Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. RS Data Acquisition
- i.
- Annual average Landsat data sets were selected by applying the study area as a geometry region. The masking method was applied to remove the cloud areas owing to cloud disturbance in the available Landsat imageries.
- ii.
- iii.
- iv.
- Classification of LULC and derivation of LST was carried out using the above basic data sets.
2.3. Image Classification and LULC Change Detection
2.4. Accuracy Assessment of Classification
2.5. LULC Changes
2.6. Computation of LST
2.7. Spatial Calculations
3. Results
3.1. Dynamic of LULC
3.2. The Spatiotemporal Distribution Pattern of LST
3.3. LULC Transformation and Its LST Changes
4. Discussion
4.1. Urban Expansion and Its Influence on LST Changes
4.2. The Implication of the Results for Urban Development
4.3. Limitation of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Acronyms | Meaning |
---|---|
LULC | Land use land cover |
LST | Land surface temperature |
GEE | Google Earth Engine |
GMCA | Galle Municipal Council area |
UNESOC | United Nations Educational Scientific and Cultural Organization |
FR | Random forest |
NDVI | Normalized difference vegetation index |
BU | Built-up |
WB | Waterbody |
VG | Vegetation |
NBU | Non-built-up |
PBU | Persistence built-up |
PVG | Persistence vegetation |
GBUO | Gain of built-up from others |
GBUVG | Gain of built-up from vegetation |
GVGO | Gain of vegetation from others |
Sensor | S. No. | Landsat ID | Acquisition Date | Time (GMT) * | Day Time Air Temperature (°C) ** |
---|---|---|---|---|---|
Landsat 5 (Thematic Mapper) | 1 | LT05_L1TP_141056_19960221_20170105_01_T1 | 1996-02-21 | 04:00:09 | 30.3 |
2 | LT05_L1TP_141056_19970223_20161231_01_T1 | 1996-02-23 | 04:19:42 | 31.0 | |
3 | LT05_L1TP_141056_19960324_20170105_01_T1 | 1996-03-24 | 04:02:15 | 34.7 | |
4 | LT05_L1TP_141056_19960425_20170105_01_T1 | 1996-04-25 | 04:04:13 | 31.3 | |
5 | LT05_L1TP_141056_19960527_20170104_01_T1 | 1996-05-27 | 04:06:05 | 30.2 | |
6 | LT05_L1TP_141056_19970530_20161231_01_T1 | 1996-05-30 | 04:23:12 | 30.8 | |
7 | LT05_L1TP_141056_19960714_20170104_01_T1 | 1996-07-14 | 04:08:39 | 28.1 | |
8 | LT05_L1TP_141056_19960730_20170103_01_T1 | 1996-07-30 | 04:09:30 | 28.7 | |
9 | LT05_L1TP_141056_19970717_20161231_01_T1 | 1996-07-17 | 04:24:51 | 28.5 | |
10 | LT05_L1TP_141056_19960815_20170103_01_T1 | 1996-08-15 | 04:10:20 | 29.0 | |
11 | LT05_L1TP_141056_19970802_20161230_01_T1 | 1996-08-02 | 04:25:23 | 29.2 | |
12 | LT05_L1TP_141056_19970919_20161229_01_T1 | 1996-09-19 | 04:26:49 | 29.4 | |
13 | LT05_L1TP_141056_19961002_20170103_01_T1 | 1996-10-02 | 04:12:57 | 28.9 | |
14 | LT05_L1TP_141056_19961119_20170101_01_T1 | 1996-11-19 | 04:15:17 | 31.2 | |
Day time mean annual air temperature in 1996 is 30.1 °C | |||||
Landsat 5 (Thematic Mapper) | 1 | LT05_L1TP_141056_20090107_20161028_01_T1 | 2009-01-07 | 04:39:10 | 32.5 |
2 | LT05_L1TP_141056_20090123_20161028_01_T1 | 2009-01-23 | 04:39:36 | 30.8 | |
3 | LT05_L1TP_141056_20090208_20161028_01_T1 | 2009-02-08 | 04:40:01 | 30.6 | |
4 | LT05_L1TP_141056_20090224_20161027_01_T1 | 2009-02-24 | 04:40:25 | 31.0 | |
5 | LT05_L1TP_141056_20090312_20161027_01_T1 | 2009-03-12 | 04:40:47 | 31.8 | |
6 | LT05_L1TP_141056_20090328_20161027_01_T1 | 2009-03-28 | 04:41:08 | 33.0 | |
7 | LT05_L1TP_141056_20090429_20161026_01_T1 | 2009-04-29 | 04:41:46 | 30.8 | |
8 | LT05_L1TP_141056_20090515_20161026_01_T1 | 2009-05-15 | 04:42:04 | 30.4 | |
9 | LT05_L1TP_141056_20090616_20161025_01_T1 | 2009-06-16 | 04:42:39 | 30.0 | |
10 | LT05_L1TP_141056_20090718_20161023_01_T1 | 2009-07-18 | 04:43:13 | 29.6 | |
11 | LT05_L1TP_141056_20090803_20161022_01_T1 | 2009-08-03 | 04:43:27 | 29.5 | |
12 | LT05_L1TP_141056_20090819_20161022_01_T1 | 2009-08-19 | 04:43:41 | 29.0 | |
13 | LT05_L1TP_141056_20090904_20161025_01_T1 | 2009-09-04 | 04:43:56 | 29.4 | |
14 | LT05_L1TP_141056_20090920_20161025_01_T1 | 2009-09-20 | 04:44:08 | 29.3 | |
15 | LT05_L1TP_141056_20091006_20161020_01_T1 | 2009-10-06 | 04:44:19 | 28.7 | |
16 | LT05_L1TP_141056_20091209_20161017_01_T1 | 2009-12-09 | 04:44:53 | 30.0 | |
Day time mean annual air temperature in 1996 is 30.4 °C | |||||
Landsat 8 ( Operational Land Imager and Thermal Infrared Sensor) | 1 | LC08_L1TP_141056_20190103_20190130_01_T1 | 2019-01-03 | 4:54:11 | 29.3 |
2 | LC08_L1TP_141056_20190220_20190220_01_T1 | 2019-02-20 | 4:54:02 | 33.5 | |
3 | LC08_L1TP_141056_20190308_20190324_01_T1 | 2019-03-08 | 4:53:57 | 30.3 | |
4 | LC08_L1TP_141056_20190324_20190403_01_T1 | 2019-03-24 | 4:53:53 | 33.1 | |
5 | LC08_L1TP_141056_20190409_20190422_01_T1 | 2019-04-09 | 4:53:49 | 32.1 | |
6 | LC08_L1TP_141056_20190511_20190521_01_T1 | 2019-05-11 | 4:53:51 | 31.0 | |
7 | LC08_L1TP_141056_20190527_20190605_01_T1 | 2019-05-27 | 4:54:00 | 30.8 | |
8 | LC08_L1TP_141056_20190612_20190619_01_T1 | 2019-06-12 | 4:54:07 | 29.4 | |
9 | LC08_L1TP_141056_20190628_20190706_01_T1 | 2019-06-28 | 4:54:12 | 31.0 | |
10 | LC08_L1TP_141056_20190714_20190719_01_T1 | 2019-07-14 | 4:54:16 | 30.5 | |
11 | LC08_L1TP_141056_20190730_20190801_01_T1 | 2019-07-30 | 4:54:21 | 30.0 | |
12 | LC08_L1TP_141056_20190831_20190916_01_T1 | 2019-08-31 | 4:54:31 | 29.1 | |
13 | LC08_L1TP_141056_20191002_20191018_01_T1 | 2019-10-02 | 4:54:40 | 30.9 | |
14 | LC08_L1TP_141056_20191018_20191029_01_T1 | 2019-10-18 | 4:54:43 | 31.7 | |
15 | LC08_L1TP_141056_20191103_20191115_01_T1 | 2019-11-03 | 4:54:42 | 28.7 | |
16 | LC08_L1TP_141056_20191119_20191202_01_T1 | 2019-11-19 | 4:54:39 | 31.6 | |
Day time mean annual air temperature in 1996 is 30.8 °C |
References
- United Nations. UN Department of Economic and Social Affairs. The World ’s Cities in 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Ibrahim, G.R.F. Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int. J. Geo Inf. 2018, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in Sub-Saharan Region: A case study of Addis Ababa using Landsat Data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat Island using landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo Inf. 2016, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef] [Green Version]
- Priyankara, P.; Ranagalage, M.; Dissanayake, D.; Morimoto, T.; Murayama, Y. Spatial process of surface urban heat island in rapidly growing Seoul Metropolitan area for sustainable urban planning using landsat data (1996–2017). Climate 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- United Nations. UN Department of Economic and Social Affairs. World Urbanization Prospects: The 2014 Revision, Highlights; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Staniec, M.; Nowak, H. The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy Build. 2016, 127, 56–65. [Google Scholar] [CrossRef]
- Arsiso, B.K.; Mengistu Tsidu, G.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth 2018, 105, 212–223. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics; US Environmental Protection Agency: Washington, DC, USA, 2008.
- World Health Organization. WHO Guidance to Protect Health from Climate Change through Health Adaptation Planning; WHO, Department of Public Health Environment and Social Determinants of Health: Geneva, Switzerland, 2014. [Google Scholar]
- Su, Y.F.; Foody, G.M.; Cheng, K.S. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: A case study of Surabaya, Indonesia. Remote Sens. 2018, 10, 1599. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Perera, E. Analysis of life quality in a tropical mountain city using a multi-criteria geospatial technique: A case study of Kandy City, Sri Lanka. Sustainability 2020, 12, 2918. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Murayama, Y.; Dissanayake, D.; Simwanda, M. The impacts of landscape changes on annual mean land surface temperature in the tropical mountain city of Sri Lanka: A case study of Nuwara Eliya (1996–2017). Sustainability 2019, 11, 5517. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Myint, S.W. Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects. Build. Environ. 2016, 95, 346–354. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef] [Green Version]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Google Erath Engine, Landsat Collection Structure. Available online: https://developers.google.com/earth-engine/landsat (accessed on 2 January 2020).
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online global land surface temperature estimation from Landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef] [Green Version]
- Google Erath Engine, Image Collection Reductions. Available online: https://developers.google.com/earth-engine/reducers_image_collection (accessed on 2 January 2020).
- Dissanayake, D.M.S.L.B. Web GIS based spatial data infrastructure (SDI) system for forestry management in Sri Lanka. In Proceedings of the International Forestry and Environment Symposium, Negombo, Sri Lanka, 16–17 October 2015; p. 20. [Google Scholar]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2018, 5, 291–306. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.; Jashimuddin, M.; Nath, B.; Nath, T.K. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 37–47. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, Y.C. Dynamics of land surface temperature in response to land-use/cover change. Geogr. Res. 2011, 49, 23–36. [Google Scholar] [CrossRef]
- Urban Development Authority. Development Plan for Greater Galle Area 2019–2030, Part I; Urban Development Authority: Galle, Sri Lanka, 2019.
- Abeyweera, M.A.N.S.; Kaluthanthri, P.C. Attributes of city brand of Galle City, Sri Lanka. In Proceedings of the International Conference on Real Estate Management and Valuation (ICREMV), Colombo, Sri Lanka, 21 September 2018; pp. 100–111. [Google Scholar]
- Research & International Relations Division. Annual Statistical Report 2017; Sri Lanka Tourism Development Authority: Colombo, Sri Lanka, 2018.
- Priyanwada, K.B.G.M. Women’s Status in Sri Lankan Administrative Service: A Special Reference to Galle District; Public Policy and Government Program; North South University: Dhaka, Bangladesh, 2016. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, X.; He, Q. An assessment of urban park access using house-level data in urban China: Through the lens of social equity. Int. J. Environ. Res. Public Health 2020, 17, 2349. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey (USGS) Landsat Missions: Landsat Science Products. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-science-products (accessed on 7 February 2019).
- Roy, A.; Inamdar, A.B. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 2019, 5, e01478. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Mushore, T.D.; Dube, T.; Manjowe, M.; Gumindoga, W.; Chemura, A.; Rousta, I.; Odindi, J.; Mutanga, O. Remotely sensed retrieval of Local Climate Zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Clim. 2019, 27, 259–271. [Google Scholar] [CrossRef]
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Erkan, U.; Gökrem, L. A new method based on pixel density in salt and pepper noise removal. Turkish J. Electr. Eng. Comput. Sci. 2018, 26, 162–171. [Google Scholar] [CrossRef]
- Thapa, R.; Murayama, Y. Image classification techniques in mapping urban landscape: A case study of Tsukuba city using AVNIR-2 sensor data. Tsukuba Geoenvironmental. Sci. 2007, 3, 3–10. [Google Scholar]
- Sakthidasan, K.; Velmurugan Nagappan, N. Noise free image restoration using hybrid filter with adaptive genetic algorithm. Comput. Electr. Eng. 2016, 54, 382–392. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Kumar, D.; Shekhar, S. Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing. Ecotoxicol. Environ. Saf. 2015, 121, 39–44. [Google Scholar] [CrossRef]
- Orhan, O.; Ekercin, S.; Dadaser-Celik, F. Use of Landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin Area, Turkey. Sci. World J. 2014, 2014, 142939. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Taylor, P.; Markham, B.L.; Barker, J.L. Spectral characterization of the LANDSAT Thematic Mapper sensors. Int. J. Remote Sens. 2010, 6, 37–41. [Google Scholar]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Nazri Che, D.; Abu Hassan, A.; Zulkiflee Abd, L.; Rodziah, I. Application of geographical information system-based analytical hierarchy process as a tool for dengue risk assessment. Asian Pac. J. Trop. Dis. 2016, 6, 928–935. [Google Scholar]
- Pawattana, C.; Tripathi, N.K. Analytical Hierarchical Process (AHP)—Based flood water retention planning in Thailand. GISci. Remote Sens. 2008, 45, 343–355. [Google Scholar] [CrossRef]
- Thirumalaivasan, D.; Karmegam, M.; Venugopal, K. AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model. Softw. 2003, 18, 645–656. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat Islands in four rapidly growing african cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Bocquier, P. World urbanization prospects: An alternative to the UN model of projection compatible with the mobility transition theory. Demogr. Res. 2005, 12, 197–236. [Google Scholar] [CrossRef]
- Su, W.; Gu, C.; Yang, G. Assessing the impact of land use/land cover on urban heat island pattern in Nanjing City, China. J. Urban Plan. Dev. 2010, 136, 365–372. [Google Scholar] [CrossRef]
- Mingaleva, Z.; Vukovic, N.; Volkova, I.; Salimova, T. Waste management in green and smart cities: A case study of Russia. Sustainability 2020, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Brilhante, O.; Klaas, J. Green City Concept and a Method to Measure Green City Performance over Time Applied to Fifty Cities Globally: Influence of GDP, Population Size and Energy Efficiency. Sustainability 2018, 10, 2031. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- Yokohari, M.; Brown, R.D.; Kato, Y.; Yamamoto, S. The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan. Landsc. Urban Plan. 2001, 53, 17–27. [Google Scholar] [CrossRef]
- Yokohari, M.; Brown, R.D.; Kato, Y.; Moriyama, H. Effects of paddy fields on summertime air and surface temperatures in urban fringe areas of Tokyo, Japan. Landsc. Urban Plan. 1997, 38, 1–11. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Abdullah, H.K.; Alibaba, H.Z. Window design of naturally ventilated offices in the mediterranean climate in terms of CO2 and thermal comfort performance. Sustainability 2020, 12, 473. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tong, Z.; Malkawi, A. Investigating natural ventilation potentials across the globe: Regional and climatic variations. Build. Environ. 2017, 122, 386–396. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Nerry, F.; Zhou, G. Estimation and validation of land surface temperatures from chinese second-generation polar-orbit FY-3A VIRR data. Remote Sens. 2015, 7, 3250–3273. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Raissouni, N.; Li, Z.L. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
LULC Types | Description | Code |
---|---|---|
Built-up | The anthropogenic or built environment, including residential, industrial, commercial, local streets, roads, and other urban areas. | BU |
Waterbody | Areas covered by freshwater (river and ponds) and brackish water (River mouth of Gin Ganga). | WB |
Vegetation | All types of vegetated or greenest land, including forest, agriculture, shrubs, and parks. | VG |
Non-built-up | Rest of all LULC types that are not covered by the above three categories. | NBU |
Investigated LULC Categories * | 1996−2009 | LST (°C) 2009 | 2009−2019 | LST (°C) 2019 | ||
---|---|---|---|---|---|---|
Area (ha) | Percentage | Area (ha) | Percentage | |||
PBU | 628.4 | 38.9 | 24.3 | 1265.6 | 71.6 | 26.3 |
PVG | 379.8 | 22.1 | 18.9 | 268.7 | 15.2 | 21.0 |
GBUO | 216.6 | 12.6 | 23.1 | 47.7 | 2.7 | 25.3 |
GBUVG | 420.6 | 24.5 | 21.7 | 78.3 | 4.4 | 24.5 |
GVGO | 72.5 | 4.2 | 19.8 | 106.7 | 6.0 | 20.0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissanayake, D. Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate 2020, 8, 65. https://doi.org/10.3390/cli8050065
Dissanayake D. Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate. 2020; 8(5):65. https://doi.org/10.3390/cli8050065
Chicago/Turabian StyleDissanayake, DMSLB. 2020. "Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka" Climate 8, no. 5: 65. https://doi.org/10.3390/cli8050065
APA StyleDissanayake, D. (2020). Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate, 8(5), 65. https://doi.org/10.3390/cli8050065