Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (992)

Search Parameters:
Keywords = IoT healthcare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3741 KB  
Article
HiLTS©: Human-in-the-Loop Therapeutic System: A Wireless-enabled Digital Neuromodulation Testbed for Brainwave Entrainment
by Arfan Ghani
Technologies 2026, 14(1), 71; https://doi.org/10.3390/technologies14010071 (registering DOI) - 18 Jan 2026
Abstract
Epileptic seizures arise from abnormally synchronized neural activity and remain a major global health challenge, affecting more than 50 million people worldwide. Despite advances in pharmacological interventions, a significant proportion of patients continue to experience uncontrolled seizures, underscoring the need for alternative neuromodulation [...] Read more.
Epileptic seizures arise from abnormally synchronized neural activity and remain a major global health challenge, affecting more than 50 million people worldwide. Despite advances in pharmacological interventions, a significant proportion of patients continue to experience uncontrolled seizures, underscoring the need for alternative neuromodulation strategies. Rhythmic neural entrainment has recently emerged as a promising mechanism for disrupting pathological synchrony, but most existing systems rely on complex analog electronics or high-power stimulation hardware. This study investigates a proof-of-concept digital custom-designed chip that generates a stable 6 Hz oscillation capable of imposing a stable rhythmic pattern onto digitized seizure-like EEG dynamics. Using a publicly available EEG seizure dataset, we extracted and averaged analog seizure waveforms, digitized them to emulate neural front-ends, and directly interfaced the digitized signals with digital output recordings acquired from the chip using a Saleae Logic analyser. The chip’s pulse train was resampled and low-pass-reconstructed to produce an analog 6 Hz waveform, allowing direct comparison between seizure morphology, its digitized representation, and the entrained output. Frequency-domain and time-domain analyses demonstrate that the chip imposes a narrow-band 6 Hz rhythm that overrides the broadband spectral profile of seizure activity. These results provide a proof-of-concept for low-power digital custom-designed entrainment as a potential pathway toward simplified, wearable neuromodulation device for future healthcare diagnostics. Full article
27 pages, 2521 KB  
Article
IoTToe: Monitoring Foot Angle Variability for Health Management and Safety
by Ata Jahangir Moshayedi, Zeashan Khan, Zhonghua Wang and Mehran Emadi Andani
Math. Comput. Appl. 2026, 31(1), 13; https://doi.org/10.3390/mca31010013 - 16 Jan 2026
Viewed by 38
Abstract
Toe-in (inward) and toe-out (outward) foot alignments significantly affect gait, posture, and joint stress, causing issues like abnormal gait, joint strain, and foot conditions such as plantar fasciitis and high arches. Addressing these alignments is crucial for improving mobility and comfort. This study [...] Read more.
Toe-in (inward) and toe-out (outward) foot alignments significantly affect gait, posture, and joint stress, causing issues like abnormal gait, joint strain, and foot conditions such as plantar fasciitis and high arches. Addressing these alignments is crucial for improving mobility and comfort. This study introduces IoTToe, a wearable IoT device designed to detect and monitor gait patterns by using six ADXL345 sensors positioned on the foot, allowing healthcare providers to remotely monitor alignment via a webpage, reducing the need for physical tests. Tested on 45 participants aged 20–25 years with diverse BMIs, IoTToe proved suitable for both children and adults, supporting therapy and diagnostics. Statistical tests, including ICC, DFA, and ANOVA, confirmed the device’s effectiveness in detecting gait and postural control differences between legs. Gait variability results indicated that left leg showed more adaptability (DFA close to 0.5), compared to the right leg which was found more consistent (DFA close to 1). Postural control showed stable and agile standing with values between 0.5 and 1. Sensor combinations revealed that removing sensor B (on the gastrocnemius muscle) did not affect data quality. Moreover, taller individuals displayed smaller ankle angle changes, highlighting challenges in balance and upper body stability. IoTToe offers accurate data collection, reliability, portability, and significant potential for gait monitoring and injury prevention. Future studies would expand participation, especially among women and those with alignment issues, to enhance the system’s applicability for foot health management, safety and rehabilitation, further supporting telemetric applications in healthcare. Full article
(This article belongs to the Special Issue Advances in Computational and Applied Mechanics (SACAM))
Show Figures

Figure 1

21 pages, 1555 KB  
Article
Cyber Approach for DDoS Attack Detection Using Hybrid CNN-LSTM Model in IoT-Based Healthcare
by Mbarka Belhaj Mohamed, Dalenda Bouzidi, Manar Khalid Ibraheem, Abdullah Ali Jawad Al-Abadi and Ahmed Fakhfakh
Future Internet 2026, 18(1), 52; https://doi.org/10.3390/fi18010052 - 15 Jan 2026
Viewed by 50
Abstract
Healthcare has been fundamentally changed by the expansion of IoT, which enables advanced diagnostics and continuous monitoring of patients outside clinical settings. Frequently interconnected medical devices often encounter resource limitations and lack comprehensive security safeguards. Therefore, such devices are prone to intrusions, with [...] Read more.
Healthcare has been fundamentally changed by the expansion of IoT, which enables advanced diagnostics and continuous monitoring of patients outside clinical settings. Frequently interconnected medical devices often encounter resource limitations and lack comprehensive security safeguards. Therefore, such devices are prone to intrusions, with DDoS attacks in particular threatening the integrity of vital infrastructure. To safe guard sensitive patient information and ensure the integrity and confidentiality of medical devices, this article explores the critical importance of robust security measures in healthcare IoT systems. In order to detect DDoS attacks in healthcare networks supported by WBSN-enabled IoT devices, we propose a hybrid detection model. The model utilizes the advantages of Long Short-Term Memory (LSTM) networks for modeling temporal dependencies in network traffic and Convolutional Neural Networks (CNNs) for extracting spatial features. The effectiveness of the model is demonstrated by simulation results on the CICDDoS2019 datasets, which indicate a detection accuracy of 99% and a loss of 0.05%, respectively. The evaluation results highlight the capability of the hybrid model to reliably detect potential anomalies, showing superior performance over leading contemporary methods in healthcare environments. Full article
Show Figures

Graphical abstract

25 pages, 540 KB  
Article
Pricing Incentive Mechanisms for Medical Data Sharing in the Internet of Things: A Three-Party Stackelberg Game Approach
by Dexin Zhu, Zhiqiang Zhou, Huanjie Zhang, Yang Chen, Yuanbo Li and Jun Zheng
Sensors 2026, 26(2), 488; https://doi.org/10.3390/s26020488 - 12 Jan 2026
Viewed by 223
Abstract
In the context of the rapid growth of the Internet of Things and mobile health services, sensors and smart wearable devices are continuously collecting and uploading dynamic health data. Together with the long-term accumulated electronic medical records and multi-source heterogeneous clinical data from [...] Read more.
In the context of the rapid growth of the Internet of Things and mobile health services, sensors and smart wearable devices are continuously collecting and uploading dynamic health data. Together with the long-term accumulated electronic medical records and multi-source heterogeneous clinical data from healthcare institutions, these data form the cornerstone of intelligent healthcare. In the context of medical data sharing, previous studies have mainly focused on privacy protection and secure data transmission, while relatively few have addressed the issue of incentive mechanisms. However, relying solely on technical means is insufficient to solve the problem of individuals’ willingness to share their data. To address this challenge, this paper proposes a three-party Stackelberg-game-based incentive mechanism for medical data sharing. The mechanism captures the hierarchical interactions among the intermediator, electronic device users, and data consumers. In this framework, the intermediator acts as the leader, setting the transaction fee; electronic device users serve as the first-level followers, determining the data price; and data consumers function as the second-level followers, deciding on the purchase volume. A social network externality is incorporated into the model to reflect the diffusion effect of data demand, and the optimal strategies and system equilibrium are derived through backward induction. Theoretical analysis and numerical experiments demonstrate that the proposed mechanism effectively enhances users’ willingness to share data and improves the overall system utility, achieving a balanced benefit among the cloud platform, electronic device users, and data consumers. This study not only enriches the game-theoretic modeling approaches to medical data sharing but also provides practical insights for designing incentive mechanisms in IoT-based healthcare systems. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 2458 KB  
Article
Efficient and Personalized Federated Learning for Human Activity Recognition on Resource-Constrained Devices
by Abdul Haseeb, Ian Cleland, Chris Nugent and James McLaughlin
Appl. Sci. 2026, 16(2), 700; https://doi.org/10.3390/app16020700 - 9 Jan 2026
Viewed by 143
Abstract
Human Activity Recognition (HAR) using wearable sensors enables impactful applications in healthcare, fitness, and smart environments, but it also faces challenges related to data privacy, non-independent and identically distributed (non-IID) data, and limited computational resources on edge devices. This study proposes an efficient [...] Read more.
Human Activity Recognition (HAR) using wearable sensors enables impactful applications in healthcare, fitness, and smart environments, but it also faces challenges related to data privacy, non-independent and identically distributed (non-IID) data, and limited computational resources on edge devices. This study proposes an efficient and personalized federated learning (PFL) framework for HAR that integrates federated training with model compression and per-client fine-tuning to address these challenges and support deployment on resource-constrained devices (RCDs). A convolutional neural network (CNN) is trained across multiple clients using FedAvg, followed by magnitude-based pruning and float16 quantization to reduce model size. While personalization and compression have previously been studied independently, their combined application for HAR remains underexplored in federated settings. Experimental results show that the global FedAvg model experiences performance degradation under non-IID conditions, which is further amplified after pruning, whereas per-client personalization substantially improves performance by adapting the model to individual user patterns. To ensure realistic evaluation, experiments are conducted using both random and temporal data splits, with the latter mitigating temporal leakage in time-series data. Personalization consistently improves performance under both settings, while quantization reduces the model footprint by approximately 50%, enabling deployment on wearable and IoT devices. Statistical analysis using paired significance tests confirms the robustness of the observed performance gains. Overall, this work demonstrates that combining lightweight model compression with personalization providing an effective and practical solution for federated HAR, balancing accuracy, efficiency, and deployment feasibility in real-world scenarios. Full article
Show Figures

Figure 1

31 pages, 3167 KB  
Article
A Blockchain-Based Framework for Secure Healthcare Data Transfer and Disease Diagnosis Using FHM C-Means and LCK-CMS Neural Network
by Obada Al-Khatib, Ghalia Nassreddine, Amal El Arid, Abeer Elkhouly and Mohamad Nassereddine
Sci 2026, 8(1), 13; https://doi.org/10.3390/sci8010013 - 9 Jan 2026
Viewed by 208
Abstract
IoT-based blockchain technology has improved the healthcare system to ensure the privacy and security of healthcare data. A Blockchain Bridge (BB) is a tool that enables multiple blockchain networks to communicate with each other. The existing approach combining the classical and quantum blockchain [...] Read more.
IoT-based blockchain technology has improved the healthcare system to ensure the privacy and security of healthcare data. A Blockchain Bridge (BB) is a tool that enables multiple blockchain networks to communicate with each other. The existing approach combining the classical and quantum blockchain models failed to secure the data transmission during cross-chain communication. Thus, this study proposes a new BB verification for secure healthcare data transfer. Additionally, a brain tumor analysis framework is developed based on segmentation and neural networks. After the patient’s registration on the blockchain network, Brain Magnetic Resonance Imaging (MRI) data is encrypted using Hash-Keyed Quantum Cryptography and verified using a Peer-to-Peer Exchange model. The Brain MRI is preprocessed for brain tumor detection using the Fuzzy HaMan C-Means (FHMCM) segmentation technique. The features are extracted from the segmented image and classified using the LeCun Kaiming-based Convolutional ModSwish Neural Network (LCK-CMSNN) classifier. Subsequently, the brain tumor diagnosis report is securely transferred to the patient via a smart contract. The proposed model verified BB with a Verification Time (VT) of 12,541 ms, secured the input with a Security level (SL) of 98.23%, and classified the brain tumor with 99.15% accuracy, thus showing better performance than the existing models. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

23 pages, 3750 KB  
Article
Lightweight Frame Format for Interoperability in Wireless Sensor Networks of IoT-Based Smart Systems
by Samer Jaloudi
Future Internet 2026, 18(1), 33; https://doi.org/10.3390/fi18010033 - 7 Jan 2026
Viewed by 157
Abstract
Applications of smart cities, smart buildings, smart agriculture systems, smart grids, and other smart systems benefit from Internet of Things (IoT) protocols, networks, and architecture. Wireless Sensor Networks (WSNs) in smart systems that employ IoT use wireless communication technologies between sensors in the [...] Read more.
Applications of smart cities, smart buildings, smart agriculture systems, smart grids, and other smart systems benefit from Internet of Things (IoT) protocols, networks, and architecture. Wireless Sensor Networks (WSNs) in smart systems that employ IoT use wireless communication technologies between sensors in the Things layer and the Fog layer hub. Such wireless protocols and networks include WiFi, Bluetooth, and Zigbee, among others. However, the payload formats of these protocols are heterogeneous, and thus, they lack a unified frame format that ensures interoperability. In this paper, a lightweight, interoperable frame format for low-rate, small-size Wireless Sensor Networks (WSNs) in IoT-based systems is designed, implemented, and tested. The practicality of this system is underscored by the development of a gateway that transfers collected data from sensors that use the unified frame to online servers via message queuing and telemetry transport (MQTT) secured with transport layer security (TLS), ensuring interoperability using the JavaScript Object Notation (JSON) format. The proposed frame is tested using market-available technologies such as Bluetooth and Zigbee, and then applied to smart home applications. The smart home scenario is chosen because it encompasses various smart subsystems, such as healthcare monitoring systems, energy monitoring systems, and entertainment systems, among others. The proposed system offers several advantages, including a low-cost architecture, ease of setup, improved interoperability, high flexibility, and a lightweight frame that can be applied to other wireless-based smart systems and applications. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and Internet of Things)
Show Figures

Graphical abstract

20 pages, 397 KB  
Review
Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review
by Marek Ostrysz, Zenon Szczepaniak and Tadeusz Sondej
Sensors 2026, 26(2), 359; https://doi.org/10.3390/s26020359 - 6 Jan 2026
Viewed by 272
Abstract
This article reviews recent advances in microwave and radar techniques for non-contact measurement of human vital signs in dynamic conditions. The focus is on solutions that work when the subject is moving or performing everyday activities, rather than lying motionless in clinical settings. [...] Read more.
This article reviews recent advances in microwave and radar techniques for non-contact measurement of human vital signs in dynamic conditions. The focus is on solutions that work when the subject is moving or performing everyday activities, rather than lying motionless in clinical settings. This review covers innovative biodegradable and flexible antenna designs for wearable devices operating in multiple frequency bands and supporting efficient 5G/IoT connectivity. Particular attention is paid to ultra-wideband (UWB) radar, Doppler sensors, and microwave reflectometry combined with advanced signal-processing and deep learning algorithms for robust estimation of respiration, heart rate, and other cardiopulmonary parameters in the presence of body motion. Applications in telemedicine, home monitoring, sports, and search and rescue are discussed, including localization of people trapped under rubble by detecting their vital sign signatures at a distance. This paper also highlights key challenges such as inter-subject anatomical variability, motion artifacts, hardware miniaturization, and energy efficiency, which still limit widespread deployment. Finally, related developments in microwave imaging and early detection of pathological tissue changes are briefly outlined, highlighting the shared components and processing methods. In general, microwave techniques show strong potential for unobtrusive, continuous, and environmentally sustainable monitoring of human physiological activity, supporting future healthcare and safety systems. Full article
(This article belongs to the Special Issue Feature Review Papers in Intelligent Sensors)
Show Figures

Figure 1

18 pages, 1420 KB  
Article
FedPrIDS: Privacy-Preserving Federated Learning for Collaborative Network Intrusion Detection in IoT
by Sameer Mankotia, Daniel Conte de Leon and Bhaskar P. Rimal
J. Cybersecur. Priv. 2026, 6(1), 10; https://doi.org/10.3390/jcp6010010 - 2 Jan 2026
Viewed by 380
Abstract
One of the major challenges for effective intrusion detection systems (IDSs) is continuously and efficiently incorporating changes on cyber-attack tactics, techniques, and procedures in the Internet of Things (IoT). Semi-automated cross-organizational sharing of IDS data is a potential solution. However, a major barrier [...] Read more.
One of the major challenges for effective intrusion detection systems (IDSs) is continuously and efficiently incorporating changes on cyber-attack tactics, techniques, and procedures in the Internet of Things (IoT). Semi-automated cross-organizational sharing of IDS data is a potential solution. However, a major barrier to IDS data sharing is privacy. In this article, we describe the design, implementation, and evaluation of FedPrIDS: a privacy-preserving federated learning system for collaborative network intrusion detection in IoT. We performed experimental evaluation of FedPrIDS using three public network-based intrusion datasets: CIC-IDS-2017, UNSW-NB15, and Bot-IoT. Based on the labels in these datasets for attack type, we created five fictitious organizations, Financial, Technology, Healthcare, Government, and University and evaluated IDS accuracy before and after intelligence sharing. In our evaluation, FedPrIDS showed (1) a detection accuracy net gain of 8.5% to 14.4% from a comparative non-federated approach, with ranges depending on the organization type, where the organization type determines its estimated most likely attack types, privacy thresholds, and data quality measures; (2) a federated detection accuracy across attack types of 90.3% on CIC-IDS-2017, 89.7% on UNSW-NB15, and 92.1% on Bot-IoT; (3) maintained privacy of shared NIDS data via federated machine learning; and (4) reduced inter-organizational communication overhead by an average 50% and showed convergence within 20 training rounds. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

17 pages, 664 KB  
Article
Trust-Aware Distributed and Hybrid Intrusion Detection for Rank Attacks in RPL IoT Environments
by Bruno Monteiro and Jorge Granjal
IoT 2026, 7(1), 4; https://doi.org/10.3390/iot7010004 - 30 Dec 2025
Viewed by 320
Abstract
The rapid expansion of Internet of Things (IoT) systems in critical infrastructures has raised significant concerns regarding network security and reliability. In particular, RPL (Routing Protocol for Low-Power and Lossy Networks), widely adopted in IoT communications, remains vulnerable to topological manipulation attacks such [...] Read more.
The rapid expansion of Internet of Things (IoT) systems in critical infrastructures has raised significant concerns regarding network security and reliability. In particular, RPL (Routing Protocol for Low-Power and Lossy Networks), widely adopted in IoT communications, remains vulnerable to topological manipulation attacks such as Decreased Rank, Increased Rank, and the less-explored Worst Parent Selection (WPS). While several RPL security approaches address rank manipulation attacks, most assume static topologies and offer limited support for mobility. Moreover, trust-based routing and hybrid IDS (Intrusion Detection System) approaches are seldom integrated, which limits detection reliability under mobility. This study introduces a unified IDS framework that combines mobility awareness with trust-based decision-making to detect multiple rank-based attacks. We evaluate two lightweight, rule-based IDS architectures: a fully distributed model and a hybrid model supported by designated monitoring nodes. A trust-based mechanism is incorporated into both architectures, and their performance is assessed under static and mobile scenarios. Results show that while the distributed IDS provides rapid local responsiveness, the hybrid IDS maintains more stable latency and packet delivery under mobility. Additionally, incorporating trust metrics reduces false alerts and improves detection reliability while preserving low latency and energy usage, supporting time-sensitive applications such as healthcare monitoring. Full article
Show Figures

Figure 1

38 pages, 5997 KB  
Article
Blockchain-Enhanced Network Scanning and Monitoring (BENSAM) Framework
by Syed Wasif Abbas Hamdani, Kamran Ali and Zia Muhammad
Blockchains 2026, 4(1), 1; https://doi.org/10.3390/blockchains4010001 - 26 Dec 2025
Viewed by 240
Abstract
In recent years, the convergence of advanced technologies has enabled real-time data access and sharing across diverse devices and networks, significantly amplifying cybersecurity risks. For organizations with digital infrastructures, network security is crucial for mitigating potential cyber-attacks. They establish security policies to protect [...] Read more.
In recent years, the convergence of advanced technologies has enabled real-time data access and sharing across diverse devices and networks, significantly amplifying cybersecurity risks. For organizations with digital infrastructures, network security is crucial for mitigating potential cyber-attacks. They establish security policies to protect systems and data, but employees may intentionally or unintentionally bypass these policies, rendering the network vulnerable to internal and external threats. Detecting these policy violations is challenging, requiring frequent manual system checks for compliance. This paper addresses key challenges in safeguarding digital assets against evolving threats, including rogue access points, man-in-the-middle attacks, denial-of-service (DoS) incidents, unpatched vulnerabilities, and AI-driven automated exploits. We propose a Blockchain-Enhanced Network Scanning and Monitoring (BENSAM) Framework, a multi-layered system that integrates advanced network scanning with a structured database for asset management, policy-driven vulnerability detection, and remediation planning. Key enhancements include device profiling, user activity monitoring, network forensics, intrusion detection capabilities, and multi-format report generation. By incorporating blockchain technology, and leveraging immutable ledgers and smart contracts, the framework ensures tamper-proof audit trails, decentralized verification of policy compliance, and automated real-time responses to violations such as alerts; actual device isolation is performed by external controllers like SDN or NAC systems. The research provides a detailed literature review on blockchain applications in domains like IoT, healthcare, and vehicular networks. A working prototype of the proposed BENSAM framework was developed that demonstrates end-to-end network scanning, device profiling, traffic monitoring, policy enforcement, and blockchain-based immutable logging. This implementation is publicly released and is available on GitHub. It analyzes common network vulnerabilities (e.g., open ports, remote access, and disabled firewalls), attacks (including spoofing, flooding, and DDoS), and outlines policy enforcement methods. Moreover, the framework anticipates emerging challenges from AI-driven attacks such as adversarial evasion, data poisoning, and transformer-based threats, positioning the system for the future integration of adaptive mechanisms to counter these advanced intrusions. This blockchain-enhanced approach streamlines security analysis, extends the framework for AI threat detection with improved accuracy, and reduces administrative overhead by integrating multiple security tools into a cohesive, trustworthy, reliable solution. Full article
Show Figures

Figure 1

46 pages, 1279 KB  
Article
Privacy-Preserving Machine Learning Techniques: Cryptographic Approaches, Challenges, and Future Directions
by Elif Nur Kucur, Tolga Buyuktanir, Muharrem Ugurelli and Kazim Yildiz
Appl. Sci. 2026, 16(1), 277; https://doi.org/10.3390/app16010277 - 26 Dec 2025
Viewed by 605
Abstract
Privacy-preserving machine learning (PPML) constitutes a core element of responsible AI by supporting model training and inference without exposing sensitive information. This survey presents a comprehensive examination of the major cryptographic PPML techniques and introduces a unified taxonomy covering technical models, verification criteria, [...] Read more.
Privacy-preserving machine learning (PPML) constitutes a core element of responsible AI by supporting model training and inference without exposing sensitive information. This survey presents a comprehensive examination of the major cryptographic PPML techniques and introduces a unified taxonomy covering technical models, verification criteria, and evaluation dimensions. The study consolidates findings from both survey and experimental works using structured comparison tables and emphasizes that recent research increasingly adopts hybrid and verifiable PPML designs. In addition, we map PPML applications across domains such as healthcare, finance, Internet of Things (IoT), and edge systems, indicating that cryptographic approaches are progressively transitioning from theoretical constructs to deployable solutions. Finally, the survey outlines emerging trends—including the growth of zero-knowledge proofs (ZKPs)-based verification and domain-specific hybrid architectures—and identifies practical considerations that shape PPML adoption in real systems. Full article
Show Figures

Figure 1

30 pages, 2499 KB  
Article
Enhancing IoT Common Service Functions with Blockchain: From Analysis to Standards-Based Prototype Implementation
by Jiho Lee, Jieun Lee, Zehua Wang and JaeSeung Song
Electronics 2026, 15(1), 123; https://doi.org/10.3390/electronics15010123 - 26 Dec 2025
Cited by 1 | Viewed by 269
Abstract
The proliferation of Internet of Things (IoT) applications in safety-critical domains, such as healthcare, smart transportation, and industrial automation, demands robust solutions for data integrity, traceability, and security that surpass the capabilities of centralized databases. This paper analyzes how blockchain technology can be [...] Read more.
The proliferation of Internet of Things (IoT) applications in safety-critical domains, such as healthcare, smart transportation, and industrial automation, demands robust solutions for data integrity, traceability, and security that surpass the capabilities of centralized databases. This paper analyzes how blockchain technology can be integrated with core IoT service functions—including data management, security, device management, group coordination, and automated billing—to enhance immutability, trust, and operational efficiency. Our analysis identifies practical use cases such as consensus-driven tamper-proof storage, role-based access control, firmware integrity verification, and automated micropayments. These use cases showcase blockchain’s potential beyond traditional data storage. Building on this, we propose a novel framework that integrates a permissioned distributed ledger with a standardized IoT service layer platform through a Blockchain Interworking Proxy Entity (BlockIPE). This proxy dynamically maps IoT service functions to smart contracts, enabling flexible data routing to conventional databases or blockchains based on the application requirements. We implement a Dockerized prototype that integrates a C-based oneM2M platform with an Ethereum-compatible permissioned ledger (implemented using Hyperledger Besu) via BlockIPE, incorporating security features such as role-based access control. For performance evaluation, we use Ganache to isolate proxy-level overhead and scalability. At the proxy level, the blockchain-integrated path achieves processing latencies (≈86 ms) comparable to, and slightly faster than, the traditional database path. Although the end-to-end latency is inherently governed by on-chain confirmation (≈0.586–1.086 s), the scalability remains high (up to 100,000 TPS). This validates that the architecture secures IoT ecosystems with manageable operational overhead. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

17 pages, 1644 KB  
Article
A Statistical Method and Deep Learning Models for Detecting Denial of Service Attacks in the Internet of Things (IoT) Environment
by Ruuhwan, Rendy Munadi, Hilal Hudan Nuha, Erwin Budi Setiawan and Niken Dwi Wahyu Cahyani
Appl. Syst. Innov. 2026, 9(1), 9; https://doi.org/10.3390/asi9010009 - 26 Dec 2025
Viewed by 302
Abstract
The flourishing of the Internet of Things (IoT) has not only improved our lives in smart homes and healthcare but also made us more susceptible to cyberattacks. Legacy intrusion detection systems are simply overwhelmed by the scale and diversity of IoT traffic, which [...] Read more.
The flourishing of the Internet of Things (IoT) has not only improved our lives in smart homes and healthcare but also made us more susceptible to cyberattacks. Legacy intrusion detection systems are simply overwhelmed by the scale and diversity of IoT traffic, which is why there is a need for more intelligent forensic solutions. In this paper, we present a statistical technique, the Averaging Detection Method (ADM), for detecting attack traffic. Furthermore, the five deep learning models SimpleRNN, LSTM, GRU, BLSTM, and BGRU are compared for malicious traffic detection in IoT network forensics. A smart home dataset with a simulated DoS attack was used for performance analysis of accuracy, precision, recall, F1-score, and training time. The results indicate that all models achieve high accuracy, above 97%. BiGRU achieves the best performance, 99% accuracy, precision, recall, and F1-score, at the cost of high training time. GRU achieves perfect precision and recall (100%) with faster training, which can be considered for resource-constrained scenarios. SimpleRNN trains faster with comparable accuracy, while LSTMs and their bidirectional counterparts are better at capturing long-term dependencies but are computationally more expensive. In summary, deep learning, especially BiGRU and GRU, holds great promise for boosting IoT forensic investigation by enabling real-time DoS detection and reliable evidence collection. Meanwhile, the proposed ADM is simpler and more efficient at classifying DoS traffic than deep learning models. Full article
(This article belongs to the Special Issue Recent Advances in Internet of Things and Its Applications)
Show Figures

Figure 1

45 pages, 3603 KB  
Review
Sensing in Smart Cities: A Multimodal Machine Learning Perspective
by Touseef Sadiq and Christian W. Omlin
Smart Cities 2026, 9(1), 3; https://doi.org/10.3390/smartcities9010003 - 24 Dec 2025
Viewed by 635
Abstract
Smart cities generate vast multimodal data from IoT devices, surveillance systems, health monitors, and environmental monitoring infrastructure. The seamless integration and interpretation of such multimodal data is essential for intelligent decision-making and adaptive urban services. Multimodal machine learning (MML) provides a unified framework [...] Read more.
Smart cities generate vast multimodal data from IoT devices, surveillance systems, health monitors, and environmental monitoring infrastructure. The seamless integration and interpretation of such multimodal data is essential for intelligent decision-making and adaptive urban services. Multimodal machine learning (MML) provides a unified framework to fuse and analyze diverse sources, surpassing conventional unimodal and rule-based approaches. This review surveys the role of MML in smart city sensing across mobility, public safety, healthcare, and environmental domains, outlining key data modalities, enabling technologies and state-of-the-art fusion architectures. We analyze major methodological and deployment challenges, including data alignment, scalability, modality-specific noise, infrastructure limitations, privacy, and ethics, and identify future directions toward scalable, interpretable, and responsible MML for urban systems. This survey serves as a reference for AI researchers, urban planners, and policymakers seeking to understand, design, and deploy multimodal learning solutions for intelligent urban sensing frameworks. Full article
Show Figures

Figure 1

Back to TopTop