Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control
Abstract
:1. Introduction and Background
2. A Set-Covering Approach to Select Minimal Inspection Items
2.1. Traditional Inspection Method
2.2. Selection of Minimal Inspection Items
2.3. Synthesis of the Minimal Inspection Item Method
2.4. An Instance of the Approach
3. Experimental Results
3.1. Minimal Inspection Item Method for Different Numbers of Parts
3.2. Minimal Inspection Item Method for Different Numbers of Inspection Items
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoyle, D.; Ebrary, I. Automotive Quality Systems Handbook: ISO/TS 16949: 2002; Elsevier Butterworth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Skorupińska, E.; Hitka, M.; Sydor, M. Surveying quality management methodologies in wooden furniture production. Systems 2024, 12, 51. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [Google Scholar] [CrossRef]
- Gozbenko, V.E.; Kargapoltsev, S.K.; Karlina, Y.I.; Karlina, A.I.; Artyunin, A.I. Automation of the motion process of the materials which are subject to the incoming quality control. Adv. Appl. Discret. Math. 2018, 19, 289. [Google Scholar] [CrossRef]
- Qin, R.; Cudney, E.A.; Hamzic, Z. An optimal plan of zero-defect single-sampling by attributes for incoming inspections in assembly lines. Eur. J. Oper. Res. 2015, 246, 907–915. [Google Scholar] [CrossRef]
- Feigenbaum, A.V. Total quality control. Harv. Bus. Rev. 1991, 34, 221. [Google Scholar]
- Rao, V.; Shishira, S.; Sudarsan, S.D. Machine vision based automation to improve process and quality control in rolling mills. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 565–572. [Google Scholar]
- Ng, W.C.; Van Hui, Y. Economic design of a complete inspection plan with interactive quality improvement. Eur. J. Oper. Res. 1997, 96, 122–129. [Google Scholar]
- Jeang, A. Tolerance chart balancing with a complete inspection plan taking account of manufacturing and quality costs. Int. J. Adv. Manuf. Technol. 2011, 55, 675–687. [Google Scholar] [CrossRef]
- Schilling, E.G.; Neubauer, D.V. Acceptance Sampling in Quality Control; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Bose, D.; Guha, A. Economic production lot sizing under imperfect quality, on-line inspection, and inspection errors: Full vs. sampling inspection—ScienceDirect. Comput. Ind. Eng. 2021, 160, 107565. [Google Scholar] [CrossRef]
- Caulcutt, R. Statistical process control (SPC). Assem. Autom. 1996, 16, 10–14. [Google Scholar] [CrossRef]
- Sarkar, M.; Pan, L.; Dey, B.K.; Sarkar, B. Does the autonomation policy really help in a smart production system for controlling defective production. Mathematics 2020, 8, 1142. [Google Scholar] [CrossRef]
- Sousa, S.; Rodrigues, N.; Nunes, E. Application of SPC and quality tools for process improvement. Procedia Manuf. 2017, 11, 1215–1222. [Google Scholar] [CrossRef]
- Al-Nuaami, W.A.H.; Heydari, A.A.; Khamnei, H.J. The Poisson–Lindley distribution: Some characteristics, with its application to SPC. Mathematics 2023, 11, 2428. [Google Scholar] [CrossRef]
- Voehl, F.; Harrington, H.J.; Mignosa, C.; Charron, R. The Lean Six Sigma Black Belt Handbook: Tools and Methods for Process Acceleration; CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Nada, O.A.; ElMaraghy, H.A.; ElMaraghy, W.H. Quality prediction in manufacturing system design. J. Manuf. Syst. 2006, 25, 153–171. [Google Scholar] [CrossRef]
- Chen, K.S.; Huang, T.H.; Chiou, K.C.; Kao, W.Y. Fuzzy Evaluation Model for Products with Multifunctional Quality Characteristics: Case Study on Eco-Friendly Yarn. Mathematics 2024, 12, 1446. [Google Scholar] [CrossRef]
- Cherrafi, A.; Elfezazi, S.; Chiarini, A.; Mokhlis, A.; Benhida, K. The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. J. Clean. Prod. 2016, 139, 828–846. [Google Scholar] [CrossRef]
- Jin, M.H.; Chen, J.; Zhong, X. Quality management research of all handset lithium battery engineering parts. Appl. Mech. Mater. 2013, 321, 2424–2430. [Google Scholar] [CrossRef]
- Kornas, T.; Knak, E.; Daub, R.; Bührer, U.; Lienemann, C.; Heimes, H.; Kampker, A.; Thiede, S.; Herrmann, C. A multivariate KPI-based method for quality assurance in lithium-ion-battery production. Procedia CIRP 2019, 81, 75–80. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, M.; Chen, X. A method of quality improvement based on big quality warranty data analysis. In Proceedings of the IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 643–644. [Google Scholar]
- Wook Kang, C.; Ullah, M.; Sarkar, M.; Omair, M.; Sarkar, B. A single-stage manufacturing model with imperfect items, inspections, rework, and planned backorders. Mathematics 2019, 7, 446. [Google Scholar] [CrossRef]
- Nitheezkant, R.; Desai, B.B.; Rao, M.; Rajapur, Y. Predictive Drug Quality Control Using Machine Learning and Big Data. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp), Seoul, Republic of Korea, 19–22 February 2024; pp. 381–382. [Google Scholar]
- Kang, K.; Zhong, R.Y. A methodology for production analysis based on the RFID-collected manufacturing big data. J. Manuf. Syst. 2023, 68, 628–634. [Google Scholar] [CrossRef]
- Lee, D. Big data quality assurance through data traceability: A case study of the national standard reference data program of Korea. IEEE Access 2019, 7, 36294–36299. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res. 2019, 57, 4828–4853. [Google Scholar] [CrossRef]
- Lin, C.M.; Chen, S.L. FMEA-TSTM-NNGA: A novel optimization framework integrating failure mode and effect analysis, the Taguchi method, a neural network, and a genetic algorithm for improving the resistance in dynamic random access memory components. Mathematics 2024, 12, 2773. [Google Scholar] [CrossRef]
m | 40 | 45 | 50 | 55 | 60 | |
---|---|---|---|---|---|---|
n | ||||||
500 | 20,000 | 22,500 | 25,000 | 27,500 | 30,000 | |
550 | 22,000 | 24,750 | 27,500 | 30,250 | 33,000 | |
600 | 24,000 | 27,000 | 30,000 | 33,000 | 36,000 | |
650 | 26,000 | 29,250 | 32,500 | 35,750 | 39,000 | |
700 | 28,000 | 31,500 | 35,000 | 38,500 | 42,000 |
0 | 1 | 0 | 1 | |
1 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | |
1 | 1 | 0 | 0 | |
0 | 0 | 0 | 1 |
Material Code | Supplier Batch No. | Material Name | Delivery Quantity |
---|---|---|---|
3TCCM0010014 | 46LY211010F1 | Nickel Cobalt Manganese Oxide (NCM), CK-63, 100,120 | 500 |
Inspection Item | Inspection Item Name | Specification |
---|---|---|
1 | Appearance | Black-gray powder, stable under normal temperature and pressure |
2 | D10 | ≥m |
3 | D50 | 3.0–m |
4 | D90 | 5.0–m |
5 | D99 | ≤m |
6 | Specific Surface Area | 0.7–/g |
7 | Tapped Density | ≥ |
8 | Moisture Content | ≤0.05% |
9 | Magnetic Substances | <100 ppb |
10 | PH | ≤11.80 |
11 | Residual Total Lithium | ≤500 ppm |
12 | Lithium Content (Li) | 6.5–8.0% |
13 | Nickel Content (Ni) | 34.0–38.0% |
14 | Cobalt Content (Co) | 5.0–7.0% |
15 | Manganese Content (Mn) | 15.5–18.5% |
16 | Iron Content (Fe) | ≤0.005% |
17 | Chromium Content (Cr) | ≤0.002% |
18 | Sodium Content (Na) | ≤0.030% |
19 | Calcium Content (Ca) | ≤0.015% |
20 | Magnesium Content (Mg) | ≤0.025% |
21 | Copper Content (Cu) | ≤0.0015% |
22 | Zinc Content (Zn) | ≤0.005% |
23 | Titanium Content (Ti) | 0.06–0.12% |
24 | Potassium Content (K) | ≤0.02% |
25 | Zirconium Content (Zr) | 0.22–0.30% |
26 | Aluminum Content (Al) | 0.07–0.13% |
27 | Sulfur Impurity Content | ≤0.135% |
28 | Initial Discharge Specific Capacity | 175–183 mAh/g |
29 | Initial Efficiency | 85–90% |
30 | Magnetic Substances ≥ m | ≤2 particles |
31 | Magnetic Substances 100 < D ≤ m | ≤20 particles |
32 | Magnetic Substances 50 < D ≤ m | ≤50 particles |
33 | Oxygen Content | ≤2.0% |
34 | Trace Silicon Content | ≤0.002% |
35 | Carbon Impurity Content | ≤0.001% |
36 | Chloride Content | ≤0.003% |
37 | Particle Size Distribution Deviation | ≤5% |
38 | Surface Oxide Content | ≤0.01% |
39 | Powder Flowability | ≥95% |
40 | Thermal Stability | ≥400 °C |
41 | Discharge Rate Performance | ≥80% (10C) |
42 | Electrical Conductivity | ≥S/cm |
43 | Electrolyte Absorption Performance | ≥95% |
44 | Chemical Stability | ≥6 months under normal temperature |
45 | Dust Content | ≤50 ppm |
46 | Water Absorption Rate | ≤0.01% |
47 | Transportation Temperature Adaptability | −30 °C to +70 °C |
48 | Sealing Performance | ≤1 mbar/24 h |
49 | Anti-Vibration Performance | No physical deformation |
50 | Explosion Resistance | ≥150 psi |
51 | Particle Size Distribution Uniformity | ≤m |
52 | High-Temperature Cycle Performance | ≥500 cycles |
53 | Low-Temperature Cycle Performance | ≥300 cycles |
E | R | |||||
---|---|---|---|---|---|---|
26,500 | 25,754 | 471 | 29 | 5.8% | 29 | 100% |
E | R | |||||
---|---|---|---|---|---|---|
26,500 | 17 | 468 | 32 | 6.40% | 33 | 93.94% |
w | |||||||
---|---|---|---|---|---|---|---|
1 | 500 | 18 | 471 | 29 | 5.80% | 29 | 100.00% |
2 | 500 | 18 | 471 | 29 | 5.82% | 31 | 93.94% |
3 | 480 | 18 | 452 | 28 | 5.89% | 30 | 94.25% |
4 | 460 | 18 | 433 | 27 | 5.97% | 29 | 94.70% |
5 | 440 | 18 | 414 | 26 | 5.84% | 27 | 95.25% |
6 | 420 | 18 | 396 | 24 | 5.71% | 25 | 95.95% |
7 | 400 | 18 | 378 | 22 | 5.57% | 23 | 96.84% |
8 | 380 | 18 | 359 | 21 | 5.41% | 21 | 97.95% |
9 | 360 | 18 | 341 | 19 | 5.22% | 19 | 98.92% |
10 | 340 | 18 | 322 | 18 | 5.29% | 18 | 100.00% |
11 | 320 | 18 | 303 | 17 | 5.31% | 17 | 100.00% |
12 | 300 | 18 | 284 | 16 | 5.33% | 16 | 100.00% |
13 | 280 | 18 | 265 | 15 | 5.36% | 15 | 100.00% |
14 | 260 | 18 | 245 | 15 | 5.77% | 15 | 100.00% |
15 | 240 | 18 | 226 | 14 | 5.83% | 14 | 100.00% |
16 | 220 | 18 | 207 | 13 | 5.91% | 13 | 100.00% |
17 | 200 | 18 | 189 | 11 | 5.50% | 11 | 100.00% |
18 | 180 | 18 | 170 | 10 | 5.56% | 10 | 100.00% |
19 | 160 | 18 | 151 | 9 | 5.63% | 9 | 100.00% |
20 | 140 | 18 | 132 | 8 | 5.71% | 8 | 100.00% |
21 | 120 | 18 | 113 | 7 | 5.83% | 7 | 100.00% |
w | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 500 | 53 | 18 | 471 | 29 | 5.80% | 33 | 87.88% |
2 | 500 | 54 | 18 | 471 | 29 | 5.80% | 34 | 85.29% |
3 | 500 | 55 | 18 | 471 | 29 | 5.80% | 35 | 88.23% |
4 | 500 | 56 | 18 | 470 | 30 | 6.00% | 34 | 88.23% |
5 | 500 | 57 | 19 | 470 | 30 | 6.00% | 36 | 83.33% |
6 | 500 | 58 | 19 | 470 | 30 | 6.00% | 34 | 88.23% |
7 | 500 | 59 | 18 | 470 | 30 | 6.00% | 33 | 90.91% |
8 | 500 | 60 | 18 | 470 | 30 | 6.00% | 33 | 90.91% |
9 | 500 | 61 | 18 | 469 | 31 | 6.20% | 35 | 88.57% |
10 | 500 | 62 | 20 | 469 | 31 | 6.20% | 32 | 96.88% |
11 | 500 | 63 | 20 | 469 | 31 | 6.20% | 32 | 96.88% |
12 | 500 | 64 | 20 | 469 | 31 | 6.20% | 33 | 93.94% |
13 | 500 | 65 | 21 | 468 | 32 | 6.40% | 33 | 96.97% |
14 | 500 | 66 | 21 | 468 | 32 | 6.40% | 33 | 96.97% |
15 | 500 | 67 | 21 | 468 | 32 | 6.40% | 33 | 96.97% |
16 | 500 | 68 | 21 | 467 | 33 | 6.60% | 34 | 97.06% |
17 | 500 | 69 | 22 | 466 | 34 | 6.68% | 34 | 100.00% |
18 | 500 | 70 | 22 | 466 | 34 | 6.68% | 34 | 100.00% |
19 | 500 | 71 | 22 | 466 | 34 | 6.68% | 34 | 100.00% |
20 | 500 | 72 | 22 | 466 | 34 | 6.68% | 34 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Chen, Y. Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control. Mathematics 2025, 13, 1449. https://doi.org/10.3390/math13091449
Zhou W, Chen Y. Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control. Mathematics. 2025; 13(9):1449. https://doi.org/10.3390/math13091449
Chicago/Turabian StyleZhou, Wenqing, and Yufeng Chen. 2025. "Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control" Mathematics 13, no. 9: 1449. https://doi.org/10.3390/math13091449
APA StyleZhou, W., & Chen, Y. (2025). Optimal Zero-Defect Solution for Multiple Inspection Items in Incoming Quality Control. Mathematics, 13(9), 1449. https://doi.org/10.3390/math13091449