Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions
Abstract
Contents
1. Introduction
2. Symmetries of the Monge–Ampère Mixed-Type PDE. Reproduction Formula
3. Two-Dimensional Similarity Reductions
4. One-Dimensional Similarity Reductions and Invariant Solutions
5. Multiplicative Separable Solutions
6. Reductions with Additive and Generalized Separation of Variables Leading to Two-Dimensional Monge–Ampère Equations. Exact Solutions
7. Reductions with Generalized Separation of Variables Leading to Linear PDEs
- Simple exact solutions:
- 2.
- Generalized separable solutions with even powers of x [119]:
- 3.
- Generalized separable solutions with odd powers of x [119]:
- 4.
- Multiplicative separable solutions:
8. Polynomial Solutions in One Spatial Variable
9. Reductions in Traveling Wave Variables to Two-Dimensional Mixed-Type Equations. Linearizable PDEs
10. Reductions and Exact Solutions Based on a New Variable, Parabolic in Spatial Coordinates
11. Reductions and Exact Solutions Based on a New Variable, Quadratic in Two Spatial Coordinates
12. Reductions and Exact Solutions in Polar and Generalized Polar Coordinates
13. Reductions and Exact Solutions in Special Lorentz Coordinates
14. Reductions and Exact Solutions Based on a Fractional-Rational Transformation
15. Conclusions
- To more fully describe the one-dimensional and two-dimensional symmetry reductions in PDE (4), find optimal systems of one-dimensional and two-dimensional subalgebras.
- Describe the symmetries and find exact solutions to the multidimensional generalization of PDE (4) as well as other related, more complex, highly nonlinear PDEs.
- Formulate well-posed statements of initial-boundary value (and boundary value) problems and prove existence and uniqueness theorems for them.
- Obtain and analyze numerical solutions to the initial-boundary value and boundary value problems (taking into account that PDE (4) is of mixed type). Verify the numerical methods used by comparing them with test problems based on exact solutions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pogorelov, A.V. Extrinsic Geometry of Convex Surfaces; American Mathematical Society: Providence, RI, USA, 1973. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics: Partial Differential Equations; Wiley-Interscience Publisher: New York, NY, USA, 1989; Volume 2. [Google Scholar]
- Caffarelli, L.A.; Milman, M. (Eds.) Monge–Ampère Equation: Applications to Geometry and Optimization; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Figalli, A. The Monge–Ampère Equation and Its Applications; European Mathematical Society: Zurich, Switzerland, 2017. [Google Scholar]
- Martin, M.N. The propagation of a plane shock into a quiet atmosphere. Can. J. Math. 1953, 3, 165–187. [Google Scholar] [CrossRef]
- Rozhdestvenskii, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics; American Mathematical Society: Providence, RI, USA, 1983. [Google Scholar]
- Khabirov, S.V. Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Ampère equation. Math. USSR-Sb. 1990, 181, 1607–1622. Erratum in Math. USSR-Sb. 1992, 71, 447–462. (In Russian) [Google Scholar] [CrossRef]
- Hill, J.M.; Arrigo, D.J. New families of exact solutions for finitely deformed incompressible elastic materials. IMA J. Appl. Math. 1995, 54, 109–123. [Google Scholar] [CrossRef]
- Hill, J.M.; Arrigo, D.J. Transformations and equation reductions in finite elasticity I: Plane strain deformations. Math. Mech. Solids 1996, 1, 155–175. [Google Scholar] [CrossRef]
- Radayev, Y.N. Limiting state of a neck of arbitrary shape in a rigid-plastic solid. Mech. Solids 1988, 23, 62–68. [Google Scholar]
- Smirnov, V.V.; Chukbar, K.V. “Phonons” in two-dimensional vortex lattices. J. Exp. Theor. Phys. 2001, 93, 126–135. [Google Scholar] [CrossRef]
- Zaburdaev, V.Y.; Smirnov, V.V.; Chukbar, K.V. Nonlinear dynamics of electron vortex lattices. Plasma Phys. Rep. 2014, 30, 214–217. [Google Scholar] [CrossRef]
- Ohkitani, K.; Sultu, F.A. Singularity formation in the Smirnov–Chukbar–Zaburdaev equation for the deformation of vortex lattices. J. Phys. A Math. Theor. 2013, 46, 205501. [Google Scholar] [CrossRef]
- Zhabborov, N.M.; Korobov, P.V.; Imomnazarov, K.K. Application of Megrabov’s differential identities to the two-velocity hydrodynamics equations with one pressure. J. Sib. Fed. Univ. Math. Phys. 2012, 5, 156–163. (In Russian) [Google Scholar]
- Rozendorn, E.R. Some classes of particular solutions to the equation zxxzyy− +a∇z=0 and their application to meteorological problems. Vestn. Mosk. Univ. Ser. 1. Math. Mech. 1984, 2, 56–58. (In Russian) [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Goursat, E. A Course of Mathematical Analysis; Gostekhizdat: Moscow, Russia, 1933; Part 1; Volume 3. (In Russian) [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1, Symmetries, Exact Solutions and Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Feroze, T.; Umair, M. Optimal system and exact solutions of Monge–Ampère equation. Commun. Math. Appl. 2021, 12, 825–833. [Google Scholar] [CrossRef]
- Aminov, Y.; Arslan, K.; Bayram, B.; Bulca, B.; Murathan, C.; Öztürk, G. On the solution of the Monge–Ampère equation ZxxZyy− =f(x,y) with quadratic right side. J. Math. Phys. Anal. Geom. 2011, 7, 203–211. [Google Scholar]
- Aminov, Y.A. Polynomial solutions of the Monge–Ampère equation. Sb. Math. 2014, 205, 1529–1563. [Google Scholar] [CrossRef]
- Polyanin, A.D. Handbook of Exact Solutions to Mathematical Equations; CRC Press: Boca Raton, FL, USA; London, UK, 2024. [Google Scholar]
- Arrigo, D.J.; Hill, J.M. On a class of linearizable Monge–Ampère equations. J. Nonlinear Math. Phys. 1998, 5, 115–119. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Review of exact solutions and reductions of Monge–Ampère type equations. Theor. Math. Phys. 2025, 224, 1527–1566. [Google Scholar] [CrossRef]
- Rakhmelevich, I.V. On solutions of the two-dimensional Monge–Ampère equation with power-law non-linearity with respect to first derivatives. Tomsk State Univ. J. Math. Mech. 2016, 4, 33–43. (In Russian) [Google Scholar]
- Samina, S.; Arif, F.; Jhangeer, A.; Wali, S. Lie group classification, symmetry reductions, and conservation laws of a Monge–Ampère equation. Symmetry 2025, 17, 355. [Google Scholar] [CrossRef]
- Fushchich, W.I.; Shtelen, W.M.; Serov, N.I. Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Kosov, A.A.; Semenov, E.I. On exact solutions to multidimensional generalized Monge–Ampère equation. Diff. Equ. 2024, 60, 1404–1418. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. Generalized Monge–Ampère type equation and its multidimensional exact solutions. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2025, 35, 215–230. (In Russian) [Google Scholar] [CrossRef]
- Leibov, O.S. Reduction and exact solutions of the Monge–Ampère equation. Nonlinear Math. Phys. 1997, 4, 146–148. [Google Scholar] [CrossRef]
- Fedorchuk, V.M.; Fedorchuk, V.I. On the classification of symmetry reductions for the (1+3)-dimensional Monge–Ampère equation. J. Math. Sci. 2023, 272, 1–13. [Google Scholar] [CrossRef]
- Fedorchuk, V.M.; Fedorchuk, V.I. On the symmetry reduction of the (1+3)-dimensional inhomogeneous Monge–Ampère equation to algebraic equations. J. Math. Sci. 2024, 282, 668–677. [Google Scholar] [CrossRef]
- Rakhmelevich, I.V. System of two-dimensional Monge–Ampère equations: Reductions and exact solutions. Sib. Math. J. 2025, 66, 1090–1102. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. System of equations with the Monge–Ampère operator and its exact multidimensional solutions. Sib. Math. J. 2025, 66, 974–985. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Group analysis, reductions, and exact solutions of the Monge–Ampère equation in magnetic hydrodynamics. Diff. Equ. 2024, 60, 716–728. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Aksenov, A.V. Unsteady magnetohydrodynamics PDE of Monge–Ampère type: Symmetries, Closed-form solutions, and reductions. Mathematics 2024, 12, 2127. [Google Scholar] [CrossRef]
- Rakhmelevich, I.V. Nonautonomous evolution equation of Monge–Ampère type with two space variables. Russ. Math. 2023, 67, 52–64. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Symmetries, reductions and exact solutions of nonstationary Monge–Ampère type equations. Mathematics 2025, 13, 525. [Google Scholar] [CrossRef]
- Krylov, N.V. Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation. Sib. Math. J. 1976, 17, 226–236. [Google Scholar] [CrossRef]
- Spiliotis, J. Certain results on a parabolic type Monge–Ampère equation. J. Math. Anal. Appl. 1992, 163, 484–511. [Google Scholar] [CrossRef]
- Ivochkina, N.M.; Ladyzhenskaya, O.A. Parabolic equations generated by symmetric functions of the eigenvalues of the Hessian or by the principal curvatures of a surface. I. Parabolic Monge–Ampère equations. Algebra Anal. 1994, 6, 141–160. (In Russian) [Google Scholar]
- Chen, L.; Wang, G.; Lian, S. Convex-monotone functions and generalized solution of parabolic Monge–Ampère equation. J. Differ. Equ. 2002, 186, 558–571. [Google Scholar] [CrossRef]
- Xiong, J.; Bao, J. On Jorgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations. J. Differ. Equ. 2011, 250, 367–385. [Google Scholar] [CrossRef]
- Tang, L. Regularity results on the parabolic Monge–Ampère equation with VMO type data. J. Differ. Equ. 2013, 255, 1646–1656. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Liu, X. The initial and Neumann boundary value problem for a class parabolic Monge–Ampère equation. Abstr. Appl. Anal. 2013, 2013, 535629. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems of parabolic Monge–Ampère equations for n = 2. Comput. Math. Appl. 2014, 67, 1497–1506. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems for a parabolic Monge–Ampère equation. Nonlinear Anal. Theory Methods Appl. 2014, 100, 99–110. [Google Scholar] [CrossRef]
- Tang, L. Boundary regularity on the parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 6399–6431. [Google Scholar] [CrossRef]
- Wang, B.; Bao, J. Asymptotic behavior on a kind of parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 344–370. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Wang, B. An extension of Jorgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
- Dai, L.; Bao, J. Entire solutions of Cauchy problem for parabolic Monge–Ampère equations. Adv. Nonlinear Stud. 2020, 20, 769–781. [Google Scholar] [CrossRef]
- Karatzas, I. Adaptive control of a diffusion to a goal and a parabolic Monge–Ampère-type equation. Asian J. Math. 1997, 1, 295–313. [Google Scholar] [CrossRef]
- Budd, C.J.; Galaktionov, V.A. On self-similar blow-up in evolution equations of Monge–Ampère type. IMA J. Appl. Math. 2013, 78, 338–378. [Google Scholar] [CrossRef]
- An, N.; Bao, J.; Liu, Z. Entire solutions to the parabolic Monge–Ampère equation with unbounded nonlinear growth in time. Nonlinear Anal. 2024, 239, 113441. [Google Scholar] [CrossRef]
- Ren, C. The first initial-boundary value problem for fully nonlinear parabolic equations generated by functions of the eigenvalues of the Hessian. J. Math. Anal. Appl. 2008, 339, 1362–1373. [Google Scholar] [CrossRef]
- Dai, L.; Guo, X. Parabolic Hessian equations outside a cylinder. Mathematics 2022, 10, 2839. [Google Scholar] [CrossRef]
- Rakhmelevich, I.V. Multi-dimensional non-autonomous evolutionary equation of Monge–Ampère type. Vladikavkaz Math. J. 2023, 25, 64–80. (In Russian) [Google Scholar]
- Kosov, A.A.; Semenov, E.I. On multidimensional exact solutions of the generalized Monge–Ampère evolution equations. Diff. Equ. 2025, 61, 857–871. [Google Scholar] [CrossRef]
- D’Onofrio, R.; Ortenzi, G.; Roulstone, I.; Rubtsov, V. Solutions and singularities of the semigeostrophic equations via the geometry of Lagrangian submanifolds. Proc. R. Soc. A 2023, 479, 20220682. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Polyanin, A.D. Exact Methods for Nonlinear PDEs; CRC Press: Boca Raton, FL, USA; London, UK, 2025. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: Boston, MA, USA, 1982. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Application of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachov, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Vaneeva, O.O.; Johnpillai, A.G.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 2007, 330, 1363–1386. [Google Scholar] [CrossRef]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. Lond. Ser. A 1994, 444, 509–523. [Google Scholar]
- Clarkson, P.A.; Ludlow, D.K.; Priestley, T.J. The classical, direct and nonclassical methods for symmetry reductions of nonlinear partial differential equations. Meth. Appl. Anal. 1997, 4, 173–195. [Google Scholar] [CrossRef]
- Hood, S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function—generalizations of Clarkson’s and Kruskal’s method. IMA J. Appl. Math. 2000, 64, 223–244. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Separation of Variables and Exact Solutions to Nonlinear PDEs; CRC Press: Boca Raton, FL, USA; London, UK, 2022. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Levi, D.; Winternitz, P. Nonclassical symmetry reduction: Example of the Boussinesq equation. J. Phys. A 1989, 22, 2915–2924. [Google Scholar] [CrossRef]
- Pucci, E. Similarity reductions of partial differential equations. J. Phys. A Math. Gen. 1992, 25, 2631–2640. [Google Scholar] [CrossRef]
- Arrigo, D.; Broadbridge, P.; Hill, J.M. Nonclassical symmetry solutions and the methods of Bluman–Cole and Clarkson–Kruskal. J. Math. Phys. 1993, 34, 4692–4703. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Phys. D 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Saccomandi, G. A remarkable class of non-classical symmetries of the steady two-dimensional boundary-layer equations. J. Phys. A Math. Gen. 2004, 37, 7005–7017. [Google Scholar] [CrossRef]
- Bradshaw-Hajek, D.H. Nonclassical symmetry solutions for non-autonomous reaction-diffusion equations. Symmetry 2019, 11, 208. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Partial differential equations admitting a given nonclassical point symmetry. Stud. Appl. Math. 2020, 145, 81–96. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Nonlinear Reaction-Diffusion Systems: Conditional Symmetry, Exact Solutions and Their Applications in Biology; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Cherniha, R.; Davydovych, V.; King, J.R. The Shigesada–Kawasaki–Teramoto model: Conditional symmetries, exact solutions and their properties. Commun. Nonlinear Sci. Numer. Simul. 2023, 124, 107313. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. R. Soc. Edinb. Sect. A 1995, 125, 225–246. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Posashkov, S.A. Exact-solutions and invariant subspace for nonlinear gradient-diffusion equations. Comp. Math. Math. Phys. 1994, 34, 313–321. [Google Scholar]
- Galaktionov, V.A.; Posashkov, S.A.; Svirshchevskii, S.R. Generalized separation of variables for differential equations with polynomial nonlinearities. Diff. Equ. 1995, 31, 233–240. [Google Scholar]
- Polyanin, A.D.; Zhurov, A.I. Unsteady axisymmetric boundary-layer equations: Transformations, properties, exact solutions, order reduction and solution method. Int. J. Non-Linear Mech. 2015, 74, 40–50. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. Reduction method and new exact solutions of the multidimensional nonlinear heat equation. Diff. Equ. 2022, 58, 187–194. [Google Scholar] [CrossRef]
- Svirshchevskii, S.R. Exact solutions of a nonlinear diffusion equation on polynomial invariant subspace of maximal dimension. Commun. Nonlinear Sci. Numer. Simul. 2022, 112, 106515. [Google Scholar] [CrossRef]
- Grundland, A.M.; Infeld, E. A family of non-linear Klein-Gordon equations and their solutions. J. Math. Phys. 1992, 33, 2498–2503. [Google Scholar] [CrossRef]
- Miller, W.; Rubel, L.A. Functional separation of variables for Laplace equations in two dimensions. J. Phys. A 1993, 26, 1901–1913. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Separation of variables in the non-linear wave equation. J. Phys. A 1994, 27, L291–L297. [Google Scholar] [CrossRef]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional non-linear diffusion equation. Int. J. Non-Linear Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Estevez, P.G.; Qu, C.; Zhang, S. Separation of variables of a generalized porous medium equation with nonlinear source. J. Math. Anal. Appl. 2002, 275, 44–59. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 347, 282–292. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 379–390. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of functional separable solutions in implicit form for non-linear Klein–Gordon type equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 114, 29–40. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Kudryashov, N.A. Closed-form solutions of the nonlinear Schrödinger equation with arbitrary dispersion and potential. Chaos Solit. Fractals 2025, 191, 115822. [Google Scholar] [CrossRef]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Applications in Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. (In Russian) [Google Scholar]
- Kaptsov, O.V.; Verevkin, L.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef]
- Meleshko, S.V. Methods for Constructing Exact Solutions of Partial Differential Equations; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kruglikov, B. Symmetry approaches for reductions of PDEs, differential constraints and Lagrange–Charpit method. Acta Appl. Math. 2008, 101, 145–161. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons: Tolls to Solve and Investigate Nonlinear Evolution Equations; North-Holland Publishing: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solit. Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Conte, R.; Musette, M. The Painlevé Handbook, 2nd ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Aksenov, A.V.; Polyanin, A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions. Mathematics 2021, 9, 345. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions. Theor. Math. Phys. 2022, 211, 567–594. [Google Scholar] [CrossRef]
- Bedrikovetsky, P.; Borazjani, S. Exact solutions for gravity-segregated flows in porous media. Mathematics 2022, 10, 2455. [Google Scholar] [CrossRef]
- Polyanin, A.D. Principle of structural analogy of solutions and its application to nonlinear PDEs and delay PDEs. J. Math. Sci. 2025, 289, 487–497. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction–diffusion equation with a delay. J. Math. Anal. Appl. 2008, 338, 448–466. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay. Math. Methods Appl. Sci. 2016, 39, 3255–3270. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021, 494, 124619. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy. Mathematics 2021, 9, 511. [Google Scholar] [CrossRef]
- Aibinu, M.O.; Thakur, S.C.; Moyo, S. Exact solutions of nonlinear delay reaction–diffusion equations with variable coefficients. Partial Diff. Equ. Appl. Math. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Sorokin, V.G.; Vyazmin, A.V. Nonlinear reaction–diffusion equations with delay: Partial survey, exact solutions, test problems, and numerical integration. Mathematics 2022, 10, 1886. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G.; Zhurov, A.I. Delay Ordinary and Partial Differential Equations; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Polyanin, A.D.; Kudryashov, N.A. Nonlinear Schrödinger equations with delay: Closed-form and generalized separable solutions. Contemp. Math. 2024, 5, 5783–5794. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Dover Publications: New York, NY, USA, 1990. [Google Scholar]
- Broadbridge, P.; Bradshaw-Hajek, B.H.; Hutchinson, A.J. Conditionally integrable PDEs, non-classical symmetries and applications. Proc. R. Soc. A 2023, 479, 20230209. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems; CRC Press: Boca Raton, FL, USA; London, UK, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyanin, A.D.; Aksenov, A.V. Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions. Mathematics 2025, 13, 3522. https://doi.org/10.3390/math13213522
Polyanin AD, Aksenov AV. Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions. Mathematics. 2025; 13(21):3522. https://doi.org/10.3390/math13213522
Chicago/Turabian StylePolyanin, Andrei D., and Alexander V. Aksenov. 2025. "Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions" Mathematics 13, no. 21: 3522. https://doi.org/10.3390/math13213522
APA StylePolyanin, A. D., & Aksenov, A. V. (2025). Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions. Mathematics, 13(21), 3522. https://doi.org/10.3390/math13213522
