Pseudo-Panel Decomposition of the Blinder–Oaxaca Gender Wage Gap
Abstract
1. Introduction
2. Blinder–Oaxaca Decomposition
- (a)
- If the covariates are fixed, then has no sampling variance. If the regressors are fixed, then is constant. Therefore, .
- (b)
- However, in most applications, the regressors and are stochastic. Since and are not correlated (as long as this is true, then ), the sampling variance is as follows (Jann, 2008):
3. Pseudo-Panel Approach to the Blinder–Oaxaca Decomposition
4. Blinder–Oaxaca Wage Gap Decomposition: The Case of Colombia
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Ci(t) | Mean | Std. dev. | Min | Max | Variable | Ci(t) | Mean | Std. dev. | Min | Max | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | LnW_men | 9 | 8.338058 | 0.1245341 | 8.035196 | 8.432405 | 2017 | LnW_men | 9 | 8.408438 | 0.1203705 | 8.118181 | 8.498527 |
S_men | 9 | 10.93983 | 1.164774 | 9.069445 | 12.35118 | S_men | 9 | 11.00728 | 1.18347 | 9.130664 | 12.48615 | ||
Exp_men | 9 | 29.20804 | 14.86316 | 9.020644 | 51.70675 | Exp_men | 9 | 29.15555 | 14.88868 | 8.99544 | 51.67625 | ||
Exp2_men | 9 | 1076,076 | 915.6101 | 92.67495 | 2712.067 | Exp2_men | 9 | 1073.002 | 916.5095 | 91.70228 | 2708.582 | ||
Tertiary_men | 9 | 0.7037018 | 0.0097124 | 0.6904924 | 0.7162699 | Tertiary_men | 9 | 0.70566 | 0.0106297 | 0.6925541 | 0.7178571 | ||
Micro_men | 9 | 0.5934452 | 0.0949126 | 0.4776156 | 0.7515873 | Micro_men | 9 | 0.5965516 | 0.090302 | 0.4882637 | 0.7464285 | ||
Informality_men | 9 | 0.5035461 | 0.0738853 | 0.4234486 | 0.6459062 | Informality_men | 9 | 0.498391 | 0.0715147 | 0.4182696 | 0.6363524 | ||
LnW_women | 9 | 8.150793 | 0.1214262 | 7.943633 | 8.285857 | LnW_women | 9 | 8.237926 | 0.1204845 | 8.048492 | 8.371805 | ||
S_women | 9 | 11.62916 | 1.744159 | 8.663899 | 13.75622 | S_women | 9 | 11.71577 | 1.723189 | 8.829645 | 13.83775 | ||
Exp_women | 9 | 28.5162 | 15.45154 | 7.635523 | 52.12373 | Exp_women | 9 | 28.4318 | 15.42173 | 7.621135 | 51.89346 | ||
Exp2_women | 9 | 1051,439 | 936.6272 | 67.30845 | 2754,966 | Exp2_women | 9 | 1045.286 | 931,609 | 66.8628 | 2730.813 | ||
Tertiary_women | 9 | 0.8539278 | 0.0039804 | 0.8479077 | 0.8613119 | Tertiary_women | 9 | 0.8479625 | 0.006805 | 0.8379213 | 0.8595017 | ||
Micro_women | 9 | 0.6224241 | 0.1202269 | 0.4608745 | 0.8270415 | Micro_women | 9 | 0.6190777 | 0.1176631 | 0.4600912 | 0.8078209 | ||
Informality_women | 9 | 0.561172 | 0.0903399 | 0.4392944 | 0.70415 | Informality_women | 9 | 0.5511126 | 0.0947522 | 0.4263408 | 0.6902496 | ||
Married_men | 9 | 0.5842465 | 0.2132395 | 0.1192248 | 0.7230747 | Married_men | 9 | 0.5760853 | 0.212277 | 0.1159624 | 0.7180166 | ||
Head_men | 9 | 0.5503303 | 0.2342715 | 0.0946546 | 0.7713839 | Head_men | 9 | 0.5390329 | 0.2303175 | 0.0942274 | 0.7532307 | ||
Ch6_men | 9 | 0.3380849 | 0.1352057 | 0.1891162 | 0.5493901 | Ch6_men | 9 | 0.3341325 | 0.1264513 | 0.1976904 | 0.5283061 | ||
N_ind_men | 9 | 0.2505849 | 0.051748 | 0.2015876 | 0.3492341 | N_ind_men | 9 | 0.2541971 | 0.0552963 | 0.2006257 | 0.3659145 | ||
Married_women | 9 | 0.5212701 | 0.1220463 | 0.2378164 | 0.622967 | Married_women | 9 | 0.5153326 | 0.1216957 | 0.2327136 | 0.6176041 | ||
Head_women | 9 | 0.289074 | 0.1262674 | 0.0703748 | 0.4455163 | Head_women | 9 | 0.2943324 | 0.1281973 | 0.0743065 | 0.4519494 | ||
Ch6_women | 9 | 0.1721031 | 0.086282 | 0.0880289 | 0.2974964 | Ch6_women | 9 | 0.1657271 | 0.0820278 | 0.0860906 | 0.2940533 | ||
N_ind_women | 9 | 0.0330633 | 0.0106235 | 0.0195133 | 0.0541875 | N_ind_women | 9 | 0.033518 | 0.0094911 | 0.0246975 | 0.0541904 | ||
Sel_men | 9 | 0.8958672 | 0.1040352 | 0.6712098 | 0.9704566 | Sel_men | 9 | 0.8946891 | 0.1060642 | 0.6594643 | 0.9698599 | ||
Sel_women | 9 | 0.7036599 | 0.1388076 | 0.4290726 | 0.8216574 | Sel_women | 9 | 0.70193 | 0.1403489 | 0.4323498 | 0.8267639 | ||
2018 | LnW_men | 9 | 8.445422 | 0.1180687 | 8.159978 | 8.545579 | 2019 | LnW_men | 9 | 8.475406 | 0.1285858 | 8.16323 | 8.568756 |
S_men | 9 | 11.13864 | 1.156181 | 9.289095 | 12.51258 | S_men | 9 | 11.21744 | 1.135674 | 9.473826 | 12.58708 | ||
Exp_men | 9 | 29.01479 | 14.84102 | 8.98698 | 51.51229 | Exp_men | 9 | 28.94681 | 14.80999 | 9.066341 | 51.34639 | ||
Exp2_men | 9 | 1062,879 | 911.2461 | 91.50246 | 2690.313 | Exp2_men | 9 | 1057,985 | 907.84 | 92.34877 | 2672,988 | ||
Tertiary_men | 9 | 0.7036599 | 0.0097255 | 0.6852112 | 0.7130123 | Tertiary_men | 9 | 0.6947311 | 0.0125346 | 0.6779296 | 0.7167998 | ||
Micro_men | 9 | 0.5978467 | 0.0876309 | 0.4915028 | 0.7424932 | Micro_men | 9 | 0.5854244 | 0.080841 | 0.4913411 | 0.717611 | ||
Informality_men | 9 | 0.5041975 | 0.0778514 | 0.4306065 | 0.6646739 | Informality_men | 9 | 0.5012398 | 0.0759234 | 0.4296478 | 0.6667118 | ||
LnW_women | 9 | 8.296329 | 0.1236226 | 8.101408 | 8.434343 | LnW_women | 9 | 8.338293 | 0.1190225 | 8.136816 | 8.463536 | ||
S_women | 9 | 11.89469 | 1.723275 | 8.905832 | 13.98808 | S_women | 9 | 12.0792 | 1.585988 | 9.441266 | 14.00982 | ||
Exp_women | 9 | 28.26562 | 15.41085 | 7.662983 | 51.89826 | Exp_women | 9 | 28.08228 | 15.26059 | 7.72789 | 51.40152 | ||
Exp2_women | 9 | 1035.102 | 929.6148 | 67.33604 | 2730.174 | Exp2_women | 9 | 1020,683 | 915.0557 | 68.05177 | 2680,442 | ||
Tertiary_women | 9 | 0.8424661 | 0.0076556 | 0.8275688 | 0.8565161 | Tertiary_women | 9 | 0.8446864 | 0.0059577 | 0.8367268 | 0.8529325 | ||
Micro_women | 9 | 0.6145322 | 0.1168843 | 0.4593716 | 0.8119162 | Micro_women | 9 | 0.6066282 | 0.1097626 | 0.463798 | 0.7926582 | ||
Informality_women | 9 | 0.5474534 | 0.0898871 | 0.4293673 | 0.6796263 | Informality_women | 9 | 0.5471625 | 0.0936075 | 0.4327645 | 0.6959494 | ||
Married_men | 9 | 0.5681512 | 0.2084602 | 0.1166601 | 0.7080629 | Married_men | 9 | 0.5667591 | 0.209994 | 0.1172997 | 0.7156888 | ||
Head_men | 9 | 0.5289457 | 0.2265079 | 0.0928693 | 0.7390612 | Head_men | 9 | 0.5252956 | 0.2250406 | 0.0925015 | 0.7454165 | ||
Ch6_men | 9 | 0.3327424 | 0.1287793 | 0.1768762 | 0.5322238 | Ch6_men | 9 | 0.331331 | 0.1293698 | 0.1777108 | 0.5234528 | ||
N_ind_men | 9 | 0.2569053 | 0.0536286 | 0.2153275 | 0.3665618 | N_ind_men | 9 | 0.2685936 | 0.0520334 | 0.2227821 | 0.3709244 | ||
Married_women | 9 | 0.5185747 | 0.1230933 | 0.2298088 | 0.6170303 | Married_women | 9 | 0.5143612 | 0.1229235 | 0.2285872 | 0.6170322 | ||
Head_women | 9 | 0.293476 | 0.1261038 | 0.0730442 | 0.4463721 | Head_women | 9 | 0.2994137 | 0.1250416 | 0.0776866 | 0.4414686 | ||
Ch6_women | 9 | 0.1665284 | 0.0856539 | 0.077763 | 0.2974278 | Ch6_women | 9 | 0.1577043 | 0.0800504 | 0.0756345 | 0.2802293 | ||
N_ind_women | 9 | 0.0337784 | 0.0097015 | 0.0231715 | 0.0525967 | N_ind_women | 9 | 0.0354072 | 0.0095942 | 0.0249269 | 0.0527509 | ||
Sel_men | 9 | 0.8877906 | 0.1115676 | 0.6329794 | 0.9648866 | Sel_men | 9 | 0.8831719 | 0.1121991 | 0.6234337 | 0.964309 | ||
Sel_women | 9 | 0.6930691 | 0.1415745 | 0.4252475 | 0.8230862 | Sel_women | 9 | 0.6840926 | 0.1453998 | 0.417093 | 0.8179824 | ||
2020 | LnW_men | 9 | 8.451991 | 0.1255018 | 8.145081 | 8.555027 | 2021 | LnW_men | 9 | 8.47214 | 0.1247396 | 8.172038 | 8.570444 |
S_men | 9 | 11.35415 | 1.061942 | 9.707747 | 12.54652 | S_men | 9 | 11.44236 | 1.049986 | 9.814035 | 12.68768 | ||
Exp_men | 9 | 28.80064 | 14.67451 | 9.100624 | 51.03596 | Exp_men | 9 | 28.75464 | 14.65834 | 9.186735 | 51.00526 | ||
Exp2_men | 9 | 1045,842 | 897.0726 | 92.93246 | 2641,078 | Exp2_men | 9 | 1041,916 | 895.3744 | 93.51768 | 2635.418 | ||
Tertiary_men | 9 | 0.6871566 | 0.0162577 | 0.6648507 | 0.714402 | Tertiary_men | 9 | 0.6910733 | 0.0142175 | 0.6661874 | 0.710273 | ||
Micro_men | 9 | 0.6014776 | 0.0716177 | 0.5119495 | 0.7119974 | Micro_men | 9 | 0.6018223 | 0.0715295 | 0.5060026 | 0.7103314 | ||
Informality_men | 9 | 0.5219007 | 0.0742923 | 0.4528784 | 0.6927041 | Informality_men | 9 | 0.526045 | 0.0730549 | 0.4581692 | 0.691379 | ||
LnW_women | 9 | 8.3469 | 0.1261775 | 8.129876 | 8.501195 | LnW_women | 9 | 8.353196 | 0.1280188 | 8.140433 | 8.490309 | ||
S_women | 9 | 12.33815 | 1.553494 | 9.696412 | 14.17378 | S_women | 9 | 12.37938 | 1.522375 | 9.717836 | 14.1562 | ||
Exp_women | 9 | 27.84481 | 15.19051 | 7.795722 | 51.12937 | Exp_women | 9 | 27.79751 | 15.10841 | 7.875242 | 51.04327 | ||
Exp2_women | 9 | 1004.76 | 907.1082 | 68.33904 | 2652.217 | Exp2_women | 9 | 999.5638 | 901.2829 | 69.90714 | 2643.216 | ||
Tertiary_women | 9 | 0.8528494 | 0.0121979 | 0.840636 | 0.8795009 | Tertiary_women | 9 | 0.8597057 | 0.0060291 | 0.8547114 | 0.8744076 | ||
Micro_women | 9 | 0.6050761 | 0.1024307 | 0.467739 | 0.7743154 | Micro_women | 9 | 0.6065002 | 0.0991885 | 0.4812614 | 0.7787197 | ||
Informality_women | 9 | 0.5402975 | 0.093469 | 0.4122759 | 0.6745098 | Informality_women | 9 | 0.5441636 | 0.089926 | 0.4309872 | 0.6719087 | ||
Married_men | 9 | 0.5629667 | 0.2038836 | 0.1207701 | 0.707759 | Married_men | 9 | 0.5545357 | 0.2055342 | 0.1129931 | 0.6995674 | ||
Head_men | 9 | 0.5084341 | 0.2216666 | 0.0748535 | 0.7233106 | Head_men | 9 | 0.4992236 | 0.2173066 | 0.0814947 | 0.7124131 | ||
Ch6_men | 9 | 0.318702 | 0.1272451 | 0.1639886 | 0.5214967 | Ch6_men | 9 | 0.2951451 | 0.1233416 | 0.1492987 | 0.4826719 | ||
N_ind_men | 9 | 0.3616837 | 0.0668421 | 0.3057756 | 0.4843956 | N_ind_men | 9 | 0.331973 | 0.0668036 | 0.279148 | 0.4584355 | ||
Married_women | 9 | 0.5096974 | 0.1181309 | 0.2340668 | 0.6071287 | Married_women | 9 | 0.5021007 | 0.1186671 | 0.2241888 | 0.5943267 | ||
Head_women | 9 | 0.3081704 | 0.1309637 | 0.065785 | 0.4649241 | Head_women | 9 | 0.3263767 | 0.1318954 | 0.0757831 | 0.4637941 | ||
Ch6_women | 9 | 0.1507033 | 0.0777763 | 0.0745363 | 0.2614055 | Ch6_women | 9 | 0.1371094 | 0.0768648 | 0.0589467 | 0.253281 | ||
N_ind_women | 9 | 0.0587062 | 0.0153298 | 0.0412137 | 0.0909816 | N_ind_women | 9 | 0.0539215 | 0.0152554 | 0.0368529 | 0.0838601 | ||
Sel_men | 9 | 0.8729501 | 0.1160677 | 0.6118618 | 0.9588074 | Sel_men | 9 | 0.8725552 | 0.118324 | 0.6102073 | 0.9583185 | ||
Sel_women | 9 | 0.663856 | 0.145117 | 0.3924115 | 0.7944374 | Sel_women | 9 | 0.6606521 | 0.1521143 | 0.371933 | 0.796875 |
1 | |
2 | Of course, there are other approaches to decomposing the gender gap (semiparametric or non-parametric, quantile regressions). However, this approach needs to develop a counterpart in the pseudo-panel approach. |
3 | We use a GMMC because migration, variations across types of employment (for example, informal/formal, public/private sector jobs) or changes across marriage and child care responsibilities could affect the assumption of homocedasticity. In the case of heteroskedasticity, GMM is more efficient than the IV estimator (Baum et al., 2003). |
References
- Abadía, L. K. (2005). Discriminación salarial por sexo en Colombia: Un análisis desde la discriminación estadística. Documentos de Economía. Universidad Javeriana-Bogotá. [Google Scholar]
- Arango, L. E., & Flórez, L. A. (2020). Regional labour informality in Colombia and a proposal for a differential minimum wage. The Journal of Development Studies, 2020, 1841170. [Google Scholar] [CrossRef]
- Badel, A., & Peña, X. (2010). Decomposing the gender wage gap with sample selection adjustment: Evidence from Colombia. Revista de Análisis Económico, 25(2), 169–191. [Google Scholar] [CrossRef]
- Baquero, J. (2001). Estimación de la discriminación salarial por género para los trabajadores asalariados urbanos de Colombia (1984–1999). Informe técnico. Universidad del Rosario, Facultad de Economía. [Google Scholar]
- Baranowska-Rataj, A., & Matysiak, A. (2022). Family size and men’s labor market outcomes: Do social beliefs about men’s roles in the family matter? Feminist Economics, 28(2), 93–118. [Google Scholar] [CrossRef]
- Baum, C. F., Schaffer, M. E., & Stillman, S. (2003). Instrumental variables and GMM: Estimation and testing. The Stata Journal, 3(1), 1–31. [Google Scholar] [CrossRef]
- Bernat, L. (2005). Análisis de género de las diferencias salariales en las siete principales Áreas Metropolitanas colombianas: ¿Evidencia de discriminación? Documento PNUD. United Nations Development Programme (UNDP). [Google Scholar]
- Biltagy, M. (2014). Estimation of gender wage differentials using oaxaca decomposition technique. Topics in Middle Eastern and North African Economies, 16(1), 17–42. [Google Scholar]
- Blau, F. D., & Kahn, L. M. (2017). The gender wage gap: Extent, trends, and explanations. Journal of Economic Literature, 55(3), 789–865. [Google Scholar] [CrossRef]
- Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates. The Journal of Human Resources, 8(4), 436–455. [Google Scholar] [CrossRef]
- Buchely, L. (2013). Overcoming gender disadvantages. Social policy: Analysis of urban middle-class women in Colombia. Revista de Economía del Rosario, 16(2), 313–340. [Google Scholar] [CrossRef]
- Budlender, D. (2003). The debate about household headship. Social Dynamics, 29(2), 48–72. [Google Scholar] [CrossRef]
- Clogg, C. C., Petkova, E., & Haritou, A. (1995). Statistical methods for comparing regression coefficients between models. American Journal of Sociology, 100(5), 1261–1293. [Google Scholar] [CrossRef]
- Confecámaras. (2024). Panorama de las mujeres en el ámbito laboral y empresarial. Available online: https://confecamaras.org.co/images/PANORAMA-MUJERES-MARZO-7-3.pdf (accessed on 5 June 2025).
- Congreso de la República de Colombia. (2004, August 2). Ley 905. Por medio de la cual se modifica la Ley 590 de 2000 sobre promoción del desarrollo de la micro, pequeña y mediana empresa colombiana y se dictan otras disposiciones. Diario Oficial 45628. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=14501 (accessed on 1 July 2025).
- Cools, S., Markussen, S., & Strøm, M. (2017). Children and careers: How family size affects parents’ labor market outcomes in the long run. Demography, 54, 1773–1793. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A. (1985). Panel data from a time series of cross-sections. Journal of Econometrics, 30, 109–125. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística [DANE]. (2020). Participación de las mujeres colombianas en el mercado laboral. Comisión Legal Para la Equidad de la Mujer. [Google Scholar]
- Di Paola, R., & Berges, M. (2000). Sesgo de selección y estimación de la brecha por género para Mar del Plata. Nülan. Deposited Documents, 891. Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación. [Google Scholar]
- Fernández, M. (2006). Determinantes del diferencial salarial por género en Colombia, 1997–2003. Revista Desarrollo y Sociedad, 58, 165–208. [Google Scholar]
- Galvis, L. A. (2011). Diferenciales salariales por género y región en Colombia: Una aproximación con regresión por cuantiles. Revista de Economía del Rosario, 13(2), 235–277. [Google Scholar]
- Greene, W. H. (2003). Econometric analysis (5th ed.). Prentice Hall. [Google Scholar]
- Guillerm, M. (2017). Pseudo-panel methods and an example of application to household wealth data. Economie et Statistique/Economics and Statistics, 491–492, 109–130. [Google Scholar]
- Hansen, L. P. (1982). Large sample properties of generalized methods of moments estimators. Econometrica, 50(4), 1029–1054. [Google Scholar] [CrossRef]
- Heckman, J. (1974). Shadow prices, market wages, and labor supply. Econometrica, 42(4), 679. [Google Scholar] [CrossRef]
- Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. [Google Scholar] [CrossRef]
- International Labour Organization [ILO]. (2018). Care work and care jobs for the future of decent work. ILO. Available online: https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40dgreports/%40dcomm/%40publ/documents/publication/wcms_633135.pdf (accessed on 2 January 2025).
- International Labour Organization [ILO]. (2020a, March 3). Having kids sets back women’s labour force participation more so than getting married. ILO. Available online: https://ilostat.ilo.org/blog/having-kids-sets-back-womens-labour-force-participation-more-so-than-getting-married/ (accessed on 10 January 2025).
- International Labour Organization [ILO]. (2020b, May 15). International day of families: How marital status shapes labour market outcomes. ILO. Available online: https://ilostat.ilo.org/blog/international-day-of-families-how-marital-status-shapes-labour-market-outcomes/ (accessed on 2 January 2025).
- Jann, B. (2005, April 8). Standard errors for the blinder-oaxaca decomposition. German Stata Users Group Meetings, Stata Users Group, Berlin, Germany. [Google Scholar]
- Jann, B. (2008). The Blinder–Oaxaca decomposition for linear regression models. The Stata Journal, 8(4), 453–479. [Google Scholar] [CrossRef]
- Johansson, M., Katz, K., & Nyman, H. (2005). Wage differentials and gender discrimination: Changes in Sweden 1981–1998. Acta Sociologica, 48(4), 341–364. [Google Scholar] [CrossRef]
- Kröger, H., & Hartmann, J. (2021). Extending the kitagawa oaxaca blinder decomposition approach to panel data. The Stata Journal: Promoting Communications on Statistics and Stata, 21(2), 360410. [Google Scholar] [CrossRef]
- Maubrigades, S. (2020). Participación y segregación ocupacional de género en los sectores económicos de América Latina durante el siglo XX. América Latina en la Historia Económica, 27(3), 1–24. [Google Scholar] [CrossRef]
- Mincer, J. (1974). Schooling, experience, and earnings. National Bureau of Economic Research. [Google Scholar]
- Ministerio de Comercio, Industria y Turismo. (2024). Informe de tejido empresarial. Oficina Estudios Económicos. Available online: https://www.mincit.gov.co/getattachment/estudios-economicos/estadisticas-e-informes/informes-de-tejido-empresarial/2024/diciembre/oee-dv-informe-de-tejido-empresarial-diciembre-2024.pdf.aspx (accessed on 5 June 2025).
- Mora, J. J. (2017). La informalidad laboral colombiana en los últimos años: Análisis y perspectivas de política pública. Revista De Métodos Cuantitativos Para La Economía y La Empresa, 24, 89–128. [Google Scholar] [CrossRef]
- Mora, J. J., & Arcila, A. M. (2014). Brechas salariales por etnia y ubicación geográfica en Santiago de Cali. Revista de Métodos Cuantitativos para la Economía y la Empresa, Universidad Pablo de Olavide, 18(1), 34–53. [Google Scholar] [CrossRef]
- Mora, J. J., Castillo, M., & Gomez, G. (2022). Migration and overeducation of venezuelans in the Colombian labor market. The Indian Journal of Labour Economics, 65(3), 1–65. [Google Scholar] [CrossRef]
- Mora, J. J., & Muro, J. (2014). Consistent estimation in pseudo panels in the presence of selection bias. Economics, 8, 1–25. [Google Scholar] [CrossRef]
- Mora, J. J., & Muro, J. (2015). Labor market segmentation in a developing country. The Indian Journal of Labour Economics, 58, 477–486. [Google Scholar] [CrossRef]
- Mora, J. J., & Muro, J. (2017). Dynamic effects of the minimum wage on informality in Colombia. Labor, 31, 59–72. [Google Scholar] [CrossRef]
- Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. Engle, & D. McFadden (Eds.), Handbook of econometrics (pp. 2111–2245). North-Holland. [Google Scholar] [CrossRef]
- Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693–709. [Google Scholar] [CrossRef]
- Oaxaca, R., & Ransom, M. R. (1998). Calculation of approximate variances for wage decomposition differentials. Journal of Economic and Social Measurement, 24, 55–61. [Google Scholar] [CrossRef]
- Paz, J. (1998). Brecha de ingresos entre géneros (Comparación entre el Gran Buenos Aires y el Noroeste Argentino). Anales de la AAEP. [Google Scholar]
- Peña, X., Cárdenas, J. C., Ñopo, H., Castañeda, J. L., Muñoz, J. S., & Uribe, C. (2013). Mujer y movilidad social. Documentos CEDE. Universidad de los Andes. [Google Scholar]
- Piñeros, L. A. (2009). Las uniones maritales, los diferenciales salariales y la brecha educativa en Colombia. Revista Desarrollo y Sociedad, 64, 55–84. [Google Scholar] [CrossRef]
- Sánchez, R. M. (2020). Poverty and labor informality in Colombia. IZA Journal of Labor Policy, 10(1), 2020. [Google Scholar] [CrossRef]
- Tobón, C., & Rodríguez, F. L. (2015). Factores que determinan la probabilidad de participación laboral en el área metropolitana de Medellín [tesis de Maestría, Universidad EAFIT]. Available online: https://repository.eafit.edu.co/server/api/core/bitstreams/e15372c3-81b2-4e62-b53b-94dbd9e2ef4f/content (accessed on 5 June 2025).
- Watson, I. (2010). Decomposing the gender pay gap in the Australian managerial labour market. Australian Journal of Labour Economics, 13(1), 49–79. [Google Scholar]
- World Economic Forum. (2021). Global gender gap report 2021. Insight report. Available online: https://www3.weforum.org/docs/WEF_GGGR_2021.pdf (accessed on 5 March 2024).
Cohort, Ci(t) | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|
18–22 years old | 18,986 | 18,402 | 17,679 | 17,974 | 9138 | 14,750 | 96,929 |
23–27 years old | 22,024 | 21,729 | 21,909 | 22,677 | 11,746 | 18,789 | 118,874 |
28–32 years old | 20,119 | 20,198 | 20,255 | 21,709 | 11,638 | 18,627 | 112,546 |
33–37 years old | 19,545 | 19,358 | 19,324 | 20,011 | 10,667 | 17,193 | 106,098 |
38–42 years old | 16,405 | 16,449 | 16,954 | 18,636 | 9953 | 16,588 | 94,985 |
43–47 years old | 16,028 | 15,396 | 14,931 | 16,039 | 8342 | 13,827 | 84,563 |
48–52 years old | 15,814 | 15,448 | 15,432 | 15,601 | 8206 | 13,465 | 83,966 |
53–58 years old | 15,888 | 16,018 | 16,312 | 17,093 | 9198 | 14,771 | 89,280 |
59–63 years old | 8904 | 9353 | 9662 | 10,283 | 5600 | 9456 | 53,258 |
Total | 153,713 | 152,351 | 152,458 | 160,023 | 84,488 | 137,466 | 840,499 |
Without Selection Bias | |||
---|---|---|---|
Pool | Panel Cohort a | Pseudo Panel (Deaton) | |
Differential | 0.12987 *** | 0.14467 *** | 0.20106 *** |
(0.00181) | (0.02554) | (0.0000779809) | |
Explained—endowment effect | −0.08622 *** | −0.05064 ** | −0.02020 *** |
(0.00100) | (0.02434) | (0.0000000016) | |
Unexplained—remuneration effect | 0.21609 *** | 0.19531 *** | 0.22126 *** |
(0.00152) | (0.00887) | (0.0000779794) | |
NT, cohorts | 771,194 | 108 | 108 |
With Selection Bias | ||
---|---|---|
Pool | Pseudo Panel (MH) | |
Differential | 0.21186 *** | 0.14617 *** |
(0.00203) | (0.00005) | |
Explained—endowment effect | −0.08622 *** | −0.05636 *** |
(0.00100) | (0.000000025) | |
Unexplained—remuneration effect | 0.29809 *** | 0.20254 *** |
(0.00179) | (0.00005) | |
NT, cohorts | 840,499 | 108 |
Without Controls | Informality | Informality, Firm Size, and the Tertiary Sector | |
---|---|---|---|
Differential | 0.14617 *** | 0.15100 *** | 0.15186 *** |
(0.00005) | (0.0000400258) | (0.0000394999) | |
Explained—endowment effect | −0.05636 *** | −0.03976 *** | −0.03541 *** |
(0.000000025) | (0.0000000607) | (0.0000000420) | |
Unexplained—remuneration effect | 0.20254 *** | 0.19076 *** | 0.18727 *** |
(0.00005) | (0.0000399651) | (0.0000394579) | |
Cohorts | 108 | 108 | 108 |
Informality vs. No Controls | Informality, Firm Size, and the Tertiary Sector vs. No Controls | Informality, Firm Size, and the Tertiary Sector vs. Informality | |
---|---|---|---|
Differential | 75.41 *** | 89.30 *** | 15.29 ** |
Explained—endowment effect | 252,868.74 *** | 428,623.47 *** | 58,932.00 *** |
Unexplained—remuneration effect | −184.04 *** | −239.74 *** | −62.14 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora, J.J.; Herrera, D.Y. Pseudo-Panel Decomposition of the Blinder–Oaxaca Gender Wage Gap. Econometrics 2025, 13, 27. https://doi.org/10.3390/econometrics13030027
Mora JJ, Herrera DY. Pseudo-Panel Decomposition of the Blinder–Oaxaca Gender Wage Gap. Econometrics. 2025; 13(3):27. https://doi.org/10.3390/econometrics13030027
Chicago/Turabian StyleMora, Jhon James, and Diana Yaneth Herrera. 2025. "Pseudo-Panel Decomposition of the Blinder–Oaxaca Gender Wage Gap" Econometrics 13, no. 3: 27. https://doi.org/10.3390/econometrics13030027
APA StyleMora, J. J., & Herrera, D. Y. (2025). Pseudo-Panel Decomposition of the Blinder–Oaxaca Gender Wage Gap. Econometrics, 13(3), 27. https://doi.org/10.3390/econometrics13030027