Solving Fredholm Integral Equations of the First Kind Using a Gaussian Process Model Based on Sequential Design
Abstract
1. Introduction
2. Minimal-Norm Solution
2.1. Moore–Penrose Pseudoinverse
2.2. H– Formulation
- (1)
- If , then ;
- (2)
- If , then ; is defined as Equation (6);
- (3)
- is an RKHS.
2.3. Minimal-Norm Solution in
2.4. Minimal-Norm Solution in
3. Gaussian Process Model
3.1. Gaussian Process Regression
3.2. Gaussian Process Interpolation
3.3. Sequential Design
4. Degenerate Kernel Equation
5. Illustrative Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
FIEFKs | Fredholm integral equations of the first kind |
RKHS | Reproducing kernel Hilbert space |
GPR | Gaussian process regression |
SGPI | Sequential Gaussian process interpolation |
GP | Gaussian process |
KRR | Kernel ridge regression |
TEIG | Truncated eigendecomposition |
PI kriging | Kriging with pseudoinverse |
Norm in H | |
† | Moore–Penrose pseudoinverse |
Experimental design | |
Fill distance | |
Covariance matrix | |
Posterior mean | |
Posterior variance | |
GP with mean m and variance k |
References
- Saitoh, S.; Sawano, Y. Theory of Reproducing Kernels and Applications; Springer Science & Business Media: Singapore, 2016. [Google Scholar]
- Mesgarani, H.; Parmour, P. Application of numerical solution of linear Fredholm integral equation of the first kind for image restoration. Math. Sci. 2023, 17, 371–378. [Google Scholar] [CrossRef]
- Du, H.; Cui, M. Representation of the exact solution and a stability analysis on the Fredholm integral equation of the first kind in reproducing kernel space. Appl. Math. Comput. 2006, 182, 1608–1614. [Google Scholar] [CrossRef]
- Du, H.; Cui, M. Approximate solution of the Fredholm integral equation of the first kind in a reproducing kernel Hilbert space. Appl. Math. Lett. 2008, 21, 617–623. [Google Scholar] [CrossRef]
- Chang, C.W.; Liu, C.S.; Chang, J.R. A quasi-boundary semi-analytical approach for two-dimensional backward heat conduction problems. Comput. Mater. Con. 2010, 15, 45–66. [Google Scholar]
- Venkataramanan, L.; Song, Y.Q.; Hurlimann, M.D. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans. Signal. Process. 2002, 50, 1017–1026. [Google Scholar] [CrossRef]
- Serikbai, A.; Dias, N.; Ilya, S. Solvability and Construction of a Solution to the Fredholm Integral Equation of the First Kind. J. Appl. Math. Phys. 2024, 12, 720–735. [Google Scholar] [CrossRef]
- Kashirin, A.A.; Smagin, S.I. On the Solvability of Fredholm Boundary Integral Equations of the First Kind for the Three-Dimensional Transmission Problem on the Spectrum. Differ. Equ. 2024, 60, 204–214. [Google Scholar] [CrossRef]
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Courier Corporation: North Chelmsford, MA, USA, 2003. [Google Scholar]
- Nashed, M.Z.; Wahba, G. Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations. SIAM J. Math. Anal. 1974, 5, 974–987. [Google Scholar] [CrossRef]
- Wahba, G. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 1977, 14, 651–667. [Google Scholar] [CrossRef]
- Wen, J.; Wei, T. Regularized solution to the Fredholm integral equation of the first kind with noisy data. J. Appl. Math. Inform. 2011, 29, 23–37. [Google Scholar]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Springer Science & Business Media: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Wazwaz, A.M. The regularization method for Fredholm integral equations of the first kind. Comput. Math. Appl. 2011, 61, 2981–2986. [Google Scholar] [CrossRef]
- Neggal, B.; Boussetila, N.; Rebbani, F. Projected Tikhonov regularization method for Fredholm integral equations of the first kind. J. Inequal. Appl. 2016, 2016, 195 . [Google Scholar] [CrossRef]
- Tanana, V.P.; Vishnyakov, E.Y.; Sidikova, A.I. An approximate solution of a Fredholm integral equation of the first kind by the residual method. Numer. Anal. Appl. 2016, 9, 74–81. [Google Scholar] [CrossRef]
- Masouri, Z.; Hatamzadeh, S. A regularization-direct method to numerically solve first kind Fredholm integral equation. Kyungpook Math. J. 2020, 60, 869–881. [Google Scholar]
- Lee, J.W.; Prenter, P.M. An analysis of the numerical solution of Fredholm integral equations of the first kind. Numer. Math. 1978, 30, 1–23. [Google Scholar] [CrossRef]
- Du, N. Finite-dimensional approximation settings for infinite-dimensional Moore–Penrose inverses. SIAM J. Numer. Anal. 2008, 46, 1454–1482. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tari, A. A new approach to numerical solution of the time-fractional KdV-Burgers equations using least squares support vector regression. J. Math. Model. 2024, 12, 583–602. [Google Scholar]
- Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Ritz-least squares support vector regression technique for the system of fractional Fredholm-Volterra integro-differential equations. J. Appl. Math. Comput. 2025, 71, 3477–3508. [Google Scholar] [CrossRef]
- Yousefi, S.; Banifatemi, A. Numerical solution of Fredholm integral equations by using CAS wavelets. Appl. Math. Comput. 2006, 183, 458–463. [Google Scholar] [CrossRef]
- Maleknejad, K.; Lotfi, T.; Mahdiani, K. Numerical solution of first kind Fredholm integral equations with wavelets-Galerkin method (WGM) and wavelets precondition. Appl. Math. Comput. 2007, 186, 794–800. [Google Scholar] [CrossRef]
- Fattahzadeh, F. Approximate solution of two-dimensional Fredholm integral equation of the first kind using wavelet base method. Int. J. Appl. Comput. Math. 2019, 5, 138. [Google Scholar] [CrossRef]
- Hatamzadeh, V.S.; Masouri, Z. Numerical method for analysis of one-and two-dimensional electromagnetic scattering based on using linear Fredholm integral equation models. Math. Comput. Model. 2011, 54, 2199–2210. [Google Scholar] [CrossRef]
- Maleknejad, K.; Saeedipoor, E. An efficient method based on hybrid functions for Fredholm integral equation of the first kind with convergence analysis. Appl. Math. Comput. 2017, 304, 93–102. [Google Scholar] [CrossRef]
- Didgar, M.; Vahidi, A. Application of taylor expansion for fredholm integral equations of the first kind. Punjab. Univ. J. Math. 2020, 51, 1–14. [Google Scholar]
- Eggermont, P.B. Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 1993, 24, 1557–1576. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, X. An overview of numerical methods for the first kind Fredholm integral equation. SN Appl. Sci. 2019, 1, 1178. [Google Scholar] [CrossRef]
- Yan, L.; Duan, X.; Liu, B.; Xu, J. Gaussian processes and polynomial chaos expansion for regression problem: Linkage via the RKHS and comparison via the KL divergence. Entropy 2018, 20, 191. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Kanagawa, M.; Hennig, P.; Sejdinovic, D.; Sriperumbudur, B.K. Gaussian processes and kernel methods: A review on connections and equivalences. arXiv 2018, arXiv:1807.02582. [Google Scholar] [CrossRef]
- Qian, T. Reproducing kernel sparse representations in relation to operator equations. Complex. Anal. Oper. Theory 2020, 14, 36. [Google Scholar] [CrossRef]
- Qiu, R.; Yan, L.; Duan, X. Solving Fredholm integral equation of the first kind using Gaussian process regression. Appl. Math. Comput. 2022, 425, 127032. [Google Scholar] [CrossRef]
- Qiu, R.; Duan, X.; Huangpeng, Q.; Yan, L. The best approximate solution of Fredholm integral equations of the first kind via Gaussian process regression. Appl. Math. Lett. 2022, 133, 108272. [Google Scholar] [CrossRef]
- Qiu, R.; Xu, M.; Zhu, P. Reproducing kernel Hilbert space method for high-order linear Fredholm integro-differential equations with variable coefficients. Appl. Math. Comput. 2025, 489, 129161. [Google Scholar] [CrossRef]
- Lu, F.; Ou, M.J.Y. An Adaptive RKHS Regularization for the Fredholm Integral Equations. Math. Methods. Appl. Sci. 2025, 48, 11124–11140. [Google Scholar] [CrossRef]
- De Alba, P.D.; Fermo, L.; Pes, F.; Rodriguez, G. Regularized minimal-norm solution of an overdetermined system of first kind integral equations. Numer. Algorithms 2023, 92, 471–502. [Google Scholar] [CrossRef]
- Mohammadi, H.; Riche, R.L.; Durrande, N.; Touboul, E.; Bay, X. An analytic comparison of regularization methods for Gaussian Processes. arXiv 2016, arXiv:1602.00853. [Google Scholar]
- Michel, V.; Orzlowski, S. On the null space of a class of Fredholm integral equations of the first kind. J. Inverse. Ill. Posed. Probl. 2016, 24, 687–710. [Google Scholar] [CrossRef]
- Ayupova, N.B. On the uniqueness of solutions to integral equations of the first kind. J. Inverse. Ill. Posed. Probl. 2002, 10, 13–22. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Dehghan, M.; Sedaghatjoo, Z. The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method. Appl. Numer. Math. 2020, 158, 134–151. [Google Scholar] [CrossRef]
- Nashed, M.Z. On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 1976, 53, 359–366. [Google Scholar] [CrossRef]
- Lukas, M.A. Convergence rates for regularized solutions. Math. Comput. 1988, 51, 107–131. [Google Scholar] [CrossRef]
- Nashed, M.Z.; Wahba, G. Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comput. 1974, 28, 69–80. [Google Scholar] [CrossRef]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Ye, Q. Optimal designs of positive definite kernels for scattered data approximation. Appl. Comput. Harmon. Anal. 2016, 41, 214–236. [Google Scholar] [CrossRef]
- Ye, Q. Kernel-based Approximation Methods for Generalized Interpolations: A Deterministic or Stochastic Problem? arXiv 2017, arXiv:1710.05192. [Google Scholar] [CrossRef]
- Wahba, G. On the optimal choice of nodes in the collocation-projection method for solving linear operator equations. J. Approx. Theory 1976, 16, 175–186. [Google Scholar] [CrossRef]
- Liu, J. Optimal experimental designs for linear inverse problems. Inverse Probl. Eng. 2001, 9, 287–314. [Google Scholar] [CrossRef]
- Bardow, A. Optimal experimental design of ill-posed problems: The METER approach. Comput. Chem. Eng. 2008, 32, 115–124. [Google Scholar] [CrossRef]
- Santner, T.J.; Williams, B.J.; Notz, W.I.; Williams, B.J. The Design and Analysis of Computer Experiments; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Sun, W.; Wei, Y. Triple reverse-order law for weighted generalized inverses. Appl. Math. Comput. 2002, 125, 221–229. [Google Scholar] [CrossRef]
- Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Springer Science & Business Media: Singapore, 2018. [Google Scholar]
- Chen, Z.; Xu, Y.; Yang, H. Fast collocation methods for solving ill-posed integral equations of the first kind. Inverse Probl. 2008, 24, 065007. [Google Scholar] [CrossRef]
- Phillips, D.L. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 1962, 9, 84–97. [Google Scholar] [CrossRef]
- Ramlau, R.; Reichel, L. Error estimates for Arnoldi–Tikhonov regularization for ill-posed operator equations. Inverse Probl. 2019, 35, 055002. [Google Scholar] [CrossRef]
- Reichel, L.; Sadok, H.; Zhang, W.H. Simple stopping criteria for the LSQR method applied to discrete ill-posed problems. Numer. Algorithms 2020, 84, 1381–1395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, R.; Xu, J.; Xu, M. Solving Fredholm Integral Equations of the First Kind Using a Gaussian Process Model Based on Sequential Design. Mathematics 2025, 13, 2407. https://doi.org/10.3390/math13152407
Qiu R, Xu J, Xu M. Solving Fredholm Integral Equations of the First Kind Using a Gaussian Process Model Based on Sequential Design. Mathematics. 2025; 13(15):2407. https://doi.org/10.3390/math13152407
Chicago/Turabian StyleQiu, Renjun, Juanjuan Xu, and Ming Xu. 2025. "Solving Fredholm Integral Equations of the First Kind Using a Gaussian Process Model Based on Sequential Design" Mathematics 13, no. 15: 2407. https://doi.org/10.3390/math13152407
APA StyleQiu, R., Xu, J., & Xu, M. (2025). Solving Fredholm Integral Equations of the First Kind Using a Gaussian Process Model Based on Sequential Design. Mathematics, 13(15), 2407. https://doi.org/10.3390/math13152407