Aerodynamic Testing of Helicopter Side Intake Retrofit Modifications
Abstract
:1. Introduction
2. Experimental Testing
2.1. Model Installation
2.2. Geometric Variations
2.3. Test Parameter
2.4. Five-Hole Pressure Probe Measurement
3. Intake Characteristics
4. Results and Discussions
4.1. AIP Coefficients, Retrofit Modifications
4.2. AIP Detail Investigation of Best Retrofit Modifications
4.3. Static Pressure Measurements
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AIP | Aerodynamik interface plane |
ATHENAI | Aerodynamik Testing of Helicopter Novel Air Intakes |
DC60 | Distortion coefficient, lowest total pressure 60 deg sector in AIP |
less mean AIP total pressure, divided by AIP mean dynamic head | |
TUM-AER | Chair of Aerodynamics and Fluid Mechanics of the Technical University of Munich |
EID | Engine intake duct |
EPC | Engine plenum chamber |
IGV | intake guide vane, retrofit modification |
RSP | Rear spoiler, retrofit modification |
ISA | International standard atmosphere |
W/T | Wind tunnel |
References
- Grawunder, M.; Ress, R.; Breitsamter, C.; Adams, N.A. Flow characteristics of a helicopter fuselage configuration including a rotating rotor head. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012; pp. 1–14. [Google Scholar]
- Seddon, J.; Goldsmith, E.L. Intake Aerodynamics, 1st ed.; Collins Professional and Technical Books: London, UK, 1985. [Google Scholar]
- Bissinger, N.C.; Breuer, T. Basic principles—Gas turbine compatibility—Intake aerodynamic aspects. In Encyclopedia of Aerospace Engineering, 1st ed.; Wiley: New York, NY, USA, 2010; Volume 8, pp. 2–5. [Google Scholar] [CrossRef]
- Laruelle, G. AIR intakes: Role, constraints and design. In Proceedings of the 23th Congress of the International Council of the Aeronautical Sciences, Toronto, ON, Canada, 8–13 September 2002; pp. 1–16. [Google Scholar]
- Sóbester, A. Tradeoffs in jet inlet design: A historical perspective. J. Aircr. 2007, 44, 705–717. [Google Scholar] [CrossRef]
- Heise, R.; Meyer, C.J.; von Backström, T.W. Evaluation of helicopter intakes in the presence of a rotor. In Proceedings of the 32th European Rotorcraft Forum, Maastricht, The Netherlands, 12–14 September 2006. [Google Scholar]
- Bojdo, N.; Filippone, A. Performance prediction of inlet barrier filter systems. J. Aircr. 2011, 48, 1903–1912. [Google Scholar] [CrossRef]
- Bojdo, N.; Filippone, A. Comparative study of helicopter engine particle separators. J. Aircr. 2014, 51, 1030–1042. [Google Scholar] [CrossRef]
- Pagnano, G.; Ballard, J. Development and testing of the a129 air intake. In Proceedings of the Ninth European Rotorcraft Forum, Stresa, Italy, 13–15 September 1983. [Google Scholar]
- Vuillet, A. Aerodynamic design of engine air intakes for improved performance. In Proceedings of the Sixth European Rotorcraft and Powered Lift Aircraft Forum, Bristol, UK, 16–19 September 1980. [Google Scholar]
- Ahn, G.B.; Jung, K.Y.; Myong, R.S. Numerical and experimental investigation of ice accretion on rotorcraft engine air intake. J. Aircr. 2015, 52, 903–909. [Google Scholar] [CrossRef]
- De Bruin, A.C.; Fatigati, G.; Shin, H.B. Kai surion helicopter full-scale air intake testing at CIRA icing wind tunnel. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea, 25–30 September 2016. [Google Scholar]
- Knoth, F.; Breitsamter, C. Aerodynamic characteristics of helicopter engine side air intakes. Aircr. Eng. Aerosp. Technol. 2017. under review. [Google Scholar]
- Knoth, F.; Breitsamter, C. Flow analysis of a helicopter engine side air intake. J. Propuls. Power 2017, 0, 1–15. [Google Scholar] [CrossRef]
- Bebesel, M.; D’Alascio, A.; Schneider, S.; Guenther, S.; Vogel, F.; Wehle, C.; Schimke, D. Bluecopter demonstrator—An approach to eco-efficient helicopter design. In Proceedings of the 41st European Rotorcraft Forum, Munich, Germany, 1–4 September 2015. [Google Scholar]
- Knoth, F.; Breitsamter, C. Aerodynamic testing of helicopter novel air intakes. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences, Daejon, Korea, 25–30 September 2016; pp. 1–13. [Google Scholar]
- Fassl, F.; You, J.H.; Breitsamter, C. Wirkscheibenmodellierung des hubschrauber-hauptrotors hinsichtlich des einflusses auf den fenestronlärm. Semester Thesis, Chair of Aerodynamics and Fluid Mechanics, Technische Universität München, Munich, Germany, 2015. [Google Scholar]
- Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 2nd ed.; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Vogel, F. Aerodynamische analysen an helikopter zellen-ausleger konfigurationen. dissertation, Technische Universität München, Munich, Germany, 2016. [Google Scholar]
- Liao, C.C.; Liou, T.L. Flows in a curved combustor inlet with and without a guide vane. J. Propuls. Power 1995, 11, 464–472. [Google Scholar] [CrossRef]
- Bräunling, W.J.G. Flugzeugtriebwerke, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Braithwaite, W.M.; Soedert, R.H. Combined pressure and temperature distortion effects. J. Aircr. 1980, 17, 468–472. [Google Scholar] [CrossRef]
- Johansen, E.S.; Rediniotis, O.K.; Jones, G. The compressible calibration of miniature multi-hole probes. J. Fluids Eng. 2001, 123, 128–138. [Google Scholar] [CrossRef]
- Roesch, P. Aerodynamic design of the aerospatiale SA 365 N dauphin 2 helicopter. In Proceedings of the Sixth European Rotorcraft and Powered Lift Aircraft Forum, Bristol, UK, 16–19 September 1980. [Google Scholar]
- Van der Walt, J.P.; Nurick, A. Static pressure distribution in the inlet of a helicopter turbine compressor. J. Aircr. 1994, 31, 1411–1413. [Google Scholar] [CrossRef]
- Reid, C. The Response of Axial Flow Compressors to Intake Flow Distortion; ASME 1969 Gas Turbine Conference and Products Show: Cleveland, OH, USA, 1969. [Google Scholar]
1 | Fuselage section wind tunnel model |
2 | Radial fan |
3 | Venturi meter |
4 | Duct system |
5 | Air intake section |
6 | W/T floor |
7 | W/T nozzle |
8 | W/T collector |
Retrofit Variant | Parameter | ||
---|---|---|---|
R | |||
RSP 1 | 0.29 | 1.47 | - |
RSP 2 | 0.5 | 1.75 | - |
RSP 3 | 0.29 | 1.91 | - |
RSP 4 | 0.5 | 2.19 | - |
IGV 1 | - | - | 0.43 |
IGV 2 | - | - | 0.5 |
IGV 3 | - | - | 0.57 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoth, F.; Breitsamter, C. Aerodynamic Testing of Helicopter Side Intake Retrofit Modifications. Aerospace 2017, 4, 33. https://doi.org/10.3390/aerospace4030033
Knoth F, Breitsamter C. Aerodynamic Testing of Helicopter Side Intake Retrofit Modifications. Aerospace. 2017; 4(3):33. https://doi.org/10.3390/aerospace4030033
Chicago/Turabian StyleKnoth, Florian, and Christian Breitsamter. 2017. "Aerodynamic Testing of Helicopter Side Intake Retrofit Modifications" Aerospace 4, no. 3: 33. https://doi.org/10.3390/aerospace4030033
APA StyleKnoth, F., & Breitsamter, C. (2017). Aerodynamic Testing of Helicopter Side Intake Retrofit Modifications. Aerospace, 4(3), 33. https://doi.org/10.3390/aerospace4030033