# A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

- Cats can be susceptible (S), infected (I), or recovered/vaccinated (${V}_{R}$).
- The mouse population ${N}_{m}$ is divided into two classes, namely, susceptible (${S}_{m}$) and infectious (${I}_{m}$).
- Oocysts (O) denotes the amount of T. gondii oocysts.
- The mouse and cat populations are assumed to be constant.
- A susceptible mouse or cat moves to the infectious class after contact with T. gondii oocysts (at rates ${\beta}_{m}$ and $\beta $, respectively).
- A susceptible cat flows to the recovered/vaccinated class ${V}_{R}$ at a rate $\gamma $. An infectious cat flows to the vaccinated/recovered subpopulation ${V}_{R}\left(t\right)$ at a rate $\alpha $.
- T. gondii oocysts $O\left(t\right)$ are generated by infectious cats $I\left(t\right)$.
- ${\mu}_{0}$ is the degradation/removal rate of T. gondii oocysts in the environment.
- $\mu $ represents the birth and death rate for cats.
- ${\mu}_{c}$ represents the birth and death rate of mice.
- A proportion q of vertical transmittal is assumed in the cat population.
- A proportion p of vertical transmittal is assumed in the mouse population.

## 3. Stability Analysis

**Theorem 1.**

**Proof.**

## 4. Mathematical Model with Full Vertical Transmission in the Mouse Population

#### 4.1. Toxoplasmosis-Free Steady State Considering Full Vertical Transmission in Mice

**Remark 1.**

**Remark 2.**

#### 4.2. Global Stability of Toxoplasmosis-Free Equilibrium Points

**Theorem 2.**

**Proof.**

#### 4.3. Toxoplasmosis-Endemic Steady State

**Theorem 3.**

#### 4.4. Global Stability of the Toxoplasmosis-Endemic Equilibrium Point

**Theorem 4.**

**Proof.**

## 5. Mathematical Model without Full Vertical Transmission in the Mouse Population

#### 5.1. Stability Analysis of the Toxoplasmosis-Free Equilibrium Point

#### 5.2. Stability Analysis of the Toxoplasmosis Endemic Equilibrium Point

**Theorem 5.**

## 6. Numerical Simulations of Different Scenarios

#### 6.1. Toxoplasmosis-Free Scenario (${\mathcal{R}}_{0}<1$)

#### 6.2. Toxoplasmosis Endemic Scenario (${\mathcal{R}}_{0}>1$)

## 7. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Reyes-Lizano, L.; Chinchilla-Carmona, M.; Guerrero-Bermúdez, O.; Arias-Echandi, M.; Castro-Castillo, A. Trasmisión de Toxoplasma gondii en Costa Rica: Un concepto actualizado. Acta Méd. Costarric.
**2001**, 43, 36–38. (In Spanish) [Google Scholar] [CrossRef] - Beaver, P.; Jung, R.; Cupp, E. Clinical Parasitology, 9th ed.; Lea & Febiger: Philadelphia, PA, USA, 1984. [Google Scholar]
- Markell, E.; Voge, M.; David, J. Parasitología Médica; Mc Graw-Hill: Madrid, Spain, 1990. (In Spanish) [Google Scholar]
- Dubey, J. Duration of Immunity to Shedding of Toxoplasma gondii Oocysts by Cats. J. Parasitol.
**1995**, 81, 410–415. [Google Scholar] [CrossRef] - Sibley, L.; Boothroyd, J. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature
**1992**, 359, 82–85. [Google Scholar] [CrossRef] - Sunquist, M.; Sunquist, F. Wild Cats of the World; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- CDC. Center for Disease Control and Prevention, Toxoplasmosis. 2022. Available online: https://www.cdc.gov/parasites/toxoplasmosis/ (accessed on 10 March 2022).
- Dubey, J.P. The history of Toxoplasma gondii—The first 100 years. J. Eukaryot. Microbiol.
**2008**, 55, 467–475. [Google Scholar] [CrossRef] - Lappin, M. Feline toxoplasmosis. Practice
**1999**, 21, 578–589. [Google Scholar] [CrossRef] - Aramini, J.; Stephen, C.; Dubey, J.P.; Engelstoft, C.; Schwantje, H.; Ribble, C.S. Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiol. Infect. Camb. Univ. Press
**1999**, 122, 305–315. [Google Scholar] [CrossRef] - Dubey, J.P.; Thayer, D.W.; Speer, C.A.; Shen, S.K. Effect of gamma irradiation on unsporulated and sporulated Toxoplasma gondii oocysts. Int. J. Parasitol.
**1998**, 28, 369–375. [Google Scholar] [CrossRef] - Mead, P.; Slutsker, L.; Dietz, V.; McCaig, L.; Bresee, J.S.; Shapiro, C.; Griffin, P.; Tauxe, R. Food-related illness and death in the United States. Emerg. Infect. Dis.
**1999**, 5, 607–625. [Google Scholar] [CrossRef] - Dubey, J.; Frenkel, J. Feline toxoplasmosis from acutely infected mice and the development of Toxoplasma cysts. J. Protozool.
**1976**, 23, 537–546. [Google Scholar] [CrossRef] - Dabritz, H.; Conrad, P.A. Cats and Toxoplasma: Implications for public health. Zoonoses Public Health
**2010**, 57, 34–52. [Google Scholar] [CrossRef] - Torda, A. Toxoplasmosis. Are cats really the source? Aust. Fam. Physician
**2001**, 30, 743–747. [Google Scholar] - Turner, M.; Lenhart, S.; Rosenthal, B.; Zhao, X. Modeling effective transmission pathways and control of the world’s most successful parasite. Theor. Popul. Biol.
**2013**, 86, 50–61. [Google Scholar] [CrossRef] - Deng, H.; Cummins, R.; Schares, G.; Trevisan, C.; Enemark, H.; Waap, H.; Srbljanovic, J.; Djurkovic-Djakovic, O.; Pires, S.M.; van der Giessen, J.W.; et al. Mathematical modelling of Toxoplasma gondii transmission: A systematic review. Food Waterborne Parasitol.
**2021**, 22, e00102. [Google Scholar] [CrossRef] - Robert-Gangneux, F.; Murat, J.B.; Fricker-Hidalgo, H.; Brenier-Pinchart, M.P.; Gangneux, J.P.; Pelloux, H. The placenta: A main role in congenital toxoplasmosis? Trends Parasitol.
**2011**, 27, 530–536. [Google Scholar] [CrossRef] - Vargas-Villavicencio, J.A.; Cedillo-Peláez, C.; Rico-Torres, C.; Besne-Merida, A.; Garcia-Vazquez, F.; Saldana, J.; Correa, D. Mouse model of congenital infection with a non-virulent Toxoplasma gondii strain: Vertical transmission, “sterile” fetal damage, or both? Exp. Parasitol.
**2016**, 166, 116–123. [Google Scholar] [CrossRef] - Shiono, Y.; Mun, H.S.; He, N.; Nakazaki, Y.; Fang, H.; Furuya, M.; Aosai, F.; Yano, A. Maternal–fetal transmission of Toxoplasma gondii in interferon-γ deficient pregnant mice. Parasitol. Int.
**2007**, 56, 141–148. [Google Scholar] [CrossRef] - Darcy, F.; Zenner, L. Experimental models of toxoplasmosis. Res. Immunol.
**1993**, 144, 16–23. [Google Scholar] [CrossRef] - Pezerico, S.B.; Langoni, H.; Da Silva, A.V.; Da Silva, R.C. Evaluation of Toxoplasma gondii placental transmission in BALB/c mice model. Exp. Parasitol.
**2009**, 123, 168–172. [Google Scholar] [CrossRef] - Rejmanek, D.; Vanwormer, E.; Mazet, J.A.; Packham, A.E.; Aguilar, B.; Conrad, P.A. Congenital transmission of Toxoplasma gondii in deer mice (Peromyscus maniculatus) after oral oocyst infection. J. Parasitol.
**2010**, 96, 516–520. [Google Scholar] [CrossRef] - Araujo, F.G.; Hunter, C.A.; Remington, J.S. Treatment with interleukin 12 in combination with atovaquone or clindamycin significantly increases survival of mice with acute toxoplasmosis. Antimicrob. Agents Chemother.
**1997**, 41, 188–190. [Google Scholar] [CrossRef] [Green Version] - Hide, G. Role of vertical transmission of Toxoplasma gondii in prevalence of infection. Expert Rev. Anti-Infect. Ther.
**2016**, 14, 335–344. [Google Scholar] [CrossRef] - Marshall, P.; Hughes, J.; Williams, R.; Smith, J.; Murphy, R.; Hide, G. Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus. Parasitology
**2004**, 128, 39–42. [Google Scholar] [CrossRef] [Green Version] - Murphy, R.G.; Williams, R.H.; Hughes, J.M.; Hide, G.; Ford, N.J.; Oldbury, D.J. The urban house mouse (Mus domesticus) as a reservoir of infection for the human parasite Toxoplasma gondii: An unrecognised public health issue? Int. J. Environ. Health Res.
**2008**, 18, 177–185. [Google Scholar] [CrossRef] - Brauer, F.; Castillo-Chavez, C.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springer: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Iqbal, M.S.; Ahmed, N.; Akgül, A.; Raza, A.; Shahzad, M.; Iqbal, Z.; Rafiq, M.; Jarad, F. Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Math
**2022**, 7, 13000–13018. [Google Scholar] [CrossRef] - Diekmann, O.; Heesterbeek, J.; Roberts, M. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface
**2010**, 7, 873–885. [Google Scholar] [CrossRef] [Green Version] - Hethcote, H. Mathematics of infectious diseases. SIAM Rev.
**2005**, 42, 599–653. [Google Scholar] [CrossRef] [Green Version] - Ferreira, J.D.; Echeverry, L.M.; Rincon, C.A.P. Stability and bifurcation in epidemic models describing the transmission of toxoplasmosis in human and cat populations. Math. Methods Appl. Sci.
**2017**, 40, 5575–5592. [Google Scholar] [CrossRef] - González-Parra, G.C.; Arenas, A.J.; Aranda, D.F.; Villanueva, R.J.; Jódar, L. Dynamics of a model of Toxoplasmosis disease in human and cat populations. Comput. Math. Appl.
**2009**, 57, 1692–1700. [Google Scholar] [CrossRef] [Green Version] - Arenas, A.J.; González-Parra, G.; Micó, R.J.V. Modeling toxoplasmosis spread in cat populations under vaccination. Theor. Popul. Biol.
**2010**, 77, 227–237. [Google Scholar] [CrossRef] - Lélu, M.; Langlais, M.; Poulle, M.L.; Gilot-Fromont, E. Transmission dynamics of Toxoplasma gondii along an urban–rural gradient. Theor. Popul. Biol.
**2010**, 78, 139–147. [Google Scholar] [CrossRef] - Mateus-Pinilla, N.; Hannon, B.; Weigel, R. A computer simulation of the prevention of the transmission of Toxoplasma gondii on swine farms using a feline T. gondii vaccine. Prev. Vet. Med.
**2002**, 55, 17–36. [Google Scholar] [CrossRef] [PubMed] - Marinović, A.A.B.; Opsteegh, M.; Deng, H.; Suijkerbuijk, A.W.; van Gils, P.F.; Van Der Giessen, J. Prospects of toxoplasmosis control by cat vaccination. Epidemics
**2020**, 30, 100380. [Google Scholar] [CrossRef] - Innes, E.A.; Hamilton, C.; Garcia, J.L.; Chryssafidis, A.; Smith, D. A one health approach to vaccines against Toxoplasma gondii. Food Waterborne Parasitol.
**2019**, 15, e00053. [Google Scholar] [CrossRef] - Freyre, A.; Choromanski, L.; Fishback, J.; Popiel, I. Immunization of cats with tissue cysts, bradyzoites, and tachyzoites of the T-263 strain of Toxoplasma gondii. J. Parasitol.
**1993**, 79, 716–719. [Google Scholar] [CrossRef] - Frenkel, J. Transmission of toxoplasmosis and the role of immunity in limiting transmission and illness. J. Am. Vet. Med. Assoc.
**1990**, 196, 233–240. [Google Scholar] - Sullivan, A.; Agusto, F.; Bewick, S.; Su, C.; Lenhart, S.; Zhao, X. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Math. Biosci. Eng.
**2012**, 9, 647. [Google Scholar] - González-Parra, G.; Sultana, S.; Arenas, A.J. Mathematical Modeling of Toxoplasmosis Considering a Time Delay in the Infectivity of Oocysts. Mathematics
**2022**, 10, 354. [Google Scholar] [CrossRef] - Sultana, S.; González-Parra, G.; Arenas, A.J. Dynamics of toxoplasmosis in the cat’s population with an exposed stage and a time delay. Math. Biosci. Eng.
**2022**, 19, 12655–12676. [Google Scholar] [CrossRef] - González-Parra, G.; Arenas, A.J.; Chen-Charpentier, B.; Sultana, S. Mathematical modeling of toxoplasmosis with multiple hosts, vertical transmission and cat vaccination. Comput. Appl. Math.
**2023**, 42, 88. [Google Scholar] [CrossRef] - Ahmed, N.; Macías-Díaz, J.E.; Shahid, N.; Raza, A.; Rafiq, M. A dynamically consistent computational method to solve numerically a mathematical model of polio propagation with spatial diffusion. Comput. Methods Programs Biomed.
**2022**, 218, 106709. [Google Scholar] [CrossRef] - Korobeinikov, A.; Wake, G.C. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett.
**2002**, 15, 955–960. [Google Scholar] [CrossRef] [Green Version] - Korobeinikov, A. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol.
**2006**, 68, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Shuai, Z.; van den Driessche, P. Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math.
**2013**, 73, 1513–1532. [Google Scholar] [CrossRef] [Green Version] - Williams, R.; Morley, E.; Hughes, J.; Duncanson, P.; Terry, R.; Smith, J.; Hide, G. High levels of congenital transmission of Toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts. Parasitology
**2005**, 130, 301–307. [Google Scholar] [CrossRef] [Green Version] - Lakshmikantham, V.; Leela, S.; Martynyuk, A. Stability Analysis of Nonlinear Systems; Marcel Dekker, Inc.: New York City, NY, USA, 1989. [Google Scholar]
- Routh, E.J. A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Being the Essay to which the Adams Prize Was Adjudged in 1877, in the University of Cambridge; Macmillan and Company: London, UK, 1877. [Google Scholar]
- Berthier, K.; Langlais, M.; Auger, P.; Pontier, D. Dynamics of a feline virus with two transmission modes within exponentially growing host populations. Proc. R. Soc. B Biol. Sci.
**2000**, 267, 2049–2056. [Google Scholar] [CrossRef] - Fayer, R. Toxoplasma gondii: Transmission, diagnosis and prevention. Can. Vet.
**1981**, 22, 344–352. [Google Scholar] - Dubey, J.; Beattie, C. Toxoplasmosis of Animals and Man; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Dubey, J.P.; Graham, D.H.; Blackston, C.R.; Lehmann, T.; Gennari, S.M.; Ragozo, A.M.A.; Nishi, S.M.; Shen, S.K.; Kwok, O.C.H.; Hill, D.E.; et al. Biological and genetic characterisation of Toxoplasma gondii isolates from chickens (Gallus domesticus) from São Paulo, Brazil: Unexpected findings. Int. J. Parasitol.
**2002**, 32, 99–105. [Google Scholar] [CrossRef]

**Figure 1.**Chart of the mathematical model of generalized toxoplasmosis transmission (1) for mouse and cat populations taking into account generalized vertical transmission.

**Figure 2.**Trajectories of the subpopulations with no vaccination and ${\mathcal{R}}_{0}=0.98$. The initial subpopulations are near the toxoplasmosis-free point ${F}^{*}$. On the right-hand side, the initial amount of oocysts $O\left(0\right)$ is very large.

**Figure 3.**Trajectories of the subpopulations when ${\mathcal{R}}_{0}=0.98$. The initial subpopulations are distant from the toxoplasmosis-free steady state ${F}^{*}$. The left-hand side shows the case in which vaccination is implemented, while the right-hand side shows the case with no vaccination and a larger death/clearance rate ${\mu}_{0}$.

**Figure 4.**Dynamics of the different classes when ${\mathcal{R}}_{0}=1.04$ and the initial subpopulations are distant from the endemic equilibrium ${E}_{0}^{*}$. Note that the oocyst and infected cat populations never become extinct, as ${\mathcal{R}}_{0}>1$.

Parameter | Description | Value |
---|---|---|

$\mu $ | Death and birth rates (cats) | $1/260$ (1/weeks) [52] |

$\alpha $ | Shedding period | $1/2$ (1/weeks) [4] |

${\mu}_{0}$ | Clearance rate | $1/26$ (1/day) [4,36] |

k | Oocysts per day (cat) | $20\times {10}^{6}$ (1/day) [53] |

$\beta $ | Transmission rate | varying |

${\beta}_{m}$ | Transmission rate | $0.1\times {10}^{-8}$ |

$\gamma $ | Vaccination rate | varying |

Subpopulations | Description | Initial values |

S | Susceptible cats | 0.45 [36,54,55] |

I | Infected cats | 1/130 [36,54,55] |

${V}_{R}$ | Vaccinated/Recovered | $1-S\left(0\right)-V\left(0\right)$ |

O | Occysts | $5.92\times {10}^{6}$ |

${S}_{m}$ | Susceptible mice (proportion) | 0.9 |

${I}_{m}$ | Infected mice (proportion) | 0.1 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sultana, S.; González-Parra, G.; Arenas, A.J.
A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host. *Mathematics* **2023**, *11*, 1642.
https://doi.org/10.3390/math11071642

**AMA Style**

Sultana S, González-Parra G, Arenas AJ.
A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host. *Mathematics*. 2023; 11(7):1642.
https://doi.org/10.3390/math11071642

**Chicago/Turabian Style**

Sultana, Sharmin, Gilberto González-Parra, and Abraham J. Arenas.
2023. "A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host" *Mathematics* 11, no. 7: 1642.
https://doi.org/10.3390/math11071642