The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient
Abstract
1. Introduction
2. Uniqueness Result for Weak Solutions in the Case
3. Uniqueness for Weak Solutions in the Case of Laplacian Operator
3.1. Existence
3.2. A Priori Estimates
3.3. Proof of Theorem 2
3.4. Uniqueness
4. Comparison Principle for Weak Solutions in the Case
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvino, A.; Ferone, V.; Mercaldo, A. Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms. Ann. Mat. Pura Appl. 2015, 194, 1169–1201. [Google Scholar] [CrossRef]
- Ferone, V.; Murat, F. Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces. J. Differ. Equ. 2014, 256, 577–608. [Google Scholar] [CrossRef]
- Grenon, N.; Murat, F.; Porretta, A. A priori estimates and existence for elliptic equations with gradient dependent term. Annali Sc. Norm. Super.-Cl. Sci. 2014, 13, 137–205. [Google Scholar] [CrossRef] [PubMed]
- Dall’Aglio, A. Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 1996, 170, 207–240. [Google Scholar] [CrossRef]
- Maso, G.D.; Malusa, A. Some properties of reachable solutions of nonlinear elliptic equations with measure data. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1997, 25, 375–396. [Google Scholar]
- Maso, G.D.; Murat, F.; Orsina, L.; Prignet, A. Renormalized solutions of elliptic equations with general measure data. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1999, 28, 741–808. [Google Scholar]
- Lions, P.-L.; Murat, F. Sur les Solutions Renormalisées d’equations Elliptiques Non Linéaires, manuscript in preparation.
- Murat, F. Soluciones Renormalizadas de EDP Elipticas no Lineales; Preprint 93023; Laboratoire d’Analyse Numérique de l’Université: Paris, France, 1993. [Google Scholar]
- Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vázquez, J.L. An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1995, 22, 241–273. [Google Scholar]
- Alaa, N.; Pierre, M. Weak solutions of some quasilinear elliptic equations with data measures. SIAM J. Math. Anal. 1993, 24, 23–35. [Google Scholar] [CrossRef]
- Leonori, T.; Porretta, A.; Riey, G. Comparison principles for p-Laplace equations with lower order terms. Ann. Mat. Pura Appl. 2017, 196, 877–903. [Google Scholar] [CrossRef]
- Alvino, A.; Betta, M.F.; Mercaldo, A.; Volpicelli, R. Comparison result for quasi-linear elliptic equations with general growth in the gradient. Commun. Pure Appl. Anal. 2024, 23, 339–355. [Google Scholar] [CrossRef]
- Alvino, A.; Ferone, V.; Mercaldo, A. Uniqueness for a class of nonlinear elliptic equations with lower order terms. Pure Appl. Funct. Anal. 2024, 9, 1–18. [Google Scholar]
- Barles, G.; Porretta, A. Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 2006, 5, 107–136. [Google Scholar] [CrossRef]
- Betta, M.F.; Nardo, R.D.; Mercaldo, A.; Perrotta, A. Gradient estimates and comparison principle for some nonlinear elliptic equations. Commun. Pure Appl. Anal. 2015, 14, 897–922. [Google Scholar] [CrossRef]
- Betta, M.F.; Mercaldo, A.; Murat, F.; Porzio, M.M. Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 2005, 63, 153–170. [Google Scholar] [CrossRef]
- Betta, M.F.; Mercaldo, A.; Volpicelli, R. Continuous dependence on the data for solutions to nonlinear elliptic equations with a lower order term. Ric. Mat. 2014, 63, 41–56. [Google Scholar] [CrossRef]
- Leonori, T.; Porretta, A. On the comparison principle for unbounded solutions of elliptic equations with first order terms. J. Math. Anal. Appl. 2018, 457, 1492–1501. [Google Scholar] [CrossRef]
- Mohammed, A.; Vitolo, A. The effects of nonlinear perturbation terms on comparison principles for the p-Laplacian. Bull. Math. Sci. 2024, 14, 2450005. [Google Scholar] [CrossRef]
- Oliva, F. Existence and uniqueness of solutions to some singular equations with natural growth. Ann. Mat. Pura Appl. 2021, 200, 287–314. [Google Scholar] [CrossRef]
- Porretta, A. On the comparison principle for p-laplace operators with first order terms. In Quaderni di Matematica; Department of Mathematics, Seconda Università di Napoli: Caserta, Italy, 2008; Volume 23. [Google Scholar]
- Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Boccardo, L.; Murat, F. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 1992, 19, 581–597. [Google Scholar] [CrossRef]
- Leray, J.; Lions, J.-L. Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 1965, 93, 97–107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvino, A.; Ferone, V.; Mercaldo, A. The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics 2025, 13, 63. https://doi.org/10.3390/math13010063
Alvino A, Ferone V, Mercaldo A. The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics. 2025; 13(1):63. https://doi.org/10.3390/math13010063
Chicago/Turabian StyleAlvino, Angelo, Vincenzo Ferone, and Anna Mercaldo. 2025. "The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient" Mathematics 13, no. 1: 63. https://doi.org/10.3390/math13010063
APA StyleAlvino, A., Ferone, V., & Mercaldo, A. (2025). The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics, 13(1), 63. https://doi.org/10.3390/math13010063