Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes
Abstract
1. Introduction
2. Preliminary Results and Setting of the Problem
2.1. Preliminaries
2.2. Spectral Problem
2.3. Some Properties of Eigenfunctions
3. Approximate Spectral Problem
3.1. Spaces , , , and
3.2. Setting of the Approximate Spectral Problem
3.3. Some Properties of Eigenfunctions
- (1)
- and in .
- (2)
- and in .
- (3)
- The eigenfunction U satisfies the junction conditions in (16) in .
4. Formulation of the Main Results
5. Proof of Theorem 2
6. Proof of Theorem 3
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panasenko, G. Method of asymptotic partial decomposition of domain. Math. Model. Methods Appl. Sci. 1998, 8, 139–156. [Google Scholar] [CrossRef]
- Panasenko, G.P. Asymptotic analysis of bar systems. I. Russ. J. of Math. Phys. 1994, 2, 325–352. [Google Scholar]
- Panasenko, G. Multi-Scale Modelling for Structures and Composites; Springer: Dordrecht, The Netherlands, 2005; 398p. [Google Scholar]
- Panasenko, G. Method of asymptotic partial domain decomposition for non-steady problems: Heat equation on a thin structure. Math. Commun. 2014, 19, 453–468. [Google Scholar]
- Panasenko, G.; Pérez, M.-E. Method of asymptotic partial decomposition of domain for spectral problems in rod structures. J. Math. Pures Appl. 2007, 87, 1–36. [Google Scholar] [CrossRef][Green Version]
- Borisov, D.; Freitas, P. Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. I.H.Poincaré - AN 2009, 26, 547–560. [Google Scholar] [CrossRef]
- Friedlander, L.; Solomyak, M. On the spectrum of the Dirichlet Laplacian in a narrow strip. Israel J. Math. 2009, 170, 337–354. [Google Scholar] [CrossRef]
- Gaudiello, A.; Gómez, D.; Pérez-Martínez, M.-E. Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure. J. Math. Pures Appl. 2020, 134, 299–327. [Google Scholar] [CrossRef]
- Gaudiello, A.; Gómez, D.; Pérez-Martínez, M.-E. A spectral problem for the Laplacian in joined thin films. Calc. Var. Partial Differ. Equ. 2023, 62, 129. [Google Scholar] [CrossRef]
- Kuchment, P.; Zheng, H. Asymptotics of spectra of Neumann Laplacians in thin domains. In Contemporary Mathematics; AMS: Providence, RI, USA, 2003; Volume 327, pp. 199–213. [Google Scholar]
- Molchanov, S.; Vainberg, B. Laplace operator in networks of thin fibers: Small diameter asymptotics. Comm. Math. Phys. 2007, 273, 533–559. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Pérez, E.; Taskinen, J. Localization effect for Dirichlet eigenfunctions in thin non-smooth domains. Trans. Amer. Math. Soc. 2016, 368, 4787–4829. [Google Scholar] [CrossRef]
- Rubinstein, J.; Schatzmann, M. Variational problems on multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum. Arch. Rat. Mech. Anal. 2001, 160, 271–308. [Google Scholar] [CrossRef]
- Arrieta, J.M. Rates of eigenvalues on a dumbbell domain. Simple eigenvalue case. Trans. Am. Math. Soc. 1995, 347, 3503–3531. [Google Scholar] [CrossRef]
- Gadyl’shin, R.R. On the eigenvalues of a “dumbbell with a thin handle”. Izv. Ross. Akad. Nauk Ser. Mat. 2005, 69, 45–110, Translation in Izv. Math. 2005, 69, 265–329. [Google Scholar]
- Melnik, T.A.; Nazarov, S.A. Asymptotic behavior of the solution of the Neumann spectral problem in a domain of “tooth comb” type. Tr. Semin. Im. I. G. Petrovsk. 1996, 19, 138–173, Translation in J. Math. Sci. 1997, 85, 2326–2346. [Google Scholar]
- Melnik, T.A.; Nazarov, S.A. Asymptotic analysis of the Neumann problem on the junction of a body and thin heavy rods. Algebra i Anal. 2000, 12, 188–238, Translation in St. Petersburg Math. J. 2001, 12, 317–351. [Google Scholar]
- Panasenko, G.; Viallon, M.-C. Method of asymptotic partial decomposition with discontinuous junctions. Comput. Math. Appl. 2022, 105, 75–93. [Google Scholar] [CrossRef]
- Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008. [Google Scholar]
- Zhan, Q.; Sun, Q.; Ren, Q.; Fang, Y.; Wang, H.; Liu, Q.H. A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation. Geophys. J. Int. 2017, 210, 1219–1230. [Google Scholar] [CrossRef]
- Amosov, A.A.; Panasenko, G.P. Partial dimension reduction for the heat equation in a domain containing thin tubes. Math. Methods Appl. Sci. 2018, 41, 9529–9545. [Google Scholar] [CrossRef]
- Szego, G. Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 1954, 3, 343–356. [Google Scholar] [CrossRef]
- Schoen, R.; Yau, S.-T. Lectures on Differential Geometry; International Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Brenner, S.C. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 2003, 41, 304–324. [Google Scholar] [CrossRef]
- Sanchez-Hubert, J.; Sanchez-Palencia, E. Vibration and Coupling of Continuous Systems; Asymptotic Methods; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Lazutkin, V.F. KAM Theory and Semiclassical Approximations to Eigenfunctions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Visik, M.I.; Lusternik, L.A. Regular degeneration and boundary layer for linear differential equations with small parameter. Trans. Am. Math. Soc. Ser. 2 1957, 20, 239–364. [Google Scholar]
- Lobo, M.; Pérez, E. On the local vibrations for systems with many concentrated masses near the boundary. Comptes Rendus Acad. Sci. Paris 1997, 324, 323–329. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amosov, A.; Gómez, D.; Panasenko, G.; Pérez-Martinez, M.-E. Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics 2023, 11, 3592. https://doi.org/10.3390/math11163592
Amosov A, Gómez D, Panasenko G, Pérez-Martinez M-E. Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics. 2023; 11(16):3592. https://doi.org/10.3390/math11163592
Chicago/Turabian StyleAmosov, Andrey, Delfina Gómez, Grigory Panasenko, and Maria-Eugenia Pérez-Martinez. 2023. "Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes" Mathematics 11, no. 16: 3592. https://doi.org/10.3390/math11163592
APA StyleAmosov, A., Gómez, D., Panasenko, G., & Pérez-Martinez, M.-E. (2023). Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics, 11(16), 3592. https://doi.org/10.3390/math11163592