Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel
Abstract
1. Introduction
2. Modeling of the Azimuth Channel of the Balloon-Borne Gondola
2.1. Balloon and Wind Field Modeling
2.2. Rope Cage Modeling
2.3. Gondola Dynamics Modeling
3. Perform Structural Design and Modeling
3.1. Reaction Wheel and Motor
3.2. Simplified Decoupling Mechanism
4. System Control Design
4.1. Directional Control Design
4.2. Decoupling Control Design
5. Algorithm Optimization Design
5.1. Nonlinear Differential Tracker
5.2. Neural Network PID Algorithm
6. Simulation Verification
6.1. No Directional Control
6.2. Algorithmic Control
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter Type | Symbol | Value | Unit |
---|---|---|---|
Moment of inertia of the gondola | 160 | kg·m2 | |
Reaction wheel moment of inertia | 2 | kg·m2 | |
Flange moment of inertia | 0.6 | kg·m2 | |
Rope cage torsional stiffness | 1.924 | kg·m2 | |
Reaction wheel motor resistance | 3.4 | ||
Reaction wheel motor inductance | 6.8 × 10−3 | ||
Reverse electromotive force coefficient of reaction wheel motor | 1.6 | V/(rad/s) | |
Torque coefficient of reaction wheel motor | 1.47 | N·m·A | |
Rated voltage of reaction wheel motor | 24 | V | |
Rated current of reaction wheel motor | 7 | A | |
Locking torque of reaction wheel motor | 10 | N·m | |
Reverse twist motor resistor | 4.74 | ||
Inductance of simplified decoupling motor | 9.48 × 10−3 | ||
Reverse electromotive force coefficient of simplified decoupling motor | 1.6 | V/(rad/s) | |
Torque coefficient of simplified decoupling motor | 1.72 | N·m·A | |
Rated voltage of simplified decoupling motor | 24 | V | |
Rated current of simplified decoupling motor | 5 | A | |
Anti-twist motor stalling torque | 3 | N·m |
References
- Huang, W.N.; Zhang, X.J.; Li, Z.B.; Wang, S.; Huang, M.; Cai, R. Development Status and Application Prospect of Near Space Science and Technology. Sci. Technol. Rev. 2019, 37, 46–62. [Google Scholar]
- Smith-Pierce, M.C.; Charoenboonvivat, Y.C.; Shukla, D.; Komerath, N.M. High Altitude Aerodynamic Reflectors to Counter Climate Change. In Proceedings of the 2018 Applied Aerodynamics Conference, New York, NY, USA, 25–29 June 2018; AIAA: Reston, VA, USA, 2018; p. AIAA2018-3963. [Google Scholar]
- Yajima, N.; Imamura, T.; Izutsu, N.; Abe, T. Scientific Ballooning: Technology and Applications of Exploration Balloons Floating in the Stratosphere and the Atmospheres of Other Planets; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Ehrenfried, D.V. Stratospheric Balloons: Science and Commerce at the Edge of Space; Springer: New York, NY, USA, 2021. [Google Scholar]
- Jones, W.V. Evolution of Scientific Ballooning and Its Impact on Astrophysics Research. Adv. Space Res. 2014, 53, 1405–1414. [Google Scholar] [CrossRef]
- Li, Y.J.; Huang, W.N.; Zhou, J.H.; Zhang, X.; Zhang, H. Development Status and Prospects of Near-Space Observatories. Chin. J. Space Sci. 2024, 44, 1068–1085. [Google Scholar] [CrossRef]
- Yajima, N.; Kokaji, S.; Hashino, S. Report of Mechanical Engineering Laboratory No. 135; ISAS: Sagamihara City, Japan, 1986. [Google Scholar]
- Ye, X.M. Study on High-Accuracy Attitude Control and Pointing Technology of a Large Balloon-Borne Solar Telescope. Ph.D. Thesis, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China, 1999. [Google Scholar]
- Shoji, Y.; Taguchi, M.; Nakano, T.; Maeda, A.; Imai, M.; Gouda, Y.; Watanabe, M.; Takahashi, Y.; Sakamoto, Y.; Yoshida, K. FUJIN-2: Balloon-Borne Telescope for Optical Observation of Planets. Trans. Japan Soc. Aeronaut. Space Sci. Aerosp. Technol. Japan 2016, 14, Pk_95–Pk_102. [Google Scholar] [CrossRef] [PubMed]
- Tucker, G.S.; Ade, P.A.R.; Bock, J.J.; Devlin, M.; Griffin, M.; Gundersen, J.; Halpern, M.; Hargrave, P.; Hughes, D.; Klein, J.; et al. The Balloon-Borne Large Aperture Sub-Millimeter Telescope. Adv. Space Res. 2004, 33, 1793–1796. [Google Scholar] [CrossRef]
- Solanki, S.K.; Riethmüllert, L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H.-P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; et al. The Second Flight of the Sunrise Balloon-Borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results. Astrophys. J. Suppl. Ser. 2017, 229, 2–16. [Google Scholar] [CrossRef]
- Wang, H.H.; Yuan, Z.H.; He, C.A. Design of Comprehensive Decoupler for Balloon-Borne Gondola’s Azimuth Control. In Proceedings of the Chinese Control Conference (CCC), Xi’an, China, 26–28 July 2013. [Google Scholar]
- Zhang, D.W.; Zhou, J.H.; Huang, W.N. A Simplified Design of Decoupling Control System in Balloon Gondola. Aerosp. Control 2016, 34, 76–82. [Google Scholar]
- Liao, J.; Yuan, J.J.; Jiang, Y.; Yang, Z.; Li, J.; Lu, Z.; Wu, C.; Wang, N. Study on Motion Characteristics of High-Altitude Zero-Pressure Balloons During Ascent. Aerosp. Return Remote Sens. 2019, 40, 11–19. [Google Scholar]
- Wang, H.H. Study on Design Technology and Autonomous Attitude Control Method of Balloon-Borne Gondola Platform. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2014. [Google Scholar]
- Barabash, V.; Ivanov, D.; Ovchinnikov, M.; Tkachev, S.S. Balloon Payload Attitude Control System; Keldysh Institute Preprints: Moscow, Russia, 2010; pp. 4–6. [Google Scholar]
- Li, Y.J.; Zhou, J.H.; Zhang, X.J. Dynamics modeling and parameter identification for azimuth channel of balloon-gondola system. J. Beijing Univ. Aeronaut. Astronaut. 2024, 50, 2001–2008. [Google Scholar]
- Wang, H.H.; Yuan, Z.H.; Chen, Q. Study on Azimuth Control of Stratospheric Balloon-Borne System Based on Adaptive PID. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; Beihang University Press: Beijing, China, 2010; pp. 2209–2213. [Google Scholar]
- Bradon, J.; Ridge, I.; Chaplin, R. Modelling the Torsional Interaction of Wire and Polyester Fibre Ropes Used for Offshore Moorings. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2005, 219, 163–172. [Google Scholar] [CrossRef]
- Cai, M.Y.; He, C.A. Simulation Study on Attitude Control System of Balloon Gondola. Comput. Simul. 2005, 22, 56–59. [Google Scholar]
- Zhang, D.W.; Zhou, J.H.; Huang, W.N. Design of simplified reaction torque control system for high-altitude balloon gondola attitude control. Aerosp. Control. 2016, 34, 76–82. [Google Scholar]
- Li, Y.J. Research on Attitude Control Technology of Balloon-Borne Gondola Based on Multi-Sensor Combination. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2023. [Google Scholar]
- Bennett, S. The Past of PID Controllers. Annu. Rev. Control 2001, 25, 43–53. [Google Scholar] [CrossRef]
- Meshram, P.M.; Kanojiya, R.G. Tuning of PID Controller Using Ziegler-Nichols Method for Speed Control of DC Motor. In Proceedings of the IEEE International Conference on Advances in Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; IEEE: New York, NY, USA, 2012; pp. 117–122. [Google Scholar]
Loop Name | Input | Output |
---|---|---|
Gondola azimuth control loop | (1) Azimuth error (2) Azimuth velocity | Reaction wheel speed command |
decoupling control loop | (1) Reaction wheel speed (2) Gondola speed (3) Decoupling motor speed | Decoupling motor current command |
Loop Name | First Mode | Second Mode | Third Mode | Fourth Mode | Fifth Mode |
---|---|---|---|---|---|
Frequency (Hz) | 0.520 | 1.520 | 2.443 | 3.210 | 3.793 |
Cycle (s) | 1.923 | 0.658 | 0.409 | 0.312 | 0.264 |
Acmd = 40° | Acmd = 60° | Acmd = 80° | Acmd = 100° | |
---|---|---|---|---|
IAE (Traditional PID) | 1.0651 × 104 | 1.0630 × 104 | 1.0589 × 104 | 1.0681 × 104 |
IAE (Neural Network PID) | 3.8899 × 103 | 3.7461 × 103 | 3.6637 × 103 | 3.6571 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, J.; Zhang, X. Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel. Aerospace 2025, 12, 874. https://doi.org/10.3390/aerospace12100874
Li Y, Zhou J, Zhang X. Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel. Aerospace. 2025; 12(10):874. https://doi.org/10.3390/aerospace12100874
Chicago/Turabian StyleLi, Yijian, Jianghua Zhou, and Xiaojun Zhang. 2025. "Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel" Aerospace 12, no. 10: 874. https://doi.org/10.3390/aerospace12100874
APA StyleLi, Y., Zhou, J., & Zhang, X. (2025). Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel. Aerospace, 12(10), 874. https://doi.org/10.3390/aerospace12100874