Experimental and Numerical Analysis of a Test Rig for Structural Testing of a Full-Scale Aircraft Wing
Abstract
1. Introduction
- List the parameters in the problem and count the total number of parameters.
- List the primary dimensions for each of the parameters.
- Set the reduction as the number of primary dimensions and calculate the expected number of pi.
- Choose the repeating parameters.
- Create the calculated number of pi.
- Write the final functional relationship and confirm accuracy.
2. Methodology
2.1. Dimensional Analysis
2.2. Finite Element Model
3. Results
3.1. Mesh Sensitivity Test
3.2. Modal Analysis Experimental Validation
3.3. Effect of Scaling on Static Analysis
| Stress Probe | Prediction (MPa) | Finite Element Analysis | ||
|---|---|---|---|---|
| Maximum Value (MPa) | Average Value (MPa) | Minimum Value (MPa) | ||
| WAP-1 | 0.30 | 0.30 | 0.30 | 0.30 |
| WAP-2 | 1.19 | 1.20 | 1.19 | 1.19 |
| WAP-3 | 0.54 | 0.54 | 0.54 | 0.53 |
| WAP-4 | 0.30 | 0.31 | 0.30 | 0.30 |
| Test rig-1 | 21.66 | 21.86 | 21.61 | 21.35 |
| Test rig-2 | 2.27 | 2.30 | 2.28 | 2.26 |
| Test rig-3 | 13.08 | 13.10 | 13.08 | 13.06 |
| Test rig-4 | 1.02 | 1.05 | 1.02 | 0.99 |
| Test rig-5 | 1.68 | 1.81 | 1.57 | 1.48 |
| Test rig-6 | 0.70 | 0.83 | 0.70 | 0.67 |
| Test rig-7 | 0.51 | 0.53 | 0.49 | 0.46 |
| Wing-1 | 2.13 | 2.47 | 2.30 | 2.13 |
| Wing-2 | 4.52 | 4.59 | 4.54 | 4.52 |
| Experiment | FEA | ||
|---|---|---|---|
| Mode Number | Frequency (Hz) | Error (%) | |
| 1 (1st vertical bending) | 3.00 | 3.59 | 16.43 |
| 2 (1st lateral bending) | 4.86 | 5.32 | 8.65 |
| 3 (2nd vertical bending) | 10.23 | 10.69 | 4.30 |
| 4 (3rd vertical bending) | 17.21 | 20.73 | 16.98 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- You, C.; Yasaee, M.; Dayyani, I. Structural similitude design for a scaled composite wing box based on optimised stacking sequence. Compos. Struct. 2019, 226, 111255. [Google Scholar] [CrossRef]
- Rezaeepazhand, J.; Simitses, G.J. Design of scaled down models for predicting shell vibration response. J. Sound Vib. 1996, 195, 301–311. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Y.P.; Zhao, X.Y.; Wang, D.Y. Determination method of dynamic distorted scaling laws and applicable structure size intervals of a rotating thin-wall short cylindrical shell. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 806–817. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Y.; Liu, H.; Wang, D. Dynamic similitude design method of the distorted model on variable thickness cantilever plates. Appl. Sci. 2016, 6, 228. [Google Scholar] [CrossRef]
- Oshiro, R.E.; Alves, M. Predicting the behaviour of structures under impact loads using geometrically distorted scaled models. J. Mech. Phys. Solids 2012, 60, 1330–1349. [Google Scholar] [CrossRef]
- Rezaeepazhand, J.; Simitses, G.J.; Starnes, J.H. Scale models for laminated cylindrical shells subjected to axial compression. Compos. Struct. 1996, 34, 371–379. [Google Scholar] [CrossRef]
- Kasivitamnuay, J.; Singhatanadgid, P. Scaling laws for displacement of elastic beam by energy method. Int. J. Mech. Sci. 2017, 128–129, 361–367. [Google Scholar] [CrossRef]
- Adams, C.; Bös, J.; Slomski, E.M.; Melz, T. Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures. Mechanical Systems and Signal Processing. Mech. Syst. Signal Process. 2018, 110, 590–610. [Google Scholar] [CrossRef]
- Balawi, S.; Shahid, O.; Al Mulla, M. Similitude and Scaling Laws—Static and Dynamic Behaviour Beams and Plates. Procedia Eng. 2015, 114, 330–337. [Google Scholar] [CrossRef]
- Casaburo, A.; Petrone, G.; Franco, F.; De Rosa, S. A Review of Similitude Methods for Structural Engineering. Appl. Mech. Rev. 2019, 71, 030802. [Google Scholar] [CrossRef]
- Kenan, H.; Azeloğlu, O. Design of scaled down model of a tower crane mast by using similitude theory. Eng. Struct. 2020, 220, 110985. [Google Scholar] [CrossRef]
- Ungbhakorn, V. A New Approach for Establishing Structural Similitude for Buckling of Symmetric Cross-Ply Laminated Plates Subjected to Combined Loading. Thammasat Int. J. Sci. Technol. 2001, 6, 55–60. [Google Scholar]
- Singhatanadgid, P. Application of an Energy Theorem to Derive a Scaling Law for Structural Behaviors. 2005. Available online: https://www.researchgate.net/publication/304382031 (accessed on 13 November 2025).
- Rezaeepazhand, J.; Yazdi, A.A. Similitude requirements and scaling laws for flutter prediction of angle-ply composite plates. Compos. Part B Eng. 2011, 42, 51–56. [Google Scholar] [CrossRef]
- Gupta, G.S.; Sarkar, S.; Chychko, A.; Teng, L.D.; Nzotta, M.; Seetharaman, S. Process Concept for Scaling-Up and Plant Studies. Treatise Process Met. 2014, 3, 1100–1144. [Google Scholar] [CrossRef]
- Jha, A.; Sedaghati, R.; Bhat, R. Dynamic Testing of Structures Using Scale Models. In Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; American Institute of Aeronautics and Astronautics (AIAA): Reston, VA, USA, 2005; pp. 5731–5744. [Google Scholar] [CrossRef]
- Shehadeh, M.; Shennawy, Y.; El-Gamal, H. Similitude and scaling of large structural elements: Case study. Alex. Eng. J. 2015, 54, 147–154. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, Y.-C.; Kim, S.-W.; Kim, H.-G.; Kim, S. Structural Safety Evaluation of Test Fixture for Static Load Test of External Fuel Tank for Fixed-Wing Aircraft. Int. J. Aeronaut. Space Sci. 2022, 23, 52–65. [Google Scholar] [CrossRef]
- Ramly, R.; Kuntjoro, W.; Wisnoe, W.; Mohd Nasir, R.E. Design and Analysis for Development of a Wing Box Static Test Rig. In Proceedings of the 2010 International Conference on Science and Social Research (CSSR 2010), Kuala Lumpur, Malaysia, 5–7 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 113–117. [Google Scholar] [CrossRef]
- Jin, Y.L.; Li, Z.G. Theoretical design and experimental verification of a 1/50 scale model of a quayside container crane. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226, 1644–1662. [Google Scholar] [CrossRef]
- Cengel, A.Y.; Cimbala, J.M. Dimensional Analysis and Modeling. In Fluid Mechanics, 1st ed.; McGraw-Hill Science: New York, NY, USA, 2004; pp. 269–320. [Google Scholar]
- Eurocode Applied. Table of Design Material Properties for Structural Steel. Available online: https://eurocodeapplied.com/design/en1993/steel-design-properties (accessed on 25 September 2024).
- ASM Aerospace Specification Metals. Aluminum 2024-T4; 2024-T351. Available online: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T4 (accessed on 25 September 2024).
- The Engineering Toolbox. Wood, Panel and Structural Timber Products—Mechanical Properties. 2011. Available online: https://www.engineeringtoolbox.com/timber-mechanical-properties-d_1789.html (accessed on 25 September 2024).
- Torkamani, S.; Jafari, A.; Toosi, K.N. Scaled Down Models for Free Vibration Analysis of Orthogonally Stiffened Cylindrical Shells Using Similitude Theory. In Proceedings of the ICAS 2008 26th International Congress of the Aeronautical Sciences, Anchorage, AK, USA, 14–19 September 2008. [Google Scholar]

















| Parameter | Symbol | Primary Dimension |
|---|---|---|
| Force | ||
| Young’s modulus | ||
| Mass moment of inertia | ||
| Density | ||
| Stress | ||
| Displacement | ||
| Dimension |
| Parameter | Value |
|---|---|
| Young modulus | |
| Poisson’s ratio | |
| Density |
| Parameter | Value |
|---|---|
| Young modulus | |
| Poisson’s ratio | |
| Density |
| Parameter | Value |
|---|---|
| Young modulus | |
| Poisson’s ratio | |
| Density |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Arhore, E.G.; Ghasemnejad, H.; Dayyani, I.; Xu, Y.; Halliburton, R.; Hakon, I.; Beckwith, J.; Stanely, F.; Gaskell, J. Experimental and Numerical Analysis of a Test Rig for Structural Testing of a Full-Scale Aircraft Wing. Aerospace 2026, 13, 6. https://doi.org/10.3390/aerospace13010006
Arhore EG, Ghasemnejad H, Dayyani I, Xu Y, Halliburton R, Hakon I, Beckwith J, Stanely F, Gaskell J. Experimental and Numerical Analysis of a Test Rig for Structural Testing of a Full-Scale Aircraft Wing. Aerospace. 2026; 13(1):6. https://doi.org/10.3390/aerospace13010006
Chicago/Turabian StyleArhore, E. G., H. Ghasemnejad, I. Dayyani, Y. Xu, R. Halliburton, I. Hakon, J. Beckwith, F. Stanely, and J. Gaskell. 2026. "Experimental and Numerical Analysis of a Test Rig for Structural Testing of a Full-Scale Aircraft Wing" Aerospace 13, no. 1: 6. https://doi.org/10.3390/aerospace13010006
APA StyleArhore, E. G., Ghasemnejad, H., Dayyani, I., Xu, Y., Halliburton, R., Hakon, I., Beckwith, J., Stanely, F., & Gaskell, J. (2026). Experimental and Numerical Analysis of a Test Rig for Structural Testing of a Full-Scale Aircraft Wing. Aerospace, 13(1), 6. https://doi.org/10.3390/aerospace13010006

