Surface Modification of Polyethersulfone (PES) with UV Photo-Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. UV Photo-Oxidation
2.3. X-ray Photoelectron Spectroscopy (XPS)
2.4. Contact Angle (CA) Goniometry
2.5. Surface Topography
3. Results
3.1. Quantitative XPS and Water Contact Angle
3.2. XPS Chemical State Analysis
3.3. Surface Topography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSV Adv. 2018, 8, 22710–22728. [Google Scholar] [CrossRef] [Green Version]
- Ran, F.; Li, J.; Wang, L.; Nie, S.; Song, H.; Zhao, L. A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers. Mater. Sci. Eng. C 2014, 37, 68–75. [Google Scholar] [CrossRef]
- Ji, H.-F.; He, C.; Wang, R.; Xiong, L.; Zhao, W.-F. Multifunctional polyethersulfone membranes with networked submicrogels to improved antifouling property, antibacterial adhesion and blood compatability. Mater. Sci. Eng. C. 2019, 96, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Giwa, A.; Hasan, S.W. Nucleophilic-functionalized ß-cyclodextrin-polyethersulfone structures from facile lamination process as nanoporous membrane active layers for wastewater post-treatment: Molecular implications. J. Membr. Sci. 2018, 563, 914–925. [Google Scholar] [CrossRef]
- Kilduff, J.E.; Mattaraj, S.; Pieracci, J.P.; Belfort, G. Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter. Desalination 2000, 132, 133–142. [Google Scholar] [CrossRef]
- He, D.; Susanto, H.; Ulbricht, M. Photo-irradiation for preparation, modification, and stimulation of polymeric membranes. Prog. Polym. Sci. 2009, 34, 62–98. [Google Scholar]
- Rahimpour, A. UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 2011, 265, 93–101. [Google Scholar]
- Lutondo, S.; Turo, M.; Sachdev, S.; Shertok, J.; Bailey, A.; Mehan, M.; Gupta, S.K.; Takacs, G.A. Surface modification of polyethersulfone (PES) with ozone. Ozone Sci. Eng. 2019, 41, 448–453. [Google Scholar]
- Calvert, J.G.; Pitts, J.N. Photochemistry; John Wiley & Sons: New York, NY, USA, 1966; pp. 206–207. [Google Scholar]
- Okabe, H. Photochemistry of Small Molecules; John Wiley & Sons: New York, NY, USA, 1978; p. 179. [Google Scholar]
- Hess, H. Ozone conflict rages. Chem. Eng. News 2014, 92, 24–25. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers; John Wiley & Sons: Chichester/West Sussex, UK, 1991. [Google Scholar]
- Munro, H.S.; Clark, D.T. An ESCA investigation of the surface photo-oxidation of polyethersulphone. Polym. Degrad. Stabil. 1985, 1, 225–231. [Google Scholar]
- Liu, S.K.; Kim, J.-T. Characterization of surface modification of polyethersulfone membrane. J. Adhes Sci. Technol. 2012, 25, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Rivaton, A.; Gardette, J.L. Photodegradation of polyethersulfone and polysulfone. Polym. Degrad. Stabil. 1999, 66, 385–403. [Google Scholar] [CrossRef]
- Norrman, K.; Kingshott, P.; Kaeselev, B.; Ghanbari-Siahkali, A. Photodegradation of poly(ether sulfone) Part 1. A time-of-flight secondary ion mass spectrometry study. Surf. Interface Sci. 2004, 36, 1533–1541. [Google Scholar] [CrossRef]
- Besharat, F.; Manteghian, M.; Russo, F.; Galiano, F.; Figoli, A.; Abdollahi, M.; Lazzeri, A. Investigation of electric field-aligned edge-oxidized graphene oxide nanoplatelets in polyethersulfone matrix in terms of pure water permeation and dye rejection. Polym. Adv. Technol. 2021, 32, 1531–1547. [Google Scholar] [CrossRef]
- Behdarvand, F.; Valamohammadi, E.; Tofighy, M.A.; Mohammadi, T. Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J. Environ. Chem. Eng. 2021, 9, 104650–104663. [Google Scholar] [CrossRef]
- Besharat, F.; Manteghian, M.; Gallone, G.; Lazzeri, A. Electric field induced alignment of graphene oxide nanoplatelets in polyethersulfone matrix. Nanotechnology 2020, 31, 155701–155716. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.W.; Dey, B.; Al Saidi, A.K.A.; Choudhury, A. Functionalized-graphene reinforced polyethersulfone nanocomposites with improved physical and mechanical properties. Polym. Compos. 2020, 41, 4104–4116. [Google Scholar] [CrossRef]
- Suhartono, J.; Pertiwi, D.S.; Noersalim, C.; Yulianingsih, D.; Sofianti, F.; Saptoro, A.; Chafidz, A. Characteristics and performances of blended polyethersulfone and carbon-based nanomaterial membranes: Effect of nanomaterial types and air exposure. Chem. Eng. Technol. 2020, 43, 1630–1637. [Google Scholar] [CrossRef]
- Gumbi, N.N.; Li, J.; Mamba, B.B.; Nxumalo, E.N. Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/sulfonated polysulfone/O-MWCNT supports. Desalination 2020, 474, 114176–114189. [Google Scholar] [CrossRef]
- Mulyati, S.; Muchtar, S.; Arahman, N.; Meirisa, F.; Syamsuddin, Y.; Zuhra, Z.; Rosnelly, C.M.; Shamsuddin, N.; Nawi, N.I.M.; Wirzal, M.D.H.; et al. One-pot polymerization of dopamine as an additive to enhance permeability and antifouling properties of polyethersulfone membrane. Polymers 2020, 12, 1807–1820. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Sanchez, A.; Jalvo, B.; Mautner, A.; Nameer, S.; Poehler, T.; Tammelin, T.; Mathew, A.P. Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. J. Membr. Sci. 2021, 620, 118842–118851. [Google Scholar] [CrossRef]
Binding Energy (eV) | Species | Treatment Time (min) | |||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 30 | 60 | ||
284.7 | C-C aromatic ring (1) | 63.5 | 60.0 | 59.0 | 58.4 | 59.1 | 59.9 |
285.3 | C-S (2) | 15.8 | 15.8 | 15.6 | 16.6 | 15.1 | 15.9 |
286.3 | C-O (3), C-O | 14.8 | 17.6 | 17.6 | 18.2 | 19.3 | 20.9 |
287.0 | C=O | 0 | 1.0 | 1.7 | 1.4 | 1.2 | 1.3 |
288.6 | O-C=O | 0 | 0.5 | 0.5 | 0.6 | 0.5 | 0.5 |
289.1 | O=C-OH | 0 | 1.7 | 2.0 | 2.0 | 2.3 | 1.7 |
289.8 | O-(C=O)-O, O=C-O-C=O | 0 | 0.4 | 0.4 | 0.5 | 0.4 | 0.2 |
291.5 | Energy loss peak | 5.9 | 3.0 | 3.3 | 2.3 | 2.0 | 1.6 |
Binding Energy (eV) | Species | Treatment Time (min) | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 30 | 60 | ||
284.7 | C-C aromatic ring (1) | 64.9 | 60.0 | 58.7 | 58.6 | 58.0 |
285.3 | C-S (2) | 15.8 | 16.1 | 16.1 | 16.2 | 15.9 |
286.3 | C-O (3), C-O | 14.4 | 17.4 | 18.3 | 18.5 | 19.7 |
287.0 | C=O | 0 | 1.4 | 1.5 | 1.2 | 1.1 |
288.6 | O-C=O | 0 | 0.4 | 0.5 | 0.4 | 0.4 |
289.1 | O=C-OH | 0 | 0.9 | 1.8 | 1.9 | 2.4 |
289.8 | O-(C=O)-O, O=C-O-C=O | 0 | 0.3 | 0.4 | 0.4 | 0.5 |
291.5 | Energy loss peak | 4.9 | 3.5 | 2.7 | 2.8 | 2.0 |
Binding Energy (eV) | Species | Treatment Time (min) | |||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 30 | 60 | ||
531.6 | O=S (1) | 67.2 | 42.8 | 39.1 | 40.0 | 43.3 | 42.8 |
532.2 | O*=C-O, O*=C-OH | 0 | 19.2 | 19.4 | 19.8 | 22.0 | 24.8 |
533.3 | (ring) C-O-C (ring) (2), C-O, O=C-O* | 32.8 | 38.0 | 41.5 | 40.2 | 34.8 | 32.9 |
Binding Energy (eV) | Species | Treatment Time (min) | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 30 | 60 | ||
531.6 | O=S (1) | 66.6 | 45.4 | 46.0 | 42.2 | 40.7 |
532.2 | O*=C-O, O*=C-OH | 0 | 19.0 | 19.2 | 21.8 | 24.1 |
533.3 | (ring) C-O-C (ring) (2), C-O, O=C-O* | 33.4 | 35.6 | 34.8 | 36.0 | 35.2 |
Binding Energy (eV) | Species | Treatment Time (min) | |||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 30 | 60 | ||
167.6 | O=S S 2p3/2 | 66.4 | 64.2 | 63.7 | 63.6 | 50.9 | 38.5 |
168.8 | O=S S 2p1/2 | 33.2 | 32.1 | 31.9 | 31.8 | 25.5 | 19.3 |
168.6 | Sulphonate, Sulphate S 2p3/2 | 0 | 2.5 | 2.9 | 3.5 | 15.8 | 28.1 |
169.8 | Sulphonate, Sulphate S 2p1/2 | 0 | 1.3 | 1.5 | 1.8 | 7.9 | 14.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisse, I.; Oakes, S.; Sachdev, S.; Toro, M.; Lutondo, S.; Shedden, D.; Atkinson, K.M.; Shertok, J.; Mehan, M.; Gupta, S.K.; et al. Surface Modification of Polyethersulfone (PES) with UV Photo-Oxidation. Technologies 2021, 9, 36. https://doi.org/10.3390/technologies9020036
Cisse I, Oakes S, Sachdev S, Toro M, Lutondo S, Shedden D, Atkinson KM, Shertok J, Mehan M, Gupta SK, et al. Surface Modification of Polyethersulfone (PES) with UV Photo-Oxidation. Technologies. 2021; 9(2):36. https://doi.org/10.3390/technologies9020036
Chicago/Turabian StyleCisse, Ibrahim, Sarah Oakes, Shreen Sachdev, Marc Toro, Shin Lutondo, Devon Shedden, Kristen Margaret Atkinson, Joel Shertok, Michael Mehan, Surendra K. Gupta, and et al. 2021. "Surface Modification of Polyethersulfone (PES) with UV Photo-Oxidation" Technologies 9, no. 2: 36. https://doi.org/10.3390/technologies9020036
APA StyleCisse, I., Oakes, S., Sachdev, S., Toro, M., Lutondo, S., Shedden, D., Atkinson, K. M., Shertok, J., Mehan, M., Gupta, S. K., & Takacs, G. A. (2021). Surface Modification of Polyethersulfone (PES) with UV Photo-Oxidation. Technologies, 9(2), 36. https://doi.org/10.3390/technologies9020036