OGK Approach for Accurate Mean Estimation in the Presence of Outliers
Abstract
1. Introduction
2. Bulut and Zaman [17] MCD-Based Estimators
3. OGK and Proposed Estimators
Proposed OGK-Based Mean Estimators
4. Numerical Illustration
4.1. Solar Radiation Data (Population-1)
4.2. Simulation Study (Population-2)
- , ;
- , ;
- .
4.3. Interpretation
- Table 2 presents the MSE of estimators and () on real data regarding solar radiation. Among the MCD-type estimators, with the lowest MSEs were found to be , , and , which were about , demonstrating greater robustness and reduced variability. On the contrary, the OGK-type estimators have smaller MSEs in general, with the lowest MSEs being as low as , especially in the case of and . This implies that exponential-type estimators , which are built in OGK-based robust covariance structures, are much more precise than MCD-type estimators when real-world data are provided, comprising solar radiation and auxiliary temperature variables.
- Table 3 contains the values of PRE related to the MSE of estimators presented in Table 2. The findings demonstrate conclusively that the estimators, particularly, , , and , are more efficient in terms of their PRE values (e.g., 2341.2691 and 2340.2733) compared with those of the baseline estimator family . Even though and also performed well in the middle range of PREs, they still did not outperform OGK-type counterparts. These results evidence the strategic benefit of the proposed estimators in the application of environmental data.
- Table 4 shows the results of the MSE obtained via simulation, considering real-world contamination and structural variance replication. Simulation further establishes the excellent performance of estimators, which once again prove to have lesser MSE values when compared to their respective estimators. Specifically, the MSEs reported by , , and are so low (in the range of the order of ) that their reliability is justified in controlled experiments. OGK-type estimators perform best compared to any of the MCD-type estimators, although and are the best MCD-type estimators. These results indicate that the proposed estimators not only work well on real data but they are also highly robust in simulated conditions with outlier contamination.
- Table 5 gives the PREs of the same estimators, in the simulated environment, given in Table 4. These are consistent with the MSE results, as , , and are consistently superior with their values being above 970, supporting their efficiency superiority. The MCD-type estimators, including and , follow with fairly high PREs, yet they are not as efficient as their OGK-type counterparts. On the whole, the simulation demonstrates that exponential-type estimators built with OGK robust covariance matrices are highly precise and efficient with artificially injected data irregularities, which points at the relevance of the approach in a diversity of robust survey sampling settings.
5. Conclusions and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lakshmi, N.V.; Danish, F.; Alrasheedi, M. An innovative approach to solar radiation estimation with missing data: Enhancing accuracy through hybrid estimators. J. Radiat. Res. Appl. Sci. 2025, 18, 101601. [Google Scholar] [CrossRef]
- Lakshmi, N.V.; Danish, F.; Alrasheedi, M. Enhanced estimation of finite population mean via power and log-transformed ratio estimators using an auxiliary variable in solar radiation data. J. Radiat. Res. Appl. Sci. 2025, 18, 101379. [Google Scholar] [CrossRef]
- Elkalzah, B.; El-Morshedy, M.; Shahen, H.S.; Elgarhy, M. A new generalized class of estimators for estimation of population mean under PPS sampling: Application with radiation science. J. Radiat. Res. Appl. Sci. 2025, 18, 101738. [Google Scholar] [CrossRef]
- Azeem, M. Analyzing radiation data using an optimal memory-type mean estimator under PPS sampling. J. Radiat. Res. Appl. Sci. 2025, 18, 101663. [Google Scholar] [CrossRef]
- Mirbolouki, A.; Heddam, S.; Singh Parmar, K.; Trajkovic, S.; Mehraein, M.; Kisi, O. Comparison of the advanced machine learning methods for better prediction accuracy of solar radiation using only temperature data: A case study. Int. J. Energy Res. 2022, 46, 2709–2736. [Google Scholar] [CrossRef]
- Kadilar, C.; Candan, M.; Cingi, H. Ratio estimators using robust regression. Hacet. J. Math. Stat. 2007, 36, 181–188. [Google Scholar]
- Zaman, T.; Bulut, H. Modified ratio estimators using robust regression methods. Commun.-Stat.-Theory Methods 2019, 48, 2039–2048. [Google Scholar] [CrossRef]
- Ali, N.; Ahmad, I.; Hanif, M.; Shahzad, U. Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat.-Theory Methods 2021, 50, 979–992. [Google Scholar] [CrossRef]
- Zaman, T. Improvement of modified ratio estimators using robust regression methods. Appl. Math. Comput. 2019, 348, 627–631. [Google Scholar] [CrossRef]
- Zaman, T.; Dunder, E.; Audu, A.; Alilah, D.A.; Shahzad, U.; Hanif, M. Robust regression-ratio-type estimators of the mean utilizing two auxiliary variables: A simulation study. Math. Probl. Eng. 2021, 2021, 6383927. [Google Scholar] [CrossRef]
- Zaman, T.; Shazad, U.; Yadav, V.K. An efficient Hartley—Ross type estimators of nonsensitive and sensitive variables using robust regression methods in sample surveys. J. Comput. Appl. Math. 2024, 440, 115645. [Google Scholar] [CrossRef]
- Alomair, A.M.; Shahzad, U. Neutrosophic Mean Estimation of Sensitive and Non-Sensitive Variables with Robust Hartley—Ross-Type Estimators. Axioms 2023, 12, 578. [Google Scholar] [CrossRef]
- Subzar, M.; Alqurashi, T.; Chandawat, D.; Tamboli, S.; Raja, T.A.; Attri, A.K.; Wani, S.A. Generalized robust regression techniques and adaptive cluster sampling for efficient estimation of population mean in case of rare and clustered populations. Sci. Rep. 2025, 15, 2069. [Google Scholar]
- Zaman, T.; Bulut, H. Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Commun.-Stat.-Theory Methods 2020, 49, 3407–3420. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Multivariate estimation with high breakdown point. Math. Stat. Appl. 1985, 8, 37. [Google Scholar]
- Shahzad, U.; Al-Noor, N.H.; Hanif, M.; Sajjad, I.; Anas, M.M. Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun.-Stat.- Simul. Comput. 2022, 51, 4276–4295. [Google Scholar] [CrossRef]
- Bulut, H.; Zaman, T. An improved class of robust ratio estimators by using the minimum covariance determinant estimation. Commun.-Stat.-Simul. Comput. 2022, 51, 2457–2463. [Google Scholar] [CrossRef]
- Croux, C.; Haesbroeck, G. Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J. Multivar. Anal. 1999, 71, 161–190. [Google Scholar] [CrossRef]
- Maronna, R.A.; Zamar, R.H. Robust estimates of location and dispersion for high-dimensional datasets. Technometrics 2002, 44, 307–317. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Sarndal, C.E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Koc, T.; Koc, H. A new class of quantile regression ratio-type estimators for finite population mean in stratified random sampling. Axioms 2023, 12, 713. [Google Scholar] [CrossRef]
- Singh, G.N.; Bhattacharyya, D.; Bandyopadhyay, A. Robust estimation strategy for handling outliers. Commun.-Stat.-Theory Methods 2024, 53, 5311–5330. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Verdonck, T. A deterministic algorithm for robust location and scatter. J. Comput. Graph. Stat. 2012, 21, 618–637. [Google Scholar] [CrossRef]
- Dagdoug, M.; Goga, C.; Haziza, D. Model-assisted estimation in high-dimensional settings for survey data. J. Appl. Stat. 2023, 50, 761–785. [Google Scholar] [CrossRef]
- Alameddine, I.; Kenney, M.A.; Gosnell, R.J.; Reckhow, K.H. Robust multivariate outlier detection methods for environmental data. J. Environ. Eng. 2010, 136, 1299–1304. [Google Scholar] [CrossRef]
- Koyuncu, N. Efficient estimators of population mean using auxiliary attributes. Appl. Math. Comput. 2012, 218, 10900–10905. [Google Scholar] [CrossRef]
- Olive, D.J.; Olive, D.J. ; Chernyk. Robust Multivariate Analysis; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Croux, C.; Dehon, C.; Yadine, A. The k-step spatial sign covariance matrix. Adv. Data Anal. Classif. 2010, 4, 137–150. [Google Scholar] [CrossRef]
- Hofmann, M.; Gatu, C.; Kontoghiorghes, E.J. An exact least trimmed squares algorithm for a range of coverage values. J. Comput. Graph. Stat. 2010, 19, 191–204. [Google Scholar] [CrossRef]
- Klouda, K. An exact polynomial time algorithm for computing the least trimmed squares estimate. Comput. Stat. Data Anal. 2015, 84, 27–40. [Google Scholar] [CrossRef]
- Arslan, M.; Shahzad, U.; Yeganeh, A.; Zhu, H.; Majika, J.C.; Ahmad, S. A Robust L-Comoments Covariance Matrix-Based Hotelling’s T2 Control Chart for Monitoring High-Dimensional Non-Normal Multivariate Data in the Presence of Outliers. Qual. Reliab. Eng. Int. 2025, 41, 3308–3317. [Google Scholar] [CrossRef]




| Estimators | |||
|---|---|---|---|
| 1 | 1 | 1 | |
| 1 | 1 | ||
| 1 | 1 | ||
| 1 | |||
| 1 |
| i | Population-1 |
|---|---|
| i | |||||
|---|---|---|---|---|---|
| 2341.2691 | 2333.8785 | 585.3473 | 2341.2655 | 585.3473 | |
| 2340.2733 | 2332.8859 | 585.0984 | 2340.2698 | 585.0984 | |
| 2038.9863 | 2032.5499 | 509.7728 | 2038.9832 | 509.7728 | |
| 2058.4012 | 2051.9036 | 514.6267 | 2058.3981 | 514.6267 | |
| 2038.9863 | 2032.5499 | 509.7728 | 2038.9832 | 509.7728 |
| i | Population-2 |
|---|---|
| i | |||||
|---|---|---|---|---|---|
| 973.3237 | 910.5416 | 245.9762 | 953.3314 | 241.0906 | |
| 986.3817 | 922.7574 | 249.2762 | 966.1212 | 244.3250 | |
| 494.7387 | 462.8267 | 125.0293 | 484.5767 | 122.5459 | |
| 416.2224 | 389.3749 | 105.1868 | 407.6731 | 103.0976 | |
| 439.9317 | 411.5549 | 111.1786 | 430.8954 | 108.9703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, A.F.; Alshammari, A.O.; Shahzad, U.; Iftikhar, S. OGK Approach for Accurate Mean Estimation in the Presence of Outliers. Mathematics 2025, 13, 3251. https://doi.org/10.3390/math13203251
Hashem AF, Alshammari AO, Shahzad U, Iftikhar S. OGK Approach for Accurate Mean Estimation in the Presence of Outliers. Mathematics. 2025; 13(20):3251. https://doi.org/10.3390/math13203251
Chicago/Turabian StyleHashem, Atef F., Abdulrahman Obaid Alshammari, Usman Shahzad, and Soofia Iftikhar. 2025. "OGK Approach for Accurate Mean Estimation in the Presence of Outliers" Mathematics 13, no. 20: 3251. https://doi.org/10.3390/math13203251
APA StyleHashem, A. F., Alshammari, A. O., Shahzad, U., & Iftikhar, S. (2025). OGK Approach for Accurate Mean Estimation in the Presence of Outliers. Mathematics, 13(20), 3251. https://doi.org/10.3390/math13203251

