.; Samarskiim, A. On some simple generalizations of linear elliptic boundary problems. Dokl. Math. 1969, 10, 398–400. [Google Scholar]
  4. Konjik, S.; Oparnica, L.; Zorica, D. Waves in viscoelastic media described by a linear fractional model. Integr. Spec. Funct. 2011, 22, 283–291. [Google Scholar] [CrossRef]
  5. Ahmad, B.; Alsaedi, A.; Alsharif, A. Existence result for fractional-order differential equations with nonlocal multi-point-strip conditions involving Caputo derivative. Adv. Diff. Equ. 2015, 2015, 348. [Google Scholar] [CrossRef]
  6. Jia, M.; Gu, X.; Zhang, X. Nontrival solutions for a higher fractional differential equation with fractional multi-point boundary conditions. Bound. Value Probl. 2012, 2012, 70. [Google Scholar] [CrossRef]
  7. Diethelm, K.; Freed, A.D. On the solutions of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction Engineering and Molecular Properties; Keil, F., Mackens, W., Voss, H., Werthers, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
  8. Gaul, L.; Klein, P.; Kempffe, S. Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5, 81–88. [Google Scholar] [CrossRef]
  9. Glockle, W.G.; Nonnenmacher, T.F. A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef]
  10. Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanics. In Fractal and Fractional Calculus in Continuum Mechanics; Carpinteri, C.A., Mainardi, F., Eds.; Springer: Vienna, Austria, 1997. [Google Scholar]
  11. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
  12. Metzler, F.; Schick, W.; Kilian, H.G.; Nonnenmache, T.F. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 1995, 103, 7180–7186. [Google Scholar] [CrossRef]
  13. Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J.L.G. Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized φ-RL-Operators. Symmetry 2021, 13, 532. [Google Scholar] [CrossRef]
  14. Chinoune, H.; Tellab, B.; Bensayah, A. Approximate solution for a fractional BVP under φ-Riemann-Liouville operators via iterative method and artificial neural networks. Math. Meth. Appl. Sci. 2023, 46, 12826–12839. [Google Scholar] [CrossRef]
  15. Rehman, M.; Khan, R. Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Appl. Math. Lett. 2010, 23, 1038–1044. [Google Scholar] [CrossRef]
  16. Salem, A.H. On the fractional m-point boundary value problem in reflexive Banach space and the weak topologies. J. Comput. Appl. Math. 2009, 224, 565–572. [Google Scholar] [CrossRef]
  17. Zhao, K.; Gong, P. Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equations. Bound. Value Probl. 2015, 2015, 19. [Google Scholar] [CrossRef]
  18. Zhao, K.; Liang, J. Solvability of triple-point integral boundary value problems for a class of impulsive fractional differential equations. Adv. Diff. Equ. 2017, 2017, 50. [Google Scholar] [CrossRef]
  19. Zhao, K. Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 2015, 30, 208–223. [Google Scholar] [CrossRef]
  20. Zhang, X.; Liu, L.; Wu, Y. The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 2012, 218, 8526–8536. [Google Scholar] [CrossRef]
  21. Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multi-point boundary conditions. Bound. Value Prob. 2018, 2018, 4. [Google Scholar] [CrossRef]
  22. Wu, J.; Zhang, X.; Liu, L.; Wu, Y. Positive solutions of higher order nonlinear fractional differential equations with changing-sign measure. Adv. Diff. Equ. 2012, 2012, 71. [Google Scholar] [CrossRef]
  23. Zhang, X.; Liu, L.; Wu, Y. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55, 1263–1274. [Google Scholar] [CrossRef]
  24. Reunsumrit, J.; Sitthiwirattham, T. Existence results of fractional delta-nabla difference equations via mixed boundary conditions. Adv. Differ. Equ. 2020, 2020, 370. [Google Scholar] [CrossRef]
  25. Abdeljawad, T. On Delta and Nabla Caputo Fractional Differences and Dual Identities. Discr. Dynam. Nat. Soc. 2013, 2013, 406910. [Google Scholar] [CrossRef]
  26. Jonnalagadda, J.M. A Comparison Result for the Nabla Fractional Difference Operator. Discr. Dynam. Nat. Soc. 2023, 3, 181–198. [Google Scholar] [CrossRef]
  27. Dimitrov, N.D.; Jonnalagadda, J.M. Existence of Positive Solutions for a Class of Nabla Fractional Boundary Value Problems. Fractal Fract. 2025, 9, 131. [Google Scholar] [CrossRef]
  28. Fard, H.S.; Dastranj, E.; Jajarmi, A. A Novel Fractional Stochastic Model Equipped with ψ-Caputo Fractional Derivative in a Financial Market. Math. Meth. Appl. Sci. 2025. [Google Scholar] [CrossRef]
  29. Shammakh, W.M.; Alqarni, R.D.; Alzumi, H.Z.; Ghanmi, A. Multiplicity of solution for a singular problem involving the φ-Hilfer derivative and variable exponents. AIMS Math. 2025, 10, 4524–4539. [Google Scholar] [CrossRef]
  30. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
  31. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
  32. Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  33. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  34. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709–722. [Google Scholar] [CrossRef]
  35. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
  36. Ulam, S. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964. [Google Scholar]
  37. Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed point results on δ-symmetric quasi-metric space via simulation function with an application to Ulam stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef]
  38. Alzabut, J.; Selvam, G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
  39. Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ait Mohammed, H.; Mirgani, S.M.; Tellab, B.; Amara, A.; Mezabia, M.E.-H.; Zennir, K.; Bouhali, K. Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics 2025, 13, 1450. https://doi.org/10.3390/math13091450

AMA Style

Ait Mohammed H, Mirgani SM, Tellab B, Amara A, Mezabia ME-H, Zennir K, Bouhali K. Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics. 2025; 13(9):1450. https://doi.org/10.3390/math13091450

Chicago/Turabian Style

Ait Mohammed, Hicham, Safa M. Mirgani, Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, and Keltoum Bouhali. 2025. "Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem" Mathematics 13, no. 9: 1450. https://doi.org/10.3390/math13091450

APA Style

Ait Mohammed, H., Mirgani, S. M., Tellab, B., Amara, A., Mezabia, M. E.-H., Zennir, K., & Bouhali, K. (2025). Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem. Mathematics, 13(9), 1450. https://doi.org/10.3390/math13091450

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop