The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things
Abstract
1. Introduction
2. Vascular Channel Model
2.1. Assumptions and Scope
2.2. Channel Modeling of Healthy Vascular Structure
2.2.1. Non-Newtonian Fluid Modeling and Velocity Profile Derivation
2.2.2. Impulse Channel Response Derivation
2.3. Channel Modeling of Stenosed Vascular Structure
2.3.1. Geometric Parameterization and Hemodynamic Basis
2.3.2. Derivation of Impulse Channel Response
- (A)
- (no adsorption).
- (B)
- (instantaneous desorption).In this regime the bound phase approaches the quasi-steady state , so the net exchange tends to zero. Physically, molecules attach but are immediately released, producing no effective retention. As a result, Equation (32) again reduces to
2.3.3. Flow Resistance and Shear Stress
3. Biodistribution Estimation
3.1. Channel Delay Analysis at Receiver
3.1.1. Healthy Vessel Delay
3.1.2. Stenosed Vessel Delay
3.2. Path Loss Analysis
4. Atherosclerosis Delay Localization Method
4.1. Forward Problem: Peak Time Extraction
4.2. Inverse Problem: Atherosclerosis Detection
5. Discussion
6. Simulation Validation of Vascular Stenosis Detection Based on Delay Inversion
7. Experimental Platform for Fluorescence-Based Detection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MC | Molecular Communication |
IoBNT | Internet of Bio-Nano Things |
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar] [CrossRef]
- Budoff, M.J.; Dowe, D.; Jollis, J.G.; Gitter, M.; Sutherland, J.; Halamert, E.; Scherer, M.; Bellinger, R.; Martin, A.; Benton, R.; et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY trial. J. Am. Coll. Cardiol. 2008, 52, 1724–1732. [Google Scholar] [CrossRef]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J. Atheroscler. Thromb. 2024, 31, 641–853. [Google Scholar] [CrossRef] [PubMed]
- Farsad, N.; Yilmaz, H.B.; Eckford, A.; Chae, C.-B.; Guo, W. A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutorials 2016, 18, 1887–1919. [Google Scholar] [CrossRef]
- Felicetti, L.; Femminella, M.; Reali, G.; Liò, P. Applications of molecular communications to medicine: A survey. Nano Commun. Netw. 2016, 7, 27–45. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Tomassi, A.; Falegnami, A.; Romano, E. Unveiling simplexity: A new paradigm for understanding complex adaptive systems and driving technological innovation. Innovation 2025, 6, 100954. [Google Scholar] [CrossRef]
- Varshney, N.; Patel, A.; Deng, Y.; Haselmayr, W.; Varshney, P.K.; Nallanathan, A. Abnormality detection inside blood vessels with mobile nanomachines. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2019, 4, 189–194. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, M.; Xiao, Y.; Chen, Y. A novel molecular communication inspired detection method for the evolution of atherosclerosis. Comput. Methods Programs Biomed. 2022, 219, 106756. [Google Scholar] [CrossRef]
- Liu, H.; Lan, L.; Abrigo, J.; Ip, H.L.; Soo, Y.; Zheng, D.; Wong, K.S.; Wang, D.; Shi, L.; Leung, T.W.; et al. Comparison of Newtonian and non-Newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis. Front. Physiol. 2021, 12, 718540. [Google Scholar] [CrossRef] [PubMed]
- Zoofaghari, M.; Arjmandi, H. Diffusive molecular communication in biological cylindrical environment. IEEE Trans. Nanobiosci. 2018, 18, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Schmidt, S.; Wietfeld, A.; Zhou, P.; Fuchtmann, J.; Fitzek, F.H.P. A molecular communication perspective on detecting arterial plaque formation. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2024, 10, 458–463. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Yang, B.; Qiao, H.; Gao, L.; Su, T.; Ma, S.; Zhang, X.; Li, X.; Liu, G.; et al. In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 2016, 6, 272–281. [Google Scholar] [CrossRef]
- Kim, S.; Nam, H.S.; Kang, D.O.; Han, J.; Kim, H.; Song, J.W.; Park, E.J.; Kim, R.H.; Kim, H.J.; Kim, J.H.; et al. Intracoronary Structural-Molecular Imaging for Multitargeted Characterization of High-Risk Plaque: First-in-Human OCT-FLIm. JAMA Cardiol. 2025, 10, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gharaibeh, Y.; Zimin, V.N.; Kim, J.N.; Hassani, N.S.; Dallan, L.A.P.; Pereira, G.T.R.; Makhlouf, M.H.E.; Hoori, A.; Wilson, D.L.; et al. Plaque Characteristics Derived from Intravascular Optical Coherence Tomography That Predict Cardiovascular Death. Bioengineering 2024, 11, 843. [Google Scholar] [CrossRef]
- Vázquez Mézquita, A.J.; Biavati, F.; Falk, V.; Alkadhi, H.; Hajhosseiny, R.; Maurovich-Horvat, P.; Manka, R.; Kozerke, S.; Stuber, M.; Derlin, T.; et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: A Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. In Quantification of Biophysical Parameters in Medical Imaging; Sack, I., Schaeffter, T., Eds.; Springer: Cham, Switzerland, 2024; pp. 569–600. [Google Scholar]
- Pinna, A.; Boi, A.; Mannelli, L.; Balestrieri, A.; Sanfilippo, R.; Suri, J.; Saba, L. Machine learning for coronary plaque characterization: A multimodal review of OCT, IVUS, and CCTA. Diagnostics 2025, 15, 1822. [Google Scholar] [CrossRef]
- Felicetti, L.; Femminella, M.; Reali, G. Molecular Communications in Blood Vessels: Models, Analysis, and Enabling Technologies. Commun. ACM 2025, 68, 60–69. [Google Scholar] [CrossRef]
- Joshi, K.S.; Patel, D.K.; Thakker, S.; Lopez-Benitez, M.; Lehtomäki, J.J. Influence of Red Blood Cells on Channel Characterization in Cylindrical Vasculature. IEEE Trans. Nanobiosci. 2025, 24, 113–119. [Google Scholar] [CrossRef]
- Shahzad, H.; Wang, X.; Sarris, I.; Iqbal, K.; Hafeez, M.B.; Krawczuk, M. Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls. Sci. Rep. 2021, 11, 23835. [Google Scholar] [CrossRef]
- Bonneuil, W.V.; Watson, D.J.; Mohanta, S.K.; Habenicht, A.J.R.; Moore, J.E., Jr.; Frattolin, J. Atherosclerosis increases adventitial pressure and limits solute transport via fluid-balance mechanisms. Biomech. Model. Mechanobiol. 2025, 24, 1875–1893. [Google Scholar] [CrossRef]
- Lv, H.; Fu, K.; Liu, W.; He, Z.; Li, Z. Numerical study on the cerebral blood flow regulation in the circle of Willis with the vascular absence and internal carotid artery stenosis. Front. Bioeng. Biotechnol. 2024, 12, 1467257. [Google Scholar] [CrossRef]
- Recktenwald, S.M.; Graessel, K.; Rashidi, Y.; Steuer, J.N.; John, T.; Gekle, S.; Wagner, C. Cell-free layer of red blood cells in a constricted microfluidic channel under steady and time-dependent flow conditions. Phys. Rev. Fluids 2023, 8, 074202. [Google Scholar] [CrossRef]
- Brust, M.; Schaefer, C.; Doerr, R.; Pan, L.; Garcia, M.; Arratia, P.E.; Wagner, C. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Phys. Rev. Lett. 2013, 110, 078305. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, Y.G.; Keramydas, A.T.; Anastasiou, A.D.; Mouza, A.A.; Paras, S.V. Experimental and Numerical Study of Blood Flow in μ-vessels: Influence of the Fahraeus–Lindqvist Effect. Fluids 2019, 4, 143. [Google Scholar] [CrossRef]
- Barbosa, F.; Dueñas-Pamplona, J.; Abreu, C.S.; Oliveira, M.S.N.; Lima, R.A. Numerical model validation of the blood flow through a microchannel hyperbolic contraction. Micromachines 2023, 14, 1886. [Google Scholar] [CrossRef]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D.; et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Lynch, S.; Nama, N.; Figueroa, C.A. Effects of non-Newtonian viscosity on arterial and venous flow and transport. Sci. Rep. 2022, 12, 20568. [Google Scholar] [CrossRef]
- Fuchs, A.; Berg, N.; Fuchs, L.; Prahl Wittberg, L. Assessment of rheological models applied to blood flow in human thoracic aorta. Bioengineering 2023, 10, 1240. [Google Scholar] [CrossRef]
- Brambila-Solórzano, A.; Méndez-Lavielle, F.; Naude, J.L.; Martínez-Sánchez, G.J.; García-Rebolledo, A.; Hernández, B.; Escobar-del Pozo, C. Influence of blood rheology and turbulence models in the numerical simulation of aneurysms. Bioengineering 2023, 10, 1170. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.; Shirani, E.; Sadeghi, M.R. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 2011, 44, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Praharaj, P.; Sonawane, C.; Pandey, A.; Kumar, V.; Warke, A.; Panchal, H.; Ibrahim, R.; Prakash, C. Numerical analysis of hemodynamic parameters in stenosed arteries under pulsatile flow conditions. Med. Nov. Technol. Devices 2023, 20, 100265. [Google Scholar] [CrossRef]
- Srivastava, V.P.; Tandon, M.; Srivastav, R.K. A macroscopic two-phase blood flow through a bell shaped stenosis in an artery with permeable wall. Appl. Appl. Math. Int. J. (AAM) 2012, 7, 3. [Google Scholar]
- Hossain, S.S.; Johnson, M.J.; Hughes, T.J.R. A parametric study of the effect of 3D plaque shape on local hemodynamics and implications for plaque instability. Biomech. Model. Mechanobiol. 2024, 23, 1209–1227. [Google Scholar] [CrossRef]
- Pickett, J.R.; Wu, Y.; Zacchi, L.F.; Ta, H.T. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: Drug discovery and development of VCAM-1–directed novel therapeutics. Cardiovasc. Res. 2023, 119, 2278–2293. [Google Scholar] [CrossRef]
- Takeuchi, K.; Isozaki, M.; Higashino, Y.; Kosaka, N.; Kikuta, K.-I.; Ishida, S.; Kanamoto, M.; Takei, N.; Okazawa, H.; Kimura, H. The utility of arterial transit time measurement for evaluating the Hemodynamic Perfusion State of patients with chronic cerebrovascular stenosis or occlusive disease: Correlative Study between MR Imaging and 15O-labeled H2O Positron Emission Tomography. Magn. Reson. Med Sci. 2023, 22, 289–300. [Google Scholar] [CrossRef]
- Engelhard, S.; van Helvert, M.; Voorneveld, J.; Bosch, J.G.; Lajoinie, G.; Groot Jebbink, E.; Reijnen, M.M.P.J.; Versluis, M. Blood flow quantification with high-frame-rate, contrast-enhanced ultrasound velocimetry in stented aortoiliac arteries: In vivo feasibility. Ultrasound Med. Biol. 2022, 48, 1518–1527. [Google Scholar] [CrossRef]
- Carrozzi, A.; Manfrini, E.; Golini, C.; Pastore, L.V.; Vitale, A.; Bartolo, P.; Requena, M.; Diana, F.; Lascuevas, M.D.; Testa, C.; et al. Arterial spin labeling MRI in patients undergoing carotid artery revascularization: A systematic review of the hemodynamic changes and clinical implications. Eur. Radiol. 2025, 1–12. [Google Scholar] [CrossRef]
- Chahibi, Y.; Akyildiz, I.F.; Balasubramaniam, S.; Koucheryavy, Y. Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Trans. Biomed. Eng. 2015, 62, 1683–1695. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Joint localization and channel estimation in flow-assisted molecular communication systems. Nano Commun. Netw. 2023, 35, 100434. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, K.; Xiao, L.; Hu, X.; Cai, W.; Liu, L.; Liu, Y.; Li, W.; Zhou, H.; Qian, Z.; et al. Exploring atherosclerosis imaging with contrast-enhanced MRI using PEGylated ultrasmall iron oxide nanoparticles. Front. Bioeng. Biotechnol. 2023, 11, 1279446. [Google Scholar] [CrossRef]
- Takata, K.; Kimura, H.; Ishida, S.; Isozaki, M.; Higashino, Y.; Kikuta, K.-I.; Okazawa, H.; Tsujikawa, T. Assessment of arterial transit time and cerebrovascular reactivity in Moyamoya disease by simultaneous PET/MRI. Diagnostics 2023, 13, 756. [Google Scholar] [CrossRef] [PubMed]
- Danilov, V.V.; Klyshnikov, K.Y.; Gerget, O.M.; Kutikhin, A.G.; Ganyukov, V.I.; Frangi, A.F.; Ovcharenko, E.A. Real-time coronary artery stenosis detection based on modern neural networks. Sci. Rep. 2021, 11, 7582. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, A.A.; Keller, L.; Sepulcri, D.; Boehm, R.; Garefa, C.; Venugopal, P.; Mitra, J.; Ghose, S.; Deak, P.; Pack, J.D.; et al. High-speed on-site deep learning-based FFR-CT algorithm: Diagnostic accuracy for hemodynamically significant coronary stenosis. AJR Am. J. Roentgenol. 2023, 221, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Faulder, T.I.; Prematunga, K.; Moloi, S.B.; Faulder, L.E.; Jones, R.; Moxon, J.V. Agreement of Fractional Flow Reserve Estimated by Computed Tomography with Invasively Measured Fractional Flow Reserve: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2024, 13, e034552. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, X.; Lu, P.; Long, X.; Song, J. Molecular Communication Platform Based on Fluorescence Excitation: Design and Implementation. In Proceedings of the 2024 4th International Conference on Blockchain Technology and Information Security, Wuhan, China, 17–19 August 2024; pp. 249–257. [Google Scholar]
Metric | Representative Usage | Limitations in Vascular MC |
---|---|---|
Arrival probability | Sun et al. (2022): fraction of nanoparticles reaching outlet under stenosis [11] | Captures global efficiency, but lacks temporal resolution and ignores delay details. |
Centroid time | Chahibi et al. (2015): mean of concentration–time–response in drug delivery models [41] | Biased by long diffusion/adsorption tails; less robust to noise. |
CRB | Kumar, A. et al. (2021) [42] | Not directly measurable; purely statistical benchmark. |
Peak response time (proposed) | Directly observable from maximum of ; used for stenosis localization in this study [43] | Peak amplitude may decrease under adsorption, but timing remains stable and robust. |
Severity (s) | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
1.296 | 1.355 | 1.429 | 1.528 | 1.665 | |
1.641 | 1.714 | 1.809 | 1.934 | 2.107 | |
2.143 | 2.239 | 2.362 | 2.526 | 2.752 | |
2.917 | 3.048 | 3.216 | 3.438 | 3.746 | |
4.200 | 4.389 | 4.630 | 4.951 | 5.395 |
Method/Study | Data Source and Approach | Metrics and Results | Limitations |
---|---|---|---|
Takeuchi et al., 2023 [38] | ASL-MRI vs. in intracranial artery stenosis patients | Moderate correlation with PET-CBF after ATT correction (R2 ) | High cost, requires PET reference, limited resolution |
Takata et al., 2023 [44] | Multi-PLD ASL-MRI in Moyamoya disease, baseline vs. ACZ challenge | Regional correlation with PET-CBF (–0.75); ASL-ATT distinguished CVR regions | Requires pharmacological challenge, SNR limitations |
Danilov et al., 2021 [45] | X-ray coronary angiography + deep learning | High detection performance (mAP ≈ 0.94, F1 ≈ 0.96), real-time performance (99 ms/image) | Black-box model, poor interpretability, requires large training datasets |
Giannopoulos et al., 2023 [46] | Deep learning CT-FFR, on-site high-speed algorithm | Excellent diagnostic accuracy ∼ 95.9%; sensitivity ∼ 93.5%; specificity ∼ 97.7% | Requires high-quality CTA images and specialized deployment |
Faulder et al., 2024 [47] | CTCA stenosis quantification vs. invasive FFR | Moderate consistency: sensitivity ∼ 82%; specificity ∼ 72% | Anatomical thresholds limited in predicting hemodynamic significance |
Proposed method: Peak response time inversion | Molecular communication model + COMSOL simulation; non-Newtonian fluid + adsorption–desorption kinetics + cascaded segments | Localization accuracy > 95% (); >80% at ; resolves stenosis differences | Simulation only; no in vitro/in vivo validation yet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Zhang, P.; Wang, X.; Lu, P. The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things. J. Sens. Actuator Netw. 2025, 14, 101. https://doi.org/10.3390/jsan14050101
Shao Z, Zhang P, Wang X, Lu P. The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things. Journal of Sensor and Actuator Networks. 2025; 14(5):101. https://doi.org/10.3390/jsan14050101
Chicago/Turabian StyleShao, Zitong, Pengfei Zhang, Xiaofang Wang, and Pengfei Lu. 2025. "The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things" Journal of Sensor and Actuator Networks 14, no. 5: 101. https://doi.org/10.3390/jsan14050101
APA StyleShao, Z., Zhang, P., Wang, X., & Lu, P. (2025). The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things. Journal of Sensor and Actuator Networks, 14(5), 101. https://doi.org/10.3390/jsan14050101