Insights into Missense SNPs on Amyloidogenic Proteins
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Amyloidogenic Protein Dataset
2.3. msSNP Dataset
2.4. Prediction of APRs
2.5. Statistical Analysis
2.5.1. Chi Squared Goodness-of-Fit Test
2.5.2. Logistic Regression Analysis
2.5.3. Resampling with Replacement (Bootstrap)
3. Results
3.1. Amyloidogenic Proteins Dataset
3.2. msSNP Dataset
3.3. Analyses of msSNP Properties
3.3.1. Examining the Distribution of Pathogenic msSNPs Within and Outside of the Amyloidogenic Segments
3.3.2. Examining the Relationship Between the Pathogenicity Status of msSNPs and the Change in Biophysical Properties Caused by msSNPs
3.3.3. Examining the Distribution of Residue Substitutions in Relation to the Pathogenicity Status of msSNPs
3.4. Case Study of APP
- Increasing the endogenous tendency of Aβ to aggregate into amyloid fibrils. This is how the substitutions E22Q, E22G, E22K and D23N act [39,40,41,42]. It is noted that these substitutions are replacements of a negatively charged residue by a non-negatively charged residue. In contrast, the substitution E22D that maintains the residue charge is characterized as benign.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| aa | Amino Acid |
| APP | Amyloid Precursor Protein |
| APRs | Aggregation-Prone Regions |
| ISA | International Society of Amyloidoses |
| SNPs | Single-Nucleotide Polymorphisms |
| msSNPs | Missense Single-Nucleotide Polymorphisms |
| AD | Alzheimer’s Disease |
References
- Stefani, M.; Dobson, C.M. Protein Aggregation and Aggregate Toxicity: New Insights into Protein Folding, Misfolding Diseases and Biological Evolution. J. Mol. Med. 2003, 81, 678–699. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27–68. [Google Scholar] [CrossRef]
- Chiti, F.; Webster, P.; Taddei, N.; Clark, A.; Stefani, M.; Ramponi, G.; Dobson, C.M. Designing Conditions for in Vitro Formation of Amyloid Protofilaments and Fibrils. Proc. Natl. Acad. Sci. USA 1999, 96, 3590–3594. [Google Scholar] [CrossRef]
- Wang, W.; Hecht, M.H. Rationally Designed Mutations Convert de Novo Amyloid-like Fibrils into Monomeric Beta-Sheet Proteins. Proc. Natl. Acad. Sci. USA 2002, 99, 2760–2765. [Google Scholar] [CrossRef]
- Teng, P.K.; Eisenberg, D. Short Protein Segments Can Drive a Non-Fibrillizing Protein into the Amyloid State. Protein Eng. Des. Sel. 2009, 22, 531–536. [Google Scholar] [CrossRef]
- Moon, S.P.; Balana, A.T.; Pratt, M.R. Consequences of Posttranslational Modifications on Amyloid Proteins as Revealed by Protein Semi-Synthesis. Curr. Opin. Chem. Biol. 2021, 64, 76–89. [Google Scholar] [CrossRef]
- Collins, F.S.; Brooks, L.D.; Chakravarti, A. A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation. Genome Res. 1998, 8, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Brookes, A.J. The Essence of SNPs. Gene 1999, 234, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential Etiologic and Functional Implications of Genome-Wide Association Loci for Human Diseases and Traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Brouwers, N.; Benilova, I.; Vandersteen, A.; Mercken, M.; Van Laere, K.; Van Damme, P.; Demedts, D.; Van Leuven, F.; Sleegers, K.; et al. Amyloid Precursor Protein Mutation E682K at the Alternative β-Secretase Cleavage β’-Site Increases Aβ Generation. EMBO Mol. Med. 2011, 3, 291–302. [Google Scholar] [CrossRef]
- Tamaoka, A.; Odaka, A.; Ishibashi, Y.; Usami, M.; Sahara, N.; Suzuki, N.; Nukina, N.; Mizusawa, H.; Shoji, S.; Kanazawa, I. APP717 Missense Mutation Affects the Ratio of Amyloid Beta Protein Species (A Beta 1-42/43 and a Beta 1-40) in Familial Alzheimer’s Disease Brain. J. Biol. Chem. 1994, 269, 32721–32724. [Google Scholar] [CrossRef]
- Yamamoto, S.; Okada, M.; Tsujikawa, M.; Shimomura, Y.; Nishida, K.; Inoue, Y.; Watanabe, H.; Maeda, N.; Kurahashi, H.; Kinoshita, S.; et al. A Kerato-Epithelin (Betaig-H3) Mutation in Lattice Corneal Dystrophy Type IIIA. Am. J. Hum. Genet. 1998, 62, 719–722. [Google Scholar] [CrossRef]
- Martin, D.D.O.; Kay, C.; Collins, J.A.; Nguyen, Y.T.; Slama, R.A.; Hayden, M.R. A Human Huntingtin SNP Alters Post-Translational Modification and Pathogenic Proteolysis of the Protein Causing Huntington Disease. Sci. Rep. 2018, 8, 8096. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Falk, R.H. Amyloidosis. Postgrad. Med. J. 2001, 77, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Varrà, G.G.; Porcari, A.; Saro, R.; Pagura, L.; Lalario, A.; Dore, F.; Bussani, R.; Sinagra, G.; Merlo, M. Re-Definition of the Epidemiology of Cardiac Amyloidosis. Biomedicines 2022, 10, 1566. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amyloid Nomenclature 2022: Update, Novel Proteins, and Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022, 29, 213–219. [Google Scholar] [CrossRef]
- Nastou, K.C.; Nasi, G.I.; Tsiolaki, P.L.; Litou, Z.I.; Iconomidou, V.A. AmyCo: The Amyloidoses Collection. Amyloid 2019, 26, 112–117. [Google Scholar] [CrossRef]
- UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI Database of Genetic Variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A Hub for Data Retrieval across Taxonomic Space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Tsolis, A.C.; Papandreou, N.C.; Iconomidou, V.A.; Hamodrakas, S.J. A Consensus Method for the Prediction of “aggregation-Prone” Peptides in Globular Proteins. PLoS ONE 2013, 8, e54175. [Google Scholar] [CrossRef]
- Egge, N.; Muthusubramanian, A.; Cornwall, G.A. Amyloid Properties of the Mouse Egg Zona Pellucida. PLoS ONE 2015, 10, e0129907. [Google Scholar] [CrossRef]
- Louros, N.N.; Bolas, G.M.P.; Tsiolaki, P.L.; Hamodrakas, S.J.; Iconomidou, V.A. Intrinsic Aggregation Propensity of the CsgB Nucleator Protein Is Crucial for Curli Fiber Formation. J. Struct. Biol. 2016, 195, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Branden, C.I.; Tooze, J. Introduction to Protein Structure; Garland Science: New York, NY, USA, 2012. [Google Scholar]
- Greenwood, P.E.; Nikulin, M.S. A Guide to Chi-Squared Testing; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- McCullagh, P. Generalized Linear Models; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Henderson, A.R. The Bootstrap: A Technique for Data-Driven Statistics. Using Computer-Intensive Analyses to Explore Experimental Data. Clin. Chim. Acta 2005, 359, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.W.F. The Measure of Association in a 2 × 2 Table. R. Stat. Society. Journal. Ser. A Gen. 1963, 126, 109–114. [Google Scholar] [CrossRef]
- Blancas-Mejia, L.M.; Misra, P.; Dick, C.J.; Cooper, S.A.; Redhage, K.R.; Bergman, M.R.; Jordan, T.L.; Maar, K.; Ramirez-Alvarado, M. Immunoglobulin Light Chain Amyloid Aggregation. Chem. Commun. 2018, 54, 10664–10674. [Google Scholar] [CrossRef]
- Mak, T.W.; Saunders, M.E. The Immune Response: Basic and Clinical Principles; Academic Press: Burlington, MA, USA, 2005. [Google Scholar]
- Selkoe, D.J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 2001, 81, 741–766. [Google Scholar] [CrossRef]
- Wildburger, N.C.; Esparza, T.J.; LeDuc, R.D.; Fellers, R.T.; Thomas, P.M.; Cairns, N.J.; Kelleher, N.L.; Bateman, R.J.; Brody, D.L. Diversity of Amyloid-Beta Proteoforms in the Alzheimer’s Disease Brain. Sci. Rep. 2017, 7, 9520. [Google Scholar] [CrossRef]
- Jarrett, J.T.; Berger, E.P.; Lansbury, P.T. The Carboxy Terminus of the Beta Amyloid Protein Is Critical for the Seeding of Amyloid Formation: Implications for the Pathogenesis of Alzheimer’s Disease. Biochemistry 1993, 32, 4693–4697. [Google Scholar] [CrossRef]
- Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; et al. A Mutation in APP Protects against Alzheimer’s Disease and Age-Related Cognitive Decline. Nature 2012, 488, 96–99. [Google Scholar] [CrossRef]
- Di Fede, G.; Catania, M.; Morbin, M.; Rossi, G.; Suardi, S.; Mazzoleni, G.; Merlin, M.; Giovagnoli, A.R.; Prioni, S.; Erbetta, A.; et al. A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis. Science 2009, 323, 1473–1477. [Google Scholar] [CrossRef]
- Hendriks, L.; van Duijn, C.M.; Cras, P.; Cruts, M.; Van Hul, W.; van Harskamp, F.; Warren, A.; McInnis, M.G.; Antonarakis, S.E.; Martin, J.J. Presenile Dementia and Cerebral Haemorrhage Linked to a Mutation at Codon 692 of the Beta-Amyloid Precursor Protein Gene. Nat. Genet. 1992, 1, 218–221. [Google Scholar] [CrossRef]
- Bugiani, O.; Giaccone, G.; Rossi, G.; Mangieri, M.; Capobianco, R.; Morbin, M.; Mazzoleni, G.; Cupidi, C.; Marcon, G.; Giovagnoli, A.; et al. Hereditary Cerebral Hemorrhage with Amyloidosis Associated with the E693K Mutation of APP. Arch. Neurol. 2010, 67, 987–995. [Google Scholar] [CrossRef]
- Grabowski, T.J.; Cho, H.S.; Vonsattel, J.P.; Rebeck, G.W.; Greenberg, S.M. Novel Amyloid Precursor Protein Mutation in an Iowa Family with Dementia and Severe Cerebral Amyloid Angiopathy. Ann. Neurol. 2001, 49, 697–705. [Google Scholar] [CrossRef]
- Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C.B.; Condron, M.M.; Axelman, K.; Forsell, C.; Stenh, C.; Luthman, J.; Teplow, D.B.; Younkin, S.G.; et al. The “Arctic” APP Mutation (E693G) Causes Alzheimer’s Disease by Enhanced Abeta Protofibril Formation. Nat. Neurosci. 2001, 4, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, T.; Ghiso, J.; Frangione, B. Peptides Homologous to the Amyloid Protein of Alzheimer’s Disease Containing a Glutamine for Glutamic Acid Substitution Have Accelerated Amyloid Fibril Formation. Biochem. Biophys. Res. Commun. 1991, 179, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Ancolio, K.; Dumanchin, C.; Barelli, H.; Warter, J.M.; Brice, A.; Campion, D.; Frébourg, T.; Checler, F. Unusual Phenotypic Alteration of Beta Amyloid Precursor Protein (betaAPP) Maturation by a New Val-715 --> Met betaAPP-770 Mutation Responsible for Probable Early-Onset Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 1999, 96, 4119–4124. [Google Scholar] [CrossRef] [PubMed]
- De Jonghe, C.; Esselens, C.; Kumar-Singh, S.; Craessaerts, K.; Serneels, S.; Checler, F.; Annaert, W.; Van Broeckhoven, C.; De Strooper, B. Pathogenic APP Mutations near the Gamma-Secretase Cleavage Site Differentially Affect Abeta Secretion and APP C-Terminal Fragment Stability. Hum. Mol. Genet. 2001, 10, 1665–1671. [Google Scholar] [CrossRef]
- Eckman, C.B.; Mehta, N.D.; Crook, R.; Perez-tur, J.; Prihar, G.; Pfeiffer, E.; Graff-Radford, N.; Hinder, P.; Yager, D.; Zenk, B.; et al. A New Pathogenic Mutation in the APP Gene (I716V) Increases the Relative Proportion of A Beta 42(43). Hum. Mol. Genet. 1997, 6, 2087–2089. [Google Scholar] [CrossRef]
- Jiao, B.; Tang, B.; Liu, X.; Xu, J.; Wang, Y.; Zhou, L.; Zhang, F.; Yan, X.; Zhou, Y.; Shen, L. Mutational Analysis in Early-Onset Familial Alzheimer’s Disease in Mainland China. Neurobiol. Aging 2014, 35, e1–e6. [Google Scholar] [CrossRef]
- Kumar-Singh, S.; De Jonghe, C.; Cruts, M.; Kleinert, R.; Wang, R.; Mercken, M.; De Strooper, B.; Vanderstichele, H.; Löfgren, A.; Vanderhoeven, I.; et al. Nonfibrillar Diffuse Amyloid Deposition Due to a Gamma(42)-Secretase Site Mutation Points to an Essential Role for N-Truncated A Beta(42) in Alzheimer’s Disease. Hum. Mol. Genet. 2000, 9, 2589–2598. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, S.F.; Wang, R.; Grimm, H.; Uljon, S.N.; Masters, C.L.; Beyreuther, K. Mechanism of the Cleavage Specificity of Alzheimer’s Disease Gamma-Secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein. Proc. Natl. Acad. Sci. USA 1999, 96, 3053–3058. [Google Scholar] [CrossRef]
- Pasalar, P.; Najmabadi, H.; Noorian, A.R.; Moghimi, B.; Jannati, A.; Soltanzadeh, A.; Krefft, T.; Crook, R.; Hardy, J. An Iranian Family with Alzheimer’s Disease Caused by a Novel APP Mutation (Thr714Ala). Neurology 2002, 58, 1574–1575. [Google Scholar] [CrossRef]
- Suzuki, R.; Takahashi, H.; Yoshida, C.; Hidaka, M.; Ogawa, T.; Futai, E. Specific Mutations near the Amyloid Precursor Protein Cleavage Site Increase γ-Secretase Sensitivity and Modulate Amyloid-β Production. Int. J. Mol. Sci. 2023, 24, 3970. [Google Scholar] [CrossRef]
- Canet, D.; Last, A.M.; Tito, P.; Sunde, M.; Spencer, A.; Archer, D.B.; Redfield, C.; Robinson, C.V.; Dobson, C.M. Local Cooperativity in the Unfolding of an Amyloidogenic Variant of Human Lysozyme. Nat. Struct. Biol. 2002, 9, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, S.; Guglielmi, F.; Giorgetti, S.; Di Gaetano, S.; Arciello, A.; Monti, D.M.; Relini, A.; Nichino, D.; Doglia, S.M.; Natalello, A.; et al. Effects of the Known Pathogenic Mutations on the Aggregation Pathway of the Amyloidogenic Peptide of Apolipoprotein A-I. J. Mol. Biol. 2011, 407, 465–476. [Google Scholar] [CrossRef]
- Pedersen, J.S.; Christensen, G.; Otzen, D.E. Modulation of S6 Fibrillation by Unfolding Rates and Gatekeeper Residues. J. Mol. Biol. 2004, 341, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Seuma, M.; Faure, A.J.; Badia, M.; Lehner, B.; Bolognesi, B. The Genetic Landscape for Amyloid Beta Fibril Nucleation Accurately Discriminates Familial Alzheimer’s Disease Mutations. Elife 2021, 10, e63364. [Google Scholar] [CrossRef]
- Rousseau, F.; Serrano, L.; Schymkowitz, J.W.H. How Evolutionary Pressure against Protein Aggregation Shaped Chaperone Specificity. J. Mol. Biol. 2006, 355, 1037–1047. [Google Scholar] [CrossRef]
- Dey, P.; Biswas, P. Relaxation Dynamics Measure the Aggregation Propensity of Amyloid-β and Its Mutants. J. Chem. Phys. 2023, 158, 105101. [Google Scholar] [CrossRef]
- López De La Paz, M.; Goldie, K.; Zurdo, J.; Lacroix, E.; Dobson, C.M.; Hoenger, A.; Serrano, L. De Novo Designed Peptide-Based Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2002, 99, 16052–16057. [Google Scholar] [CrossRef]
- Barnes, M.R.; Gray, I.C. Bioinformatics for Geneticists; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ramazi, S.; Zahiri, J. Post-Translational Modifications in Proteins: Resources, Tools and Prediction Methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef] [PubMed]
- Bogan, A.A.; Thorn, K.S. Anatomy of Hot Spots in Protein Interfaces. J. Mol. Biol. 1998, 280, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-M.; Du, Q.-S.; Meng, J.-Z.; Pang, Z.-W.; Huang, R.-B. The Multiple Roles of Histidine in Protein Interactions. Chem. Cent. J. 2013, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Mrabet, N.T.; Van den Broeck, A.; Van den Brande, I.; Stanssens, P.; Laroche, Y.; Lambeir, A.M.; Matthijssens, G.; Jenkins, J.; Chiadmi, M.; van Tilbeurgh, H. Arginine Residues as Stabilizing Elements in Proteins. Biochemistry 1992, 31, 2239–2253. [Google Scholar] [CrossRef]
- White, K.A.; Ruiz, D.G.; Szpiech, Z.A.; Strauli, N.B.; Hernandez, R.D.; Jacobson, M.P.; Barber, D.L. Cancer-Associated Arginine-to-Histidine Mutations Confer a Gain in pH Sensing to Mutant Proteins. Sci. Signal. 2017, 10, eaam9931. [Google Scholar] [CrossRef]
- Tedeschi, G.; Mangiagalli, M.; Chmielewska, S.; Lotti, M.; Natalello, A.; Brocca, S. Aggregation Properties of a Disordered Protein Are Tunable by pH and Depend on Its Net Charge per Residue. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2543–2550. [Google Scholar] [CrossRef]
- Santos, J.; Iglesias, V.; Santos-Suárez, J.; Mangiagalli, M.; Brocca, S.; Pallarès, I.; Ventura, S. pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells 2020, 9, 145. [Google Scholar] [CrossRef]
- Bajaj, K.; Madhusudhan, M.S.; Adkar, B.V.; Chakrabarti, P.; Ramakrishnan, C.; Sali, A.; Varadarajan, R. Stereochemical Criteria for Prediction of the Effects of Proline Mutations on Protein Stability. PLoS Comput. Biol. 2007, 3, e241. [Google Scholar] [CrossRef]
- MacArthur, M.W.; Thornton, J.M. Influence of Proline Residues on Protein Conformation. J. Mol. Biol. 1991, 218, 397–412. [Google Scholar] [CrossRef]
- De Baets, G.; Schymkowitz, J.; Rousseau, F. Predicting Aggregation-Prone Sequences in Proteins. Essays Biochem. 2014, 56, 41–52. [Google Scholar] [CrossRef]
- Mahler, H.-C.; Friess, W.; Grauschopf, U.; Kiese, S. Protein Aggregation: Pathways, Induction Factors and Analysis. J. Pharm. Sci. 2009, 98, 2909–2934. [Google Scholar] [CrossRef]
- Corsi, A.; Bombieri, C.; Valenti, M.T.; Romanelli, M.G. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int. J. Mol. Sci. 2022, 23, 15383. [Google Scholar] [CrossRef] [PubMed]
- Alquezar, C.; Arya, S.; Kao, A.W. Tau Post-Translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front. Neurol. 2021, 11, 595532. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Kelleher, N.L. Proteoform: A Single Term Describing Protein Complexity. Nat. Methods 2013, 10, 186–187. [Google Scholar] [CrossRef] [PubMed]




| Protein Name | Source |
|---|---|
| Apolipoprotein A-I | ISA & AmyCo |
| Apolipoprotein A-II | ISA & AmyCo |
| Apolipoprotein A-IV | ISA & AmyCo |
| Apolipoprotein C-II | ISA & AmyCo |
| Apolipoprotein C-III | ISA & AmyCo |
| Amyloid-beta A4 protein | ISA & AmyCo |
| Beta-2-microglobulin | ISA & AmyCo |
| Calcitonin | ISA & AmyCo |
| Corneodesmosin | ISA & AmyCo |
| Cystatin-C | ISA & AmyCo |
| Fibrinogen alpha chain | ISA & AmyCo |
| Gelsolin | ISA & AmyCo |
| Islet amyloid polypeptide | ISA & AmyCo |
| Insulin | ISA & AmyCo |
| Integral membrane protein 2B | ISA & AmyCo |
| Leukocyte cell-derived chemotaxin-2 | ISA & AmyCo |
| Lactotransferrin | ISA & AmyCo |
| Lysozyme C | ISA & AmyCo |
| Microtubule-associated protein tau | ISA & AmyCo |
| Lactadherin | ISA & AmyCo |
| Natriuretic peptides A | ISA & AmyCo |
| Odontogenic ameloblast-associated protein | ISA & AmyCo |
| Prolactin | ISA & AmyCo |
| Major prion protein | ISA & AmyCo |
| Serum amyloid A-1 protein | ISA & AmyCo |
| Serum amyloid A-2 protein | ISA & AmyCo |
| Semenogelin-1 | ISA & AmyCo |
| Alpha-synuclein | ISA & AmyCo |
| Transforming growth factor-beta-induced protein ig-h3 | ISA & AmyCo |
| Transthyretin | ISA & AmyCo |
| Cathepsin K | ISA |
| EGF-containing fibulin-like extracellular matrix protein 1 | ISA |
| Pro-glucagon | ISA |
| Interleukin-1 receptor antagonist protein | ISA |
| Parathyroid hormone | ISA |
| Pulmonary surfactant-associated protein C | ISA |
| Somatostatin | ISA |
| Transmembrane protein 106B | ISA |
| Actin, cytoplasmic 1 | AmyCo |
| Actin, cytoplasmic 2 | AmyCo |
| Dysferlin | AmyCo |
| Huntingtin | AmyCo |
| Keratin, type II cytoskeletal 1 | AmyCo |
| Keratin, type I cytoskeletal 14 | AmyCo |
| Keratin, type II cytoskeletal 5 | AmyCo |
| Laminin subunit alpha-1 | AmyCo |
| Galectin-7 | AmyCo |
| Superoxide dismutase [Cu-Zn] | AmyCo |
| Dataset\Clinical Significance | Pathogenic | Benign | Unclassified | Total |
|---|---|---|---|---|
| Complete | 1003 | 495 | 13,823 | 15,321 |
| Disease–msSNP | 442 | - | - | 442 |
| APRs-msSNP | 230 | 96 | 2588 | 2914 |
| Disease and APRs-msSNP | 120 | - | - | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanis, F.P.; Apostolakou, A.E.; Nasi, G.I.; Litou, Z.I.; Iconomidou, V.A. Insights into Missense SNPs on Amyloidogenic Proteins. Proteomes 2025, 13, 64. https://doi.org/10.3390/proteomes13040064
Galanis FP, Apostolakou AE, Nasi GI, Litou ZI, Iconomidou VA. Insights into Missense SNPs on Amyloidogenic Proteins. Proteomes. 2025; 13(4):64. https://doi.org/10.3390/proteomes13040064
Chicago/Turabian StyleGalanis, Fotios P., Avgi E. Apostolakou, Georgia I. Nasi, Zoi I. Litou, and Vassiliki A. Iconomidou. 2025. "Insights into Missense SNPs on Amyloidogenic Proteins" Proteomes 13, no. 4: 64. https://doi.org/10.3390/proteomes13040064
APA StyleGalanis, F. P., Apostolakou, A. E., Nasi, G. I., Litou, Z. I., & Iconomidou, V. A. (2025). Insights into Missense SNPs on Amyloidogenic Proteins. Proteomes, 13(4), 64. https://doi.org/10.3390/proteomes13040064

