# Modeling Local Variations in Intermarriage

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Background and Hypotheses

## 3. International Migration and Intermarriage in Spain

## 4. Data and Variables

#### 4.1. Marriage and Population Register Data

#### 4.2. Construction of Variables

#### 4.2.1. The Dependent Variables

#### 4.2.2. Independent Variables

#### 4.2.3. Spatially Lagged Variables

_{ij}in the n × n spatial weight matrix

**W**, for n the number of municipalities, such that ${{\displaystyle \sum}}_{j=1}^{n}{w}_{ij}{x}_{ij}$ results in a scalar representing a linear combination of values obtained by neighboring observations [45]. In this paper, the spatial weight matrix utilizes an inverse distance function for a 170 km distance band, such that each element (w

_{ij}) is equal to $1/{d}_{ij}^{2}$ for each pair of municipalities i, j located at a distance ${d}_{ij}\le 170$ km and zero otherwise (see [46] for further information). We utilize 170 km as the minimum distance at which every municipality has at least one neighbor.

#### 4.2.4. Size of Municipality

## 5. Model Specifications

#### 5.1. Zero Inflated Poisson (ZIP) with Spatial Effects

- ●
- A Probability Mass Function (PMF), $P\left({y}_{i}=0\right)$, which is used to calculate the probability of observing a zero count.
- ●
- A PMF, $P\left({y}_{i}=k\right)$, which is used to calculate the probability of observing k events, given that $k>0$.
- ●
- A link function used to express the mean rate, $\lambda $, as a function of p regression variables
**X**.

^{th}observation (e.g., a Spanish municipality), and ${\lambda}_{i}={e}^{{x}_{i}\beta}$, for ${x}_{i}$ the value of one of the p explanatory variables of the regression model for the i

^{th}observation and $\beta $ the vector of the regression coefficients. The second part of Equation (1), $P\left({y}_{i}=k\right)$, corresponds with the standard Poisson regression model for ${y}_{i}$ the random dependent variable that denotes the observed count of the i

^{th}observation.

^{th}observation is 0 with a probability ${\varphi}_{i}$ or is a realization of a Poisson random variable, which can also be 0, with a probability ($1-{\varphi}_{i})$. That is, zero observations arise from both the zero-component distribution, $P\left({y}_{i}=0\right)$, and the Poisson distribution, $P\left({y}_{i}=k\right)$. The zero-component distribution is related to model the ‘excess’ or ‘inflated’ zeros that are observed in addition to the zeros that are expected to be observed under the assumed Poisson distribution [48]. When the data set does not have any excess zeros in the dependent variable, the value of ${\varphi}_{i}=0$ and the PMF of the ZIP model reduces to the PMF of the standard Poisson model [49].

**X**, as follows:

**X**, as follows:

#### 5.2. Probit Model for Grouped Data with Spatial Effects

^{th}observation, ${x}_{i}$ is a vector gathering a set of k variables which explains the intermarriage decision and β contains a set of parameters.

## 6. Results

#### 6.1. Modeling the Number of Intermarriages

^{2}with and without the spatially lagged variables. The inclusion of the spatially lagged variables enhances the explanatory capacity of all models, though the improvement is better in the larger municipalities. These results suggest that the influence of the characteristics of neighboring municipalities on intermarriage is higher in larger municipalities than in smaller ones.

#### 6.2. Modeling the Intermarriage Rate

^{2}with and without the spatially lagged variables.

^{2}values are somewhat lower than the pseudo-R

^{2}values of the ZIP models, they are not straightforwardly comparable: while the pseudo R

^{2}is computed as the correlation coefficient between the real and estimated dependent variables, the R

^{2}. is the determination coefficient of an Ordinary Least Squares (OLS) estimation. The relative size of the migrant community in the municipality is the explanatory variable with the highest number of statistically significant coefficients and is the most influential to intermarriage. The relationship between relative size of the migrant community and the intermarriage rate is positive for all sizes.

## 7. Discussion and Conclusions

^{2}, is higher in the largest municipalities. However, this result does not exclude finding statistically significant coefficients among the smallest municipalities as well.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Harris, D.R.; Ono, H. How Many Interracial Marriages Would There Be If All Groups Were of Equal Size in All Places? A New Look at National Estimates of Interracial Marriage. Soc. Sci. Res.
**2005**, 34, 236–251. [Google Scholar] [CrossRef] - Rontos, K.; Salvati, L. Space Matters? Exploring Gender Differentials in the Age at Marriage, Greece (1980–2017). Soc. Sci.
**2020**, 9, 59. [Google Scholar] [CrossRef] [Green Version] - Boschman, S. Residential Segregation and Interethnic Contact in the Netherlands. Urban Stud.
**2012**, 49, 353–367. [Google Scholar] [CrossRef] - Asibey, M.O.; Poku-Boansi, M.; Adutwum, I.O. Residential Segregation of Ethnic Minorities and Sustainable City Development. Case of Kumasi, Ghana. Cities
**2021**, 116, 103297. [Google Scholar] [CrossRef] - Kalmijn, M. Intermarriage and Homogamy: Causes, Patterns, Trends. Annu. Rev. Sociol.
**1998**, 24, 395–421. [Google Scholar] [CrossRef] [Green Version] - Lichter, D.T.; Qian, Z. The Study of Assortative Mating: Theory, Data, and Analysis. In Analytical Family Demography; Schoen, R., Ed.; The Springer Series on Demographic Methods and Population Analysis; Springer International Publishing: Cham, Switzerland, 2019; pp. 303–337. ISBN 978-3-319-93227-9. [Google Scholar]
- Rosenfeld, M.J. The Age of Independence: Interracial Unions, Same-Sex Unions, and the Changing American Family; Harvard University Press: Cambridge, MA, USA, 2007; ISBN 978-0-674-02497-7. [Google Scholar]
- Zhang, X.; Sassler, S. The Age of Independence, Revisited: Parents and Interracial Union Formation Across the Life Course. Sociol. Forum
**2019**, 34, 361–385. [Google Scholar] [CrossRef] - Blau, P.M.; Blum, T.C.; Schwartz, J.E. Heterogeneity and Intermarriage. Am. Sociol. Rev.
**1982**, 47, 45–62. [Google Scholar] [CrossRef] - Hwang, S.-S.; Saenz, R.; Aguirre, B.E. Structural and Assimilationist Explanations of Asian American Intermarriage. J. Marriage Fam.
**1997**, 59, 758–772. [Google Scholar] [CrossRef] - Kalmijn, M.; Van Tubergen, F. A Comparative Perspective on Intermarriage: Explaining Differences Among National-Origin Groups in the United States. Demography
**2010**, 47, 459–479. [Google Scholar] [CrossRef] - Bohm-Jordan, M.; Yang, P.Q. Determinants of Intermarriages among Foreign-Born Asians in the United States. Marriage Fam. Rev.
**2021**, 57, 59–91. [Google Scholar] [CrossRef] - Corti, G.; Scherer, S. Mating Market and Dynamics of Union Formation. Eur. J. Popul.
**2021**, 37, 851–876. [Google Scholar] [CrossRef] [PubMed] - Massey, D.S.; Denton, N.A. The Dimensions of Residential Segregation. Soc. Forces
**1988**, 67, 281–315. [Google Scholar] [CrossRef] - Telles, E.; Esteve, A. Racial Intermarriage in the Americas. Sociol. Sci.
**2019**, 6, 293–320. [Google Scholar] [CrossRef] [Green Version] - Bossard, J.H.S. Residential Propinquity as a Factor in Marriage Selection. Am. J. Sociol.
**1932**, 38, 219–224. [Google Scholar] - Haandrikman, K.; Harmsen, C.; van Wissen, L.J.G.; Hutter, I. Geography Matters: Patterns of Spatial Homogamy in the Netherlands. Popul. Space Place
**2008**, 14, 387–405. [Google Scholar] [CrossRef] - Hannemann, T.; Kulu, H.; Rahnu, L.; Puur, A.; Hărăguş, M.; Obućina, O.; González-Ferrer, A.; Neels, K.; Van den Berg, L.; Pailhé, A.; et al. Co-Ethnic Marriage versus Intermarriage among Immigrants and Their Descendants: A Comparison across Seven European Countries Using Event-History Analysis. Demogr. Res.
**2018**, 39, 487–524. [Google Scholar] [CrossRef] [Green Version] - Qian, Z.; Lichter, D.T.; Tumin, D. Divergent Pathways to Assimilation? Local Marriage Markets and Intermarriage among U.S. Hispanics. J. Marriage Fam.
**2018**, 80, 271–288. [Google Scholar] [CrossRef] [PubMed] - Mare, R.D. Five Decades of Educational Assortative Mating. Am. Sociol. Rev.
**1991**, 56, 15–32. [Google Scholar] [CrossRef] - Qian, Z. Changes in Assortative Mating: The Impact of Age and Education, 1970–1990. Demography
**1998**, 35, 279–292. [Google Scholar] [CrossRef] - Chiappori, P.-A. The Theory and Empirics of the Marriage Market. Annu. Rev. Econ.
**2020**, 12, 547–578. [Google Scholar] [CrossRef] - Akers, D.S. On Measuring the Marriage Squeeze. Demography
**1967**, 4, 907–924. [Google Scholar] [CrossRef] [PubMed] - Schoen, R. Measuring the Tightness of a Marriage Squeeze. Demography
**1983**, 20, 61–78. [Google Scholar] [CrossRef] [PubMed] - McCaa, R. Ethnic Intermarriage and Gender in New York City. J. Interdiscip. Hist.
**1993**, 24, 207–231. [Google Scholar] [CrossRef] - Choi, K.H.; Tienda, M. Marriage-Market Constraints and Mate-Selection Behavior: Racial, Ethnic, and Gender Differences in Intermarriage. J. Marriage Fam.
**2017**, 79, 301–317. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Weiss, I.; Stecklov, G. Assimilation and Ethnic Marriage Squeeze in Early 20th Century America: A Gender Perspective. Demogr. Res.
**2020**, 42, 99–132. [Google Scholar] [CrossRef] - Camarero, L.; Sampedro, R. ¿Por qué se van las mujeres? El continuum de movilidad como hipótesis explicativa de la masculinización rural (Why Are Women Leaving? The Mobility Continuum as an Explanation of Rural Masculinization Process). Rev. Española Investig. Sociol.
**2008**, 124, 73–105. [Google Scholar] [CrossRef] - Eckhard, J.; Stauder, J. Migration and the Partner Market: How Gender-Selective Relocations Affect Regional Mating Chances in Germany. Eur. J. Popul.
**2018**, 34, 59–86. [Google Scholar] [CrossRef] - Arango, J. Becoming a Country of Immigration at the End of the Twentieth Century: The Case of Spain. In Eldorado or Fortress? Migration in Southern Europe; King, R., Lazaridis, G., Tsardanidis, C., Eds.; Palgrave Macmillan UK: London, UK, 2000; pp. 253–276. ISBN 978-0-333-98252-5. [Google Scholar]
- Recaño Valverde, J.; Domingo i Valls, A. Evolución de la distribución territorial y la movilidad geográfica de la población extranjera en España. Pap. Demogr.
**2006**, 281, 1–37. [Google Scholar] - González-Ferrer, A.; Obućina, O.; Cortina, C.; Castro-Martín, T. Mixed Marriages between Immigrants and Natives in Spain: The Gendered Effect of Marriage Market Constraints. Demogr. Res.
**2018**, 39, 1–32. [Google Scholar] [CrossRef] [Green Version] - Prieto-Rosas, V.; Recaño, J.; Quintero-Lesmes, D.C. Migration Responses of Immigrants in Spain during the Great Recession. Demogr. Res.
**2018**, 38, 1885–1932. [Google Scholar] [CrossRef] [Green Version] - Vila, M.R.; Castro-Martín, T. Childbearing Patterns of Foreign Women in a New Immigration Country. Population
**2007**, 62, 351–379. [Google Scholar] [CrossRef] [Green Version] - Desiderio, R. The Impact of International Migration on Fertility: An Empirical Study; Knomad Paper 36; World Bank Group: Washington, DC, USA, 2020; p. 32. [Google Scholar]
- Esteve, A.; López-Gay, A.; Serret, J. Revelaciones de una década de matrimonios entre españoles y extranjeros, 1998-08. Estad. Esp.
**2013**, 55, 213–230. [Google Scholar] - Cortina, A.E. Clara Demographic Research—Changes in Educational Assortative Mating in Contemporary Spain. Available online: https://www.demographic-research.org/volumes/vol14/17/default.htm (accessed on 10 February 2022).
- Esteve, A.; Bueno, X. Tras El Rastro Estadístico de Las Parejas de Inmigrantes En España. Estad. Esp.
**2010**, 52, 91–125. [Google Scholar] - Cabré, A.; Cortina Trilla, C.; Esteve, A. ¿Con quién se unen los latinoamericanos en España? Respuestas a partir de tres fuentes estadísticas. Pap. Demogr.
**2006**, 300, 1–21. [Google Scholar] - Sánchez-Domínguez, M.; de Valk, H.; Reher, D. Marriage Strategies among Immigrants in Spain. Rev. Int. Sociol.
**2011**, 69, 139–166. [Google Scholar] [CrossRef] - Medrano, J.D.; Cortina, C.; Safranoff, A.; Castro-Martín, T. Euromarriages in Spain: Recent Trends and Patterns in the Context of European Integration: Euromarriages in Spain. Popul. Space Place
**2014**, 20, 157–176. [Google Scholar] [CrossRef] [Green Version] - Rodríguez-García, D.; de Miguel-Luken, V.M.; Solana-Solana, M. Las uniones mixtas y sus descendientes en España: Evolución y consideraciones sobre la mixticidad. Anu. CIDOB Inmigr.
**2020**, 167–196. [Google Scholar] [CrossRef] - Guetto, R.; Azzolini, D. An Empirical Study of Status Exchange through Migrant/Native Marriages in Italy. J. Ethn. Migr. Stud.
**2015**, 41, 2149–2172. [Google Scholar] [CrossRef] - Cortina, C.; Esteve, A.; Domingo, A. Crecimiento y singularidades demográficas de los matrimonios de extranjeros en España. Migr. Publ. Inst. Univ. Estud. Sobre Migr.
**2006**, 20, 75–105. [Google Scholar] - LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009; ISBN 978-0-429-13808-9. [Google Scholar]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL; GeoDa Press: Chicago, IL, USA, 2014; ISBN 978-0-9863421-0-3. [Google Scholar]
- Lambert, D. Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics
**1992**, 34, 1–14. [Google Scholar] [CrossRef] - Loeys, T.; Moerkerke, B.; De Smet, O.; Buysse, A. The Analysis of Zero-Inflated Count Data: Beyond Zero-Inflated Poisson Regression. Br. J. Math. Stat. Psychol.
**2012**, 65, 163–180. [Google Scholar] [CrossRef] [PubMed] - Zero-Inflated Poisson Regression|R Data Analysis Examples. Available online: https://stats.oarc.ucla.edu/r/dae/zip/ (accessed on 13 February 2022).
- Quiroz, J.L.; Peeters, L.; Chasco, C.; Aroca, P. Equal Access to University Education in Chile? An Application Using Spatial Heckman Probit Models. Mathematics
**2022**, 10, 280. [Google Scholar] [CrossRef] - Anselin, L. Spatial Externalities, Spatial Multipliers, And Spatial Econometrics. Int. Reg. Sci. Rev.
**2003**, 26, 153–166. [Google Scholar] [CrossRef] - Epifani, I.; Ghiringhelli, C.; Nicolini, R. Population Distribution over Time: Modelling Local Spatial Dependence with a CAR Process. Spat. Econ. Anal.
**2020**, 15, 120–144. [Google Scholar] [CrossRef] - Halleck Vega, S.; Elhorst, J.P. The Slx Model. J. Reg. Sci.
**2015**, 55, 339–363. [Google Scholar] [CrossRef] - Mella-Márquez, J.M.; Chasco, C. Urban Growth and Territorial Dynamics: A Spatial-Econometric Analysis of Spain. In Spatial Dynamics, Networks and Modelling; Edward Elgar Publishing: Cheltenham, UK, 2006; p. 42. ISBN 978-1-78100-747-1. [Google Scholar]
- Gourieroux, C. Econometrics of Qualitative Dependent Variables; Cambridge University Press: Cambridge, MA, USA, 2000; ISBN 978-0-511-80560-8. [Google Scholar]
- Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econometrica
**1958**, 26, 24–36. [Google Scholar] [CrossRef] [Green Version] - Ferrari, S.; Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat.
**2004**, 31, 799–815. [Google Scholar] [CrossRef] - Greene, W.H. Econometric Analysis, 8th ed.; Pearson: New York, NY, USA, 2018; ISBN 978-0-13-446136-6. [Google Scholar]
- Berkson, J. Tables for Use in Estimating the Normal Distribution Function by Normit Analysis: Part I. Description and Use of Tables Part II. Comparison Between Minimum Normit Χ2 Estimate and the Maximum Likelihood Estimate. Biometrika
**1957**, 44, 411–435. [Google Scholar] [CrossRef] - Chasco, C.; Aroca, P.; Anselin, L. Probit Models for Grouped-Data Migration Flows: A Theoretical Note. Economia
**2019**, 42, 1–8. [Google Scholar] [CrossRef] [Green Version] - Esteve, A.; Chasco, C.; López-Gay, A. Modeling Spatial Local Variations in Intermarriage. Available online: https://b2share.eudat.eu/records/e0006de39f5b4d138fe41e6acde57cb6 (accessed on 28 February 2022).

**Figure 1.**Spatial distribution of intermarried couples: (

**a**) Spanish Men married to Migrant Women; (

**b**) Spanish Women married to Migrant Men, 2005–2007. Maps were generated with the software Map Viewer, version 8.7.

Variables | Description | Source |
---|---|---|

Dependent variables: | ||

Intermarriage | Number of marriages in each municipality between Spanish citizens and foreign-national individuals in Spain from 2005–2007. | MNP (Spanish Vital Registration) |

Intermarriage rate | Percentage of marriages between Spanish men/women and foreign-national women/men out of the total number of marriages contracted in each municipality from 2005 to 2007. | MNP (Spanish Vital Registration) |

Independent variables: | ||

Relative group size | Percentage of foreign-national population in the municipality | “Padrón” (Population Register) |

Homogeneity of national origin | $\mathrm{Homogeneity}\mathrm{of}\mathrm{migrant}\mathrm{origin}\mathrm{in}\mathrm{each}\mathrm{municipality}(H=100$$\mathrm{means}\mathrm{high}\mathrm{homogeneity}\mathrm{among}\mathrm{migrant}\mathrm{origin};H\approx 0$ means high heterogeneity among migrant origin). This indicator is the result of the summation of the squared proportion of each origin in the foreign population. | “Padrón” (Population Register) |

Scarcity of men for migrant women | Proportion of foreign-national women who do not have an opposite sex counterpart of the same national origin (%) | “Padrón” (Population Register) |

Scarcity of women for migrant men | Proportion of foreign-national men who do not have an opposite sex counterpart of the same national origin (%) | “Padrón” (Population Register) |

Sex ratio among natives | Total number of Spanish men aged 15 to 64 divided by the total number of Spanish women aged 15 to 64 (%). Log transformation | “Padrón” (Population Register) |

Size of Municipality | |||||||||
---|---|---|---|---|---|---|---|---|---|

Variables | 0–249 | 250–499 | 500–999 | 1000–2499 | 2500–4999 | 5000–9999 | 10,000–24,999 | 25,000–99,999 | >100,000 |

Number of municipalities (n) | 2581 | 1214 | 1082 | 1256 | 712 | 545 | 426 | 236 | 59 |

Total marriages | 1584 | 3027 | 6646 | 21,744 | 32,217 | 52,717 | 96,115 | 152,378 | 239,316 |

Relative group size, avg. % | 3.4 | 4.5 | 5.9 | 6.1 | 7.6 | 7.7 | 10.1 | 11.6 | 9.4 |

Sex Ratio among nationals, avg. | 1.47 | 1.27 | 1.20 | 1.13 | 1.09 | 1.06 | 1.04 | 1.02 | 0.97 |

Spanish Men with Foreign-National Women: | |||||||||

Municipalities with intermarriage * | 146 | 221 | 386 | 747 | 584 | 522 | 425 | 236 | 59 |

Intermarriages | 175 | 281 | 530 | 1484 | 1820 | 3044 | 6282 | 10,915 | 18,441 |

Total marriages | 1584 | 3027 | 6646 | 21,744 | 32,217 | 52,717 | 96,115 | 152,378 | 239,316 |

Proportion of intermarriages | 11.0 | 9.3 | 8.0 | 6.8 | 5.6 | 5.8 | 6.5 | 7.2 | 7.7 |

Migrant women | 752 | 2514 | 9385 | 41,144 | 75,976 | 130,710 | 308,917 | 590,004 | 914,725 |

Homogeneity of national origin, avg. % ** | 60.1 | 45.4 | 40.2 | 34.6 | 30.6 | 28.1 | 25.2 | 22.1 | 18.6 |

Scarcity of men for migrant women, avg. % ** | 56.7 | 42.3 | 30.1 | 22.9 | 18.6 | 16.7 | 13.1 | 12.0 | 12.7 |

Spanish Women with Foreign-National Men: | |||||||||

Municipalities with intermarriage * | 35 | 61 | 134 | 361 | 391 | 421 | 413 | 236 | 59 |

Intermarriages | 38 | 67 | 151 | 509 | 793 | 1377 | 3375 | 6625 | 13,375 |

Proportion of intermarriages | 2.4 | 2.2 | 2.3 | 2.3 | 2.5 | 2.6 | 3.5 | 4.3 | 5.6 |

Migrant men | 165 | 804 | 5054 | 27,733 | 69,861 | 140,283 | 359,471 | 672,837 | 982,838 |

Homogeneity of national origin, avg. % ** | 57.2 | 45.7 | 38.9 | 34.1 | 30.6 | 27.1 | 25.1 | 22.1 | 18.6 |

Scarcity of women for migrant men, avg. % ** | 24.3 | 29.5 | 20.2 | 19.0 | 15.0 | 15.1 | 12.7 | 12.0 | 12.7 |

Size of Municipality | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|

Variables | Total | 0–249 | 250–499 | 500–999 | 1000–2499 | 2500–4999 | 5000–9999 | 10,000–24,999 | 25,000–99,999 | >100,000 |

Spanish Men with Foreign-National Women: | ||||||||||

Relative group size (G) | 0.036 *** | 0.016 | 0.019 | 0.015 * | 0.012 ** | 0.010 ** | 0.028 *** | 0.019 *** | 0.024 *** | 0.095 ** |

Homogeneity of national origin (H) | −0.062 *** | −0.009 | −0.012 ** | −0.011 ** | −0.013 *** | −0.012 *** | −0.010 *** | −0.007 ** | −0.006 * | 0.007 |

Scarcity of men for migrant women (S) | −0.013 *** | 0.010 ** | 0.009 * | 0.003 | −0.002 | −0.005* | 0.003 | −0.002 | 0.012 | 0.011 |

Sex Ratio among natives (X) | −0.167 *** | −0.001 | 0.005 | −0.011 *** | 0.000 | 0.009 | −0.003 | −0.019 ** | −0.047 *** | −0.265 *** |

Spatially Lagged Variables: | ||||||||||

Relative group size | −0.078 | 0.085 | 0.129 | 0.008 | 0.063 * | 0.114 *** | 0.073 *** | 0.024 | −0.004 | −0.024 |

Homogeneity of national origin | −0.049 ** | 0.037 | −0.005 | 0.004 | 0.005 | 0.003 | 0.012 | −0.004 | −0.029 ** | −0.055 |

Scarcity of men for migrant women | −0.070 | 0.056 | 0.060 | −0.032 | 0.013 | 0.037 ** | 0.023 | 0.006 | −0.023 | −0.108 |

Sex Ratio among natives | 0.014 * | 0.000 | 0.002 | 0.001 | 0.008 *** | 0.014 *** | 0.009 *** | 0.002 | 0.005 | 0.023 * |

Constant | 23.703 ** | −4.859 | −3.703 | 1.366 | −1.164 | −3.066 *** | −0.545 | 4.272 *** | 8.824 *** | 31.977 *** |

Pseudo R^{2} | 0.4103 | 0.266 | 0.299 | 0.290 | 0.420 | 0.481 | 0.479 | 0.380 | 0.383 | 0.583 |

SL Pseudo R^{2} | 0.4299 | 0.277 | 0.300 | 0.303 | 0.427 | 0.525 | 0.515 | 0.385 | 0.451 | 0.694 |

Spanish Women with Foreign-National Men: | ||||||||||

Relative group size (G) | 0.033 *** | 0.122 ** | 0.076 *** | −0.015 | −0.002 | 0.020 *** | 0.027 *** | 0.016 *** | 0.023 *** | 0.022 * |

Homogeneity of national origin (H) | −0.048 *** | 0.002 | −0.001 | −0.005 | −0.004 | −0.016 *** | −0.018 *** | −0.014 *** | 0.011 | −0.001 |

Scarcity of women for migrant men (S) | −0.020 *** | 0.031 *** | 0.007 * | −0.012 ** | −0.002 | −0.008 *** | −0.010 *** | −0.008 *** | −0.018 *** | −0.024 ** |

Sex Ratio among natives (X) | −0.258 *** | −0.006 | 0.013 | −0.029 *** | −0.018 ** | −0.016 * | −0.011 | −0.015 | −0.036 ** | −0.246 *** |

Spatially Lagged Variables: | ||||||||||

Relative group size (WG) | 0.073 * | 0.021 | 0.183 ** | −0.031 | 0.076 ** | 0.074 *** | 0.021 | 0.050*** | 0.039 ** | 0.194 *** |

Homogeneity of national origin (WH) | −0.050 | −0.085 | 0.016 | 0.000 | 0.015 | −0.018 | −0.010 | −0.006 | −0.030 * | −0.064 |

Scarcity of women for migrant men (WS) | −0.026 | 0.023 | 0.019 | −0.024 | −0.002 | 0.011 | −0.003 | −0.012 | 0.025 * | 0.023 |

Sex Ratio among natives (WX) | 0.012 | −0.001 | 0.033 ** | 0.002 | 0.010 ** | 0.013 *** | 0.005 | 0.004 | 0.002 | 0.021 |

Constant | 30.986 *** | −1.126 | −10.02 ** | 3.611 * | −0.470 | −2.577 ** | 2.445 * | 3.826 *** | 6.579 *** | 26.838 *** |

Pseudo R^{2} | 0.216 | 0.127 | 0.161 | 0.309 | 0.341 | 0.449 | 0.506 | 0.415 | 0.439 | 0.569 |

SL Pseudo R^{2} | 0.363 | 0.148 | 0.190 | 0.317 | 0.354 | 0.459 | 0.512 | 0.473 | 0.553 | 0.709 |

^{2}: correlation coefficient between the real and estimated dependent variables. SL Pseudo R

^{2}: Pseudo R

^{2}for the model with the spatially lagged variables. Standard errors: Huber/White/sandwich robust variance estimator. Source: Self elaboration based on data from the MNP and “Padrón”.

Size of Municipality | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|

Variables | Total | 0–249 | 250–499 | 500–999 | 1000–2499 | 2500–4999 | 5000–9999 | 10,000–24,999 | 25,000–99,999 | >100,000 |

Spanish Men with Foreign-National Women: | ||||||||||

Relative group size (G) | 0.019 *** | 0.010 | 0.005 | 0.009 *** | 0.013 *** | 0.012 *** | 0.022 *** | 0.018 *** | 0.017 *** | 0.023 *** |

Homogeneity of national origin (H) | −0.004 *** | −2.3 × 10^{−}^{4} | 0.002 | 0.002 | 0.003 ** | 0.001 | 1.0 × 10^{−}^{4} | 0.001 | −0.005 * | 0.006 * |

Scarcity of men for migrant women (S) | 0.006 *** | 0.002 | −2.3 × 10^{−}^{4} | 0.001 | 0.001 | 0.001 | 0.004 *** | 0.004 ** | 0.006 ** | 0.002 |

Sex Ratio among natives (X) | −0.002 | 0.001 | 3.7 × 10^{−}^{4} | 0.010 *** | 0.009 *** | 0.007 ** | 0.006 * | −0.003 | −0.005 | −0.024 *** |

Spatially Lagged Variables: | ||||||||||

Relative group size (WG) | 0.039 *** | 0.054 | −0.081 | 0.008 | 0.052 *** | 0.072 *** | 0.071 *** | 0.057 *** | 0.044 *** | 0.019 |

Homogeneity of national origin (WH) | −0.008 | 0.051 | 0.013 | 0.031 *** | 0.016 *** | 0.004 | 0.011 ** | 0.003 | −0.005 | −0.018 ** |

Scarcity of men for migrant women (WS) | 0.010 ** | 0.007 | 0.022 | −0005 | 0.029 *** | 0.035 *** | 0.030 *** | 0.028 *** | 0.013 | 0.006 |

Sex Ratio among natives (WX) | 0.004 *** | 1.7 × 10^{−}^{4} | −0.015 *** | −0.008 *** | −0.003 ** | 0.002 ** | 0.002 ** | 0.002 | 0.003 ** | 0.004 *** |

Constant | −2.606 *** | −3.240 | 0.059 | −2.459 *** | −3.905 *** | −4.251 *** | −4.371 *** | −2.796 *** | −2.154 *** | 0.467 |

R^{2} | 0.318 | 0.059 | 0.038 | 0.088 | 0.098 | 0.127 | 0.315 | 0.383 | 0.460 | 0.653 |

SL R^{2} | 0.359 | 0.139 | 0.180 | 0.147 | 0.118 | 0.161 | 0.350 | 0.419 | 0.525 | 0.724 |

Spanish Women with Foreign-National Men: | ||||||||||

Relative group size (G) | 0.015 *** | −0.021 | −0.013 | 0.005 | 0.010 *** | 0.013 *** | 0.017 *** | 0.013 *** | 0.016 *** | 0.029 *** |

Homogeneity of national origin (H) | 0.002 * | 0.011 ** | 0.009 ** | 0.002 | 0.005 *** | 0.001 | −0.001 | −0.002 | 0.002 | 0.004 |

Scarcity of women for migrant men (S) | −0.003 *** | −0.005 | −0.002 | −4.9 × 10^{−}^{4} | 0.001 | 0.001 | −2.4 × 10^{−}^{4} | −0.002 ** | −0.005 *** | −1.4 × 10^{−}^{4} |

Sex Ratio among natives (X) | −0.010 *** | 0.002 | 0.004 | 0.004 | 0.003 | 0.006 ** | −0.006 | −0.007 | −0.006 | −0.033 *** |

Spatially Lagged Variables: | ||||||||||

Relative group size (WG) | 0.025 *** | −0.110 | −0.077 | −0.002 | 0.012 | 0.009 | 0.012 * | 0.031 *** | 0.028 *** | 0.003 |

Homogeneity of national origin (WH) | −0.010 ** | −0.061 | −0.014 | 0.007 | 0.013 * | −0.004 | −0.002 | −0.003 | −0.010 | −0.025 *** |

Scarcity of women for migrant men (WS) | 0.001 | −0.006 | −0.008 | 0.016 | −5.3 × 10^{−}^{6} | 0.001 | −0.005 | −0.007 | 0.007 | −0.008 |

Sex Ratio among natives (WX) | 0.004 *** | −0.010 | −0.012 ** | −0.007 ** | −0.005 *** | −0.002 * | −1.5 × 10^{−}^{4} | 0.004 *** | 0.002 | 0.002 |

Constant | −1.224 *** | −3.674 | 1.292 | −1.691 * | −2.213 *** | −2.258 *** | −1.198 * | −1.503 ** | −1.552 * | 2.147 ** |

Pseudo R^{2} | 0.301 | 0.214 | 0.180 | 0.046 | 0.178 | 0.204 | 0.224 | 0.322 | 0.489 | 0.554 |

SL Pseudo R^{2} | 0.364 | 0.329 | 0.304 | 0.131 | 0.220 | 0.245 | 0.253 | 0.394 | 0.554 | 0.686 |

^{2}: R

^{2}for the model without the spatially lagged variables. SL R

^{2}: R

^{2}for the model with the spatially lagged variables. Standard errors: Huber/White/sandwich robust variance estimator. Source: Self elaboration based on data from the MNP and “Padrón”.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Esteve, A.; Chasco, C.; López-Gay, A.
Modeling Local Variations in Intermarriage. *Mathematics* **2022**, *10*, 1106.
https://doi.org/10.3390/math10071106

**AMA Style**

Esteve A, Chasco C, López-Gay A.
Modeling Local Variations in Intermarriage. *Mathematics*. 2022; 10(7):1106.
https://doi.org/10.3390/math10071106

**Chicago/Turabian Style**

Esteve, Albert, Coro Chasco, and Antonio López-Gay.
2022. "Modeling Local Variations in Intermarriage" *Mathematics* 10, no. 7: 1106.
https://doi.org/10.3390/math10071106