Recent Advances in Transcription Factor–Mediated Regulation of Salvianolic Acid Biosynthesis in Salvia miltiorrhiza
Abstract
1. Introduction
2. Literature Search Strategy
3. Biosynthetic Pathways of Salvianolic Acids and Transcriptional Regulation
3.1. Salvianolic Acid Biosynthetic Pathways
3.2. Transcription Factors Regulating Salvianolic Acid Biosynthesis
4. Characteristics of Transcription Factors Regulating Salvianolic Acid Biosynthesis
4.1. Transcription Factor Families and Structural Features
4.2. Expression Patterns and Subcellular Localisation of Transcription Factors
4.3. Hormone- and Stress-Induced Signalling in the Regulation of Salvianolic Acid Biosynthesis
| TF Family | Number | Member | Regulatory Role | Inducer | Expression Pattern | Subcellular Localisation | References |
|---|---|---|---|---|---|---|---|
| MYB(R2R3) | 110 | SmMYB1 | Positive | MeJA | leaf | Nucleus | [19] |
| SmMYB2 | Positive | MeJA | Root | Nucleus | [65] | ||
| SmMYB4 | Negative | MeJA, ABA, SA | Root | Nucleus | [18] | ||
| SmMYB18 | Positive | / | Root | Nucleus | [75] | ||
| SmMYB52 | Positive | MeJA, IAA | Root | Nucleus, Plasma membrane | [51] | ||
| SmMYB111 | Positive | MeJA, SA, GA | Root | Nucleus | [20,52,58,76] | ||
| SmMYB39 | Negative | MeJA | Root | Nucleus | [58,76] | ||
| SmMYB98 | Positive | / | Root | Nucleus | [9] | ||
| SmMYB9a | Negative | / | Root | Nucleus, Cytoplasm | [62] | ||
| SmMYB76 | Negative | MeJA | Root | Nucleus | [77] | ||
| SmMYB36 | Negative | / | / | Nucleus | [78,79,80] | ||
| SmMYB71 | Negative | GA3 | Root | Nucleus | [60] | ||
| SmMYB97 | Positive | MeJA | Root | Nucleus | [81] | ||
| SmPAP1 | Positive | MeJA, ABA, SA | leaf | / | [82] | ||
| SmMYB37 | Positive | MeJA | / | / | [83] | ||
| SmMYB75 | Positive | ABA, SA, GA, MeJA, ET, GA3 | leaf | Nucleus | [84] | ||
| SmMYB90 | Positive | ABA, SA, GA, MeJA, ET, GA3 | leaf | Nucleus | [84] | ||
| BHLH | 127 | SmMYC2 | Positive | MeJA | Root | Nucleus | [20,85,86,87] |
| SmbHLH3 | Negative | / | Root | Nucleus | [88] | ||
| SmbHLH92 | Negative | / | Root | Nucleus | [89] | ||
| SmJRB1 | Positive | MeJA | leaf | Nucleus | [90] | ||
| SmbHLH148 | Positive | MeJA, ABA, GA | Root | Nucleus | [54] | ||
| SmbHLH60 | Negative | MeJA | Root | Nucleus | [85] | ||
| SmbHLH59 | Positive | MeJA | Root | Nucleus | [91] | ||
| SmbHLH51 | Positive | MeJA | Root | Nucleus | [52,58,76] | ||
| SmbHLH37 | Negative | MeJA | leaf | Nucleus | [86] | ||
| SmbHLH53 | - | MeJA, ABA, IAA, GA3 | leaf | Nucleus, Plasma membrane | [64] | ||
| SmbHLH125 | - | / | Root | Nucleus | [92] | ||
| SmbHLH7 | Positive | MeJA, ABA, SA, GA | Root | Nucleus | [57] | ||
| SmbHLH130 | Positive | MeJA, ABA, GA | leaf | Nucleus | [57] | ||
| SmMYC2b | Positive | MeJA | Root | Nucleus | [67] | ||
| SmbHLH124 | Negative | / | Stem | Nucleus | [53] | ||
| AP2/ERF | 170 | Sm008 | / | / | Root | / | [32] |
| Sm166 | / | / | / | / | [32] | ||
| SmERF115 | Positive | MeJA, ET, SA | leaf | Nucleus | [73] | ||
| SmERF2 | Negative | ET, SA, MeJA | Root | Nucleus | [74] | ||
| SmO3L3 | Positive | MeJA | Root | Nucleus | [74] | ||
| SmERF1L1 | Negative | MeJA, ET, SA | leaf | Nucleus | [59] | ||
| SmERF005 | Negative | MeJA, ABA, GA | / | Nucleus | [93] | ||
| TRINITY_DN14213_c0_g1 | / | / | / | / | [94] | ||
| BZIP | 70 | SmbZIP1 | Positive | ABA | Periderm | Nucleus | [69] |
| SmbZIP2 | Negative | ABA | Root | Nucleus | [95] | ||
| SmbZIP3 | Positive | ABA | / | Nucleus | [70] | ||
| SmHY5 | Positive | IAA | Root | Nucleus | [56] | ||
| SmbZIP38 | Positive | ABA | / | / | [71] | ||
| SmTGA2 | Positive | SA, GA | Root | Nucleus | [96] | ||
| SmTGA5 | Positive | SA, GA | Root | Nucleus | [55] | ||
| SmAREB1 | Positive | ABA | Root | Nucleus | [72] | ||
| SmbZIP6 | Positive | / | / | / | [97] | ||
| SmbZIP18 | Positive | / | / | / | [97] | ||
| SmbZIP19 | Positive | / | / | / | [97] | ||
| WRKY | 69 | SmWRKY34 | Negative | ABA | Root | Nucleus | [70] |
| SmWRKY61 | Positive | / | Stem | / | [68] | ||
| SmWRKY20 | Positive | MeJA, ET, ABA, SA | leaf | Nucleus | [98] | ||
| SmWRKY14 | Positive | MeJA | Root | Nucleus | [99] | ||
| SmWRKY9 | - | ET, ABA, SA, MeJA | Root | Nucleus | [100] | ||
| SmWRKY54 | Negative | ET, ABA, SA, MeJA, GA3 | leaf | Nucleus | [61] | ||
| GRAS | 34 | SmGRAS1 | Negative | MeJA, ABA, SA, GA | Root | Nucleus | [101,102] |
| SmGRAS2 | Negative | MeJA, ABA, GA | Root | Nucleus | [101,102] | ||
| SmGRAS3 | Negative | MeJA, ABA, SA, GA | Root | Nucleus | [101] | ||
| SmGRAS4 | Positive | MeJA, SA, GA | Root | Nucleus | [101] | ||
| SmGRAS5 | Negative | ABA, GA | Root | Nucleus | [101] | ||
| SmGRAS21 | Positive | MeJA, GA3 | Root | Nucleus, Cytoplasm | [63] | ||
| SmGRAS20 | Positive | MeJA, GA3 | Root | Nucleus, Cytoplasm | [63] | ||
| SmGRAS19 | Positive | MeJA, GA3 | Root | Nucleus, Cytoplasm | [63] | ||
| SmGRAS16 | Positive | MeJA, GA3 | Root | Nucleus, Cytoplasm | [63] | ||
| NAC | 84 | SmNAC36 | Positive | / | Root | Nucleus | [75] |
| SmNAC1 | Positive | / | / | / | [103] | ||
| SmNAC2 | Negative | / | Root | / | [104] | ||
| SmNAC3 | Negative | / | Root | / | [104] | ||
| LBD | 51 | LBD50 | Negative | MeJA | Root | / | [50] |
| LBD44 | Negative | MeJA | Root | Nucleus | [105] | ||
| LBD23 | Negative | MeJA | Root | Nucleus | [106] | ||
| LBD16 | Negative | MeJA | Root | Nucleus | [106] | ||
| SPL | 11 | SmSPL2 | Negative | / | Flower | Nucleus | [107] |
| SmSPL6 | Positive | MeJA, GA, ABA, IAA | leaf | Nucleus | [108] | ||
| SmSPL7 | Negative | MeJA, ABA, IAA | leaf | Nucleus | [109] | ||
| TCP | 33 | SmTCP17 | Positive | ABA | Root | Nucleus | [46] |
| SmTCP21 | Positive | ABA | Root | Nucleus | [46] | ||
| SmTCP6 | Negative | ABA | Root | Nucleus | [46] | ||
| SmTCP1 | - | ABA | Root | Nucleus | [46] | ||
| SmTCP19 | - | ABA | Root | Nucleus | [46] |
5. Transcriptional Regulation of Salvianolic Acids by Transcription Factors
5.1. Regulatory Roles of MYB Transcription Factors in Salvianolic Acid Biosynthesis
5.2. Regulatory Roles of bHLH Transcription Factors in Salvianolic Acid Biosynthesis
5.3. Regulatory Roles of ERF Transcription Factors in Salvianolic Acid Biosynthesis
5.4. Regulatory Roles of WRKY Transcription Factors in Salvianolic Acid Biosynthesis
5.5. Regulatory Roles of bZIP Transcription Factors in Salvianolic Acid Biosynthesis
5.6. Regulatory Roles of GRAS Transcription Factors in Salvianolic Acid Biosynthesis
5.7. Regulatory Roles of Other Transcription Factor Families in Salvianolic Acid Biosynthesis
5.8. Core Regulatory Hubs and Design Principles for Metabolic Engineering
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Ma, R.; Liu, C.; Liu, H.; Zhu, R.; Guo, S.; Tang, M.; Li, Y.; Niu, J.; Fu, M.; et al. Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases. Curr. Pharm. Des. 2017, 23, 1077–1097. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Xue, L.; Severino, R.P.; Gao, S.; Niu, J.; Qin, L.-P.; Zhang, D.; Brömme, D. Salvia miltiorrhiza: An Ancient Chinese Herbal Medicine as a Source for Anti-Osteoporotic Drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Dai, X.; Yue, G.; Yin, J.; Xu, T.; Shi, H.; Liu, T.; Jia, Z.; Brömme, D.; et al. Salvia miltiorrhiza in Osteoporosis: A Review of Its Phytochemistry, Traditional Clinical Uses and Preclinical Studies (2014–2024). Front. Pharmacol. 2024, 15, 1483431. [Google Scholar] [CrossRef]
- Li, Z.; Xu, S.; Liu, P. Salvia miltiorrhiza Burge (Danshen): A Golden Herbal Medicine in Cardiovascular Therapeutics. Acta Pharmacol. Sin. 2018, 39, 802–824. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, X. Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge). Molecules 2024, 29, 1201. [Google Scholar] [CrossRef]
- Cao, H.M.; Sun, H.; Liu, C.; Yan, G.L.; Kong, L.; Han, Y.; Wang, X.J. Research Advances in Mechanism of Salvianolic Acid B in Treating Coronary Heart Disease. China J. Chin. Mater. Med. 2025, 50, 1449–1457. (In Chinese) [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Y. Myocardium Protective Function of Salvianolic Acid B in Ischemia Reperfusion Rats. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 157–161. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hao, X.; Pu, Z.; Cao, G.; You, D.; Zhou, Y.; Deng, C.; Shi, M.; Nile, S.H.; Wang, Y.; Zhou, W.; et al. Tanshinone and Salvianolic Acid Biosynthesis Are Regulated by SmMYB98 in Salvia miltiorrhiza Hairy Roots. J. Adv. Res. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Di, P.; Zhang, L.; Chen, J.F.; Tan, H.X.; Xiao, Y.; Dong, X.; Zhou, X.; Chen, W.S. 13C Tracer Reveals Phenolic Acids Biosynthesis in Hairy Root Cultures of Salvia miltiorrhiza. ACS Chem. Biol. 2013, 8, 1537–1548. [Google Scholar] [CrossRef]
- Li, C.; Li, D.; Zhou, H.; Li, J.; Lu, S. Analysis of the Laccase Gene Family and miR397-/miR408-Mediated Posttranscriptional Regulation in Salvia miltiorrhiza. PeerJ 2019, 7, e7605. [Google Scholar] [CrossRef]
- Li, Q.; Feng, J.; Chen, L.; Xu, Z.; Zhu, Y.; Wang, Y.; Xiao, Y.; Chen, J.; Zhou, Y.; Tan, H.; et al. Genome-Wide Identification and Characterization of Salvia miltiorrhiza Laccases Reveal Potential Targets for Salvianolic Acid B Biosynthesis. Front. Plant Sci. 2019, 10, 435. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, L.; Zhang, Y.; Jones, J.A.; Zhang, M.; Chen, Y.; Tan, R.; Koffas, M.A.G.; Wang, Z.; Zhao, S. De Novo Biosynthesis of Salvianolic Acid B in Saccharomyces Cerevisiae Engineered with the Rosmarinic Acid Biosynthetic Pathway. J. Agric. Food Chem. 2022, 70, 2290–2302. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.-J. Multifaceted Regulations of Gateway Enzyme Phenylalanine Ammonia-Lyase in the Biosynthesis of Phenylpropanoids. Mol. Plant 2015, 8, 17–27. [Google Scholar] [CrossRef]
- Wang, L.; Qin, H.; Zhan, H.; Dong, S.; Li, T.; Cao, X. Comparative Analysis of Three SmHPPR Genes Encoding Hydroxyphenylpyruvate Reductases in Salvia miltiorrhiza. Gene 2024, 892, 147868. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Chen, J.-F.; Yi, B.; Tan, H.-X.; Zhang, L.; Chen, W.-S. HPPR Encodes the Hydroxyphenylpyruvate Reductase Required for the Biosynthesis of Hydrophilic Phenolic Acids in Salvia miltiorrhiza. Chin. J. Nat. Med. 2017, 15, 917–927. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, B.; Qin, L.; Rahman, K.; Zhang, L.; Han, T. Transcription Factor: A Powerful Tool to Regulate Biosynthesis of Active Ingredients in Salvia miltiorrhiza. Front. Plant Sci. 2021, 12, 622011. [Google Scholar] [CrossRef]
- Tian, Q.; Han, L.; Zhu, X.; Zhang, C.; Li, Y.; Xue, X.; Wang, Y.; Wang, D.; Niu, J.; Hua, W.; et al. SmMYB4 Is a R2R3-MYB Transcriptional Repressor Regulating the Biosynthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza. Metabolites 2022, 12, 968. [Google Scholar] [CrossRef]
- Zhou, W.; Shi, M.; Deng, C.; Lu, S.; Huang, F.; Wang, Y.; Kai, G. The Methyl Jasmonate-Responsive Transcription Factor SmMYB1 Promotes Phenolic Acid Biosynthesis in Salvia miltiorrhiza. Hortic. Res. 2021, 8, 10. [Google Scholar] [CrossRef]
- Yang, R.; Li, S.; Dong, S.; Wang, L.; Qin, H.; Zhan, H.; Wang, D.; Cao, X.; Xu, H. SmJAZ4 Interacts with SmMYB111 or SmMYC2 to Inhibit the Synthesis of Phenolic Acids in Salvia miltiorrhiza. Plant Sci. 2023, 327, 111565. [Google Scholar] [CrossRef]
- Wu, X.; Xia, M.; Su, P.; Zhang, Y.; Tu, L.; Zhao, H.; Gao, W.; Huang, L.; Hu, Y. MYB Transcription Factors in Plants: A Comprehensive Review of Their Discovery, Structure, Classification, Functional Diversity and Regulatory Mechanism. Int. J. Biol. Macromol. 2024, 282, 136652. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB Transcription Factor Genes as Regulators for Plant Responses: An Overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.S.; Kragelund, B.B.; Burow, M. R2R3 MYB Transcription Factors—Functions Outside the DNA-Binding Domain. Trends Plant Sci. 2019, 24, 934–946. [Google Scholar] [CrossRef]
- Biswas, D.; Gain, H.; Mandal, A. MYB Transcription Factor: A New Weapon for Biotic Stress Tolerance in Plants. Plant Stress 2023, 10, 100252. [Google Scholar] [CrossRef]
- Fan, H.Y.; Zhou, J.Z.; Ying, Y.L.; Tang, K.J.; Han, J.Y.; Wang, Q.Y.; Kai, G.Y. Comprehensive Analysis of the R2R3-MYB Transcription Factor Gene Family in Salvia Miltiorrhiza and the Regulatory Role of SmMYB50 in Salvianolic Acid Metabolism. Plant Mol. Biol. Rep. 2025, 44, 21. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Mei, Q.; Yang, J.; Ma, F.; Mao, K. Characteristics of bHLH Transcription Factors and Their Roles in the Abiotic Stress Responses of Horticultural Crops. Sci. Hortic. 2023, 310, 111710. [Google Scholar] [CrossRef]
- Lei, P.; Jiang, Y.; Zhao, Y.; Jiang, M.; Ji, X.; Ma, L.; Jin, G.; Li, J.; Zhang, S.; Kong, D.; et al. Functions of Basic Helix–Loop–Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. J. Agric. Food Chem. 2024, 72, 10692–10709. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, H.; Xu, Z.; Zhu, Y.; Ji, A.; Song, J.; Chen, S. Genome-Wide Characterisation and Analysis of bHLH Transcription Factors Related to Tanshinone Biosynthesis in Salvia miltiorrhiza. Sci. Rep. 2015, 5, 11244. [Google Scholar] [CrossRef]
- Tang, Q.; Wei, S.; Zheng, X.; Tu, P.; Tao, F. APETALA2/Ethylene-Responsive Factors in Higher Plant and Their Roles in Regulation of Plant Stress Response. Crit. Rev. Biotechnol. 2024, 44, 1533–1551. [Google Scholar] [CrossRef]
- Su, Z.-L.; Li, A.-M.; Wang, M.; Qin, C.-X.; Pan, Y.-Q.; Liao, F.; Chen, Z.-L.; Zhang, B.-Q.; Cai, W.-G.; Huang, D.-L. The Role of AP2/ERF Transcription Factors in Plant Responses to Biotic Stress. Int. J. Mol. Sci. 2025, 26, 4921. [Google Scholar] [CrossRef]
- Feng, K.; Hou, X.-L.; Xing, G.-M.; Liu, J.-X.; Duan, A.-Q.; Xu, Z.-S.; Li, M.-Y.; Zhuang, J.; Xiong, A.-S. Advances in AP2/ERF Super-Family Transcription Factors in Plant. Crit. Rev. Biotechnol. 2020, 40, 750–776. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.J.; Luo, H.M.; Xu, Z.C.; Zhang, X.; Zhu, Y.J.; Liao, B.S.; Yao, H.; Song, J.Y.; Chen, S.L. Genome-Wide Identification of the AP2/ERF Gene Family Involved in Active Constituent Biosynthesis in Salvia miltiorrhiza. Plant Genome 2016, 9, plantgenome2015.08.0077. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Wang, H.; Zhao, W.; Guo, Z. Transcription Factor WRKY Complexes in Plant Signaling Pathways. Phytopathol. Res. 2025, 7, 54. [Google Scholar] [CrossRef]
- Mahiwal, S.; Pahuja, S.; Pandey, G.K. Review: Structural-Functional Relationship of WRKY Transcription Factors: Unfolding the Role of WRKY in Plants. Int. J. Biol. Macromol. 2024, 257, 128769. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Yang, D.; Hou, Z.; Liang, Z. Transcriptional Profiles of SmWRKY Family Genes and Their Putative Roles in the Biosynthesis of Tanshinone and Phenolic Acids in Salvia miltiorrhiza. Int. J. Mol. Sci. 2018, 19, 1593. [Google Scholar] [CrossRef]
- Neves, C.; Ribeiro, B.; Amaro, R.; Expósito, J.; Grimplet, J.; Fortes, A.M. Network of GRAS Transcription Factors in Plant Development, Fruit Ripening and Stress Responses. Hortic. Res. 2023, 10, uhad220. [Google Scholar] [CrossRef]
- Waseem, M.; Nkurikiyimfura, O.; Niyitanga, S.; Jakada, B.H.; Shaheen, I.; Aslam, M.M. GRAS Transcription Factors Emerging Regulator in Plants Growth, Development, and Multiple Stresses. Mol. Biol. Rep. 2022, 49, 9673–9685. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Liu, J.; Bai, Z.; Liang, Z. Transcriptomic Analysis Reveals the GRAS Family Genes Respond to Gibberellin in Salvia miltiorrhiza Hairy Roots. BMC Genom. 2020, 21, 727. [Google Scholar] [CrossRef]
- Guo, Z.; Dzinyela, R.; Yang, L.; Hwarari, D. bZIP Transcription Factors: Structure, Modification, Abiotic Stress Responses and Application in Plant Improvement. Plants 2024, 13, 2058. [Google Scholar] [CrossRef]
- Han, H.; Wang, C.; Yang, X.; Wang, L.; Ye, J.; Xu, F.; Liao, Y.; Zhang, W. Role of bZIP Transcription Factors in the Regulation of Plant Secondary Metabolism. Planta 2023, 258, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Z.; Ji, A.; Luo, H.; Song, J. Genomic Survey of bZIP Transcription Factor Genes Related to Tanshinone Biosynthesis in Salvia miltiorrhiza. Acta Pharm. Sin. B 2018, 8, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; He, H.; Chang, Y.; Miao, B.; Liu, Z.; Wang, Q.; Dong, F.; Xiong, L. Multiple Roles of NAC Transcription Factors in Plant Development and Stress Responses. J. Integr. Plant Biol. 2025, 67, 510–538. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Chen, H.; Jin, W.; Liang, Z. Characterization of NAC Family Genes in Salvia miltiorrhiza and NAC2 Potentially Involved in the Biosynthesis of Tanshinones. Phytochemistry 2021, 191, 112932. [Google Scholar] [CrossRef]
- Zhou, H.; Hwarari, D.; Ma, H.; Xu, H.; Yang, L.; Luo, Y. Genomic Survey of TCP Transcription Factors in Plants: Phylogenomics, Evolution and Their Biology. Front. Genet. 2022, 13, 1060546. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Wei, H.; Li, S.; Zhang, N.; Si, H. Roles of TCP Transcription Factors in Plant Growth and Development. Physiol. Plant. 2025, 177, e70357. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yin, H.; Zhang, Y.; He, Z.; He, Z.; Wang, Y.; Chen, X.; Yin, Y.; Kai, G.; et al. Comprehensive Analysis and Identification of TCP Proteins Involved in Modulating ABA-Induced Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Plant Physiol. Biochem. 2025, 227, 110100. [Google Scholar] [CrossRef]
- Bu, R.; Qiu, Z.; Dong, J.; Chen, L.; Zhou, Y.; Wang, H.; Hu, L. The Role of SQUAMOSA-PROMOTER BINDING PROTEIN-like (SPL) Transcription Factors in Plant Growth and Environmental Stress Response: A Comprehensive Review of Recent Advances. Horticulturae 2025, 11, 584. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, B.; Zhao, D.; Li, C.; Shao, F.; Lu, S. Genome-wide Analysis and Molecular Dissection of the SPL Gene Family in Salvia miltiorrhiza. J. Integr. Plant Biol. 2014, 56, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Rong, M.; Gao, S.-X.; Wen, D.; Xu, Y.-H.; Wei, J.-H. The LOB Domain Protein, a Novel Transcription Factor with Multiple Functions: A Review. Plant Physiol. Biochem. 2024, 214, 108922. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-Y.; Liang, X.-Y.; Li, X.; Shen, P.-X.; Cao, X.-Y.; Chen, C.; Song, S.-H.; Wang, D.-H.; Wang, Z.-Z.; Zhang, Y. Genome-Wide Characterisation and Expression Profiling of the LBD Family in Salvia miltiorrhiza Reveals the Function of LBD50 in Jasmonate Signaling and Phenolic Biosynthesis. Ind. Crops Prod. 2020, 144, 112006. [Google Scholar] [CrossRef]
- Yang, R.; Wang, S.; Zou, H.; Li, L.; Li, Y.; Wang, D.; Xu, H.; Cao, X. R2R3-MYB Transcription Factor SmMYB52 Positively Regulates Biosynthesis of Salvianolic Acid B and Inhibits Root Growth in Salvia miltiorrhiza. Int. J. Mol. Sci. 2021, 22, 9538. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Kuang, J.; Wang, H.; Du, T.; Huang, Y.; Zhang, Y.; Cao, X.; Wang, Z. SmMYB111 Is a Key Factor to Phenolic Acid Biosynthesis and Interacts with Both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. J. Agric. Food Chem. 2018, 66, 8069–8078. [Google Scholar] [CrossRef]
- Fang, Q. Metabolic Engineering with Transcription Factor SmbHLH124 in Salvia miltiorrhiza. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. [Google Scholar]
- Xing, B.; Liang, L.; Liu, L.; Hou, Z.; Yang, D.; Yan, K.; Zhang, X.; Liang, Z. Overexpression of SmbHLH148 Induced Biosynthesis of Tanshinones as Well as Phenolic Acids in Salvia miltiorrhiza Hairy Roots. Plant Cell Rep. 2018, 37, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhang, B.; Zhang, S.; Hao, R.; Xia, Y.; Ma, P.; Dong, J. The SmNPR4-SmTGA5 Module Regulates SA-Mediated Phenolic Acid Biosynthesis in Salvia miltiorrhiza Hairy Roots. Hortic. Res. 2023, 10, uhad066. [Google Scholar] [CrossRef]
- Wang, N. The Regulatory Roles of SmHY5 in the Biosynthesis of Bioactive Compounds and Lateral Root Development in Salvia miltiorrhiza. Master’s Thesis, Yangzhou University, Yangzhou, China, 2020. [Google Scholar]
- Xing, B. Molecular Mechanism of bHLH7 Interacting with MYB39 to Regulate Phenolic Acids and Tanshinones Biosynthesis in Salvia miltiorrhiza. Ph.D. Thesis, University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences), Beijing, China, 2019. [Google Scholar]
- Xing, B.; Qiu, L.; Wang, Z.; Wang, F.; Yu, H.; Li, W.; Li, Y.; Abozeid, A.; Xia, P.; Zhang, L.; et al. A Novel Synergistic Regulatory Mechanism Involving the MYB39-MYB111-bHLH51-TTG1 Module in the Phenolic and Diterpenoid Biosynthetic Pathways of Salvia miltiorrhiza. Plant Biotechnol. J. 2025, 23, 4367–4380. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, M.; Yuan, T.; Wang, Y.; Shi, M.; Lu, S.; Tang, B.; Pan, J.; Wang, Y.; Kai, G. The AP2/ERF Transcription Factor SmERF1L1 Regulates the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Food Chem. 2019, 274, 368–375. [Google Scholar] [CrossRef]
- Han, C.; Dong, X.; Xing, X.; Wang, Y.; Feng, X.; Sang, W.; Feng, Y.; Yu, L.; Chen, M.; Hao, H.; et al. Gibberellin-Induced Transcription Factor SmMYB71 Negatively Regulates Salvianolic Acid Biosynthesis in Salvia miltiorrhiza. Molecules 2024, 29, 5892. [Google Scholar] [CrossRef]
- Li, L. The Functional Study of SmWRKY54 Transcription Factor in Salvia miltiorrhiza. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2016. [Google Scholar]
- Liu, L. Study on the Physiological Response to Low Phosphate, and the Function of Genes SmMYB98b and SmMYB9a in Salvia miltiorrhiza. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Wang, L. Identification of the GRAS Transcription Factor Family in Salvia miltiorrhiza and Functional Study of DELLA Subfamily Genes. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2018. [Google Scholar]
- Peng, J.; Wu, Y.; Wang, S.; Niu, J.; Cao, X. SmbHLH53 Is Relevant to Jasmonate Signaling and Plays Dual Roles in Regulating the Genes for Enzymes in the Pathway for Salvianolic Acid B Biosynthesis in Salvia miltiorrhiza. Gene 2020, 756, 144920. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Y.; Huang, F.; Lu, S.; Zhao, L.; Ma, X.; Kai, G. SmMYB2 Promotes Salvianolic Acid Biosynthesis in the Medicinal Herb Salvia miltiorrhiza. J. Integr. Plant Biol. 2020, 62, 1688–1702. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Li, Q.; Cao, R.; Ren, Y.; Wang, G.; Guo, H.; Bu, S.; Liu, J.; Ma, P. Overexpression of SmMYC2 Enhances Salt Resistance in Arabidopsis Thaliana and Salvia miltiorrhiza Hairy Roots. J. Plant Physiol. 2023, 280, 153862. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W.; Chen, J.; Tan, H.; Xiao, Y.; Li, Q.; Ji, Q.; Gao, S.; Chen, L.; Chen, S.; et al. SmMYC2a and SmMYC2b Played Similar but Irreplaceable Roles in Regulating the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Sci. Rep. 2016, 6, 22852. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Guo, J.; Yang, J.; Zhang, X.; Wang, Z.; Cheng, Y.; Du, Z.; Qi, Z.; Huang, Y.; et al. Integrated Transcriptomics and Proteomics to Reveal Regulation Mechanism and Evolution of SmWRKY61 on Tanshinone Biosynthesis in Salvia miltiorrhiza and Salvia Castanea. Front. Plant Sci. 2022, 12, 820582. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Shi, M.; Fu, R.; Zhang, Y.; Wang, Q.; Zhou, Y.; Wang, Y.; Ma, X.; Kai, G. ABA-Responsive Transcription Factor bZIP1 Is Involved in Modulating Biosynthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza. J. Exp. Bot. 2020, 71, 5948–5962. [Google Scholar] [CrossRef]
- Shi, M.; Zhu, R.; Zhang, Y.; Zhang, S.; Liu, T.; Li, K.; Liu, S.; Wang, L.; Wang, Y.; Zhou, W.; et al. A Novel WRKY34-bZIP3 Module Regulates Phenolic Acid and Tanshinone Biosynthesis in Salvia miltiorrhiza. Metab. Eng. 2022, 73, 182–191. [Google Scholar] [CrossRef]
- Chen, J.; Chen, M.; Li, H.; Tan, R.; Zhang, J.; Jones, J.A.; Zhao, S. An ABA-Responsive Transcription Factor SmbZIP38 Positively Regulates Salvianolic Acids Biosynthesis and Stress-Associated Morphogenesis of Salvia miltiorrhiza. Hortic. Plant J. 2025, in press. [Google Scholar] [CrossRef]
- Jia, Y.; Bai, Z.; Pei, T.; Ding, K.; Liang, Z.; Gong, Y. The Protein Kinase SmSnRK2.6 Positively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza by Interacting with SmAREB1. Front. Plant Sci. 2017, 8, 1384. [Google Scholar] [CrossRef]
- Sun, M.; Shi, M.; Wang, Y.; Huang, Q.; Yuan, T.; Wang, Q.; Wang, C.; Zhou, W.; Kai, G. The Biosynthesis of Phenolic Acids Is Positively Regulated by the JA-Responsive Transcription Factor ERF115 in Salvia miltiorrhiza. J. Exp. Bot. 2019, 70, 243–254. [Google Scholar] [CrossRef]
- Huang, Q. Isolation and Functional Analysis of Two ERF Transcription Factors in Salvia miltiorrhiza. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2015. [Google Scholar]
- Hao, G.; Jiang, X.; Feng, L.; Tao, R.; Li, Y.; Huang, L. Cloning, Molecular Characterization and Functional Analysis of a Putative R2R3-MYB Transcription Factor of the Phenolic Acid Biosynthetic Pathway in S. miltiorrhiza Bge. f. Alba. Plant Cell Tissue Organ Cult. 2016, 124, 151–168. [Google Scholar] [CrossRef]
- Zhong, M.; Yu, H.; Liao, J.; Jiang, Y.; Chai, S.; Yang, R.; Wang, L.; Deng, X.; Zhang, L. A Novel NAC36-MYB18-TAT2 Model Regulates the Synthesis of Phenolic Acid in Salvia miltiorrhiza Bunge. Int. J. Biol. Macromol. 2025, 304, 140987. [Google Scholar] [CrossRef]
- Li, L.; Wang, D.; Zhou, L.; Yu, X.; Yan, X.; Zhang, Q.; Li, B.; Liu, Y.; Zhou, W.; Cao, X.; et al. JA-Responsive Transcription Factor SmMYB97 Promotes Phenolic Acid and Tanshinone Accumulation in Salvia miltiorrhiza. J. Agric. Food Chem. 2020, 68, 14850–14862. [Google Scholar] [CrossRef]
- Huang, F. The R2R3-MYB Transcriptional Activator MYB75 and MYB90 Are Involved in the Regulation of the JA-Induced Phenolic Acid Synthesis in Salvia miltiorrhiza. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2016. [Google Scholar]
- Zheng, X. Omics-Based Functional Study of miR396b in Salvia miltiorrhiza. Ph.D. Thesis, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2020. [Google Scholar]
- Liu, S.; Gao, X.; Shi, M.; Sun, M.; Li, K.; Cai, Y.; Chen, C.; Wang, C.; Maoz, I.; Guo, X.; et al. Jasmonic Acid Regulates the Biosynthesis of Medicinal Metabolites via the JAZ9-MYB76 Complex in Salvia miltiorrhiza. Hortic. Res. 2023, 10, uhad004. [Google Scholar] [CrossRef]
- Ding, K.; Pei, T.; Bai, Z.; Jia, Y.; Ma, P.; Liang, Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci. Rep. 2017, 7, 5104. [Google Scholar] [CrossRef]
- Li, Q.; Fang, X.; Zhao, Y.; Cao, R.; Dong, J.; Ma, P. The SmMYB36-SmERF6/SmERF115 Module Regulates the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza Hairy Roots. Hortic. Res. 2023, 10, uhac238. [Google Scholar] [CrossRef]
- Wang, H. Identification of a MYB-bHLH-WD40 Ternary Complex Regulating Salvianolic Acid B Biosynthesis in Salvia miltiorrhiza. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2017. [Google Scholar]
- Zhu, B.; Wang, M.; Pang, Y.; Hu, X.; Sun, C.; Zhou, H.; Deng, Y.; Lu, S. The Smi-miR858a-SmMYB Module Regulates Tanshinone and Phenolic Acid Biosynthesis in Salvia miltiorrhiza. Hortic. Res. 2024, 11, uhae047. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Wang, J.; Su, Y.; Guo, Y.; Yang, J.; Liu, J.; Xue, Z.; Dong, J.; Ma, P. SmCSN5 Is a Synergist in the Transcription Factor SmMYB36-Mediated Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Hortic. Res. 2025, 12, uhaf005. [Google Scholar] [CrossRef] [PubMed]
- Jia, E.; Li, H.; He, F.; Xu, X.; Wei, J.; Shao, G.; Liu, J.; Ma, P. Metabolic Engineering of Artificially Modified Transcription Factor SmMYB36-VP16 for High-Level Production of Tanshinones and Phenolic Acids. Metab. Eng. 2024, 86, 29–40. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Shi, M.; Maoz, I.; Gao, X.; Sun, M.; Yuan, T.; Li, K.; Zhou, W.; Guo, X.; et al. SmbHLH60 and SmMYC2 Antagonistically Regulate Phenolic Acids and Anthocyanins Biosynthesis in Salvia miltiorrhiza. J. Adv. Res. 2022, 42, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhou, W.; Su, J.; Wang, X.; Li, L.; Wang, L.; Cao, X.; Wang, Z. Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza. Front. Plant Sci. 2017, 8, 1804. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, S.; Maoz, I.; Wang, Q.; Xu, M.; Feng, Y.; Hao, X.; Du, Z.; Kai, G. SmJRB1 Positively Regulates the Accumulation of Phenolic Acid in Salvia miltiorrhiza. Ind. Crops Prod. 2021, 164, 113417. [Google Scholar] [CrossRef]
- Xue, X.; Li, L.; Wang, D.; Zhou, W.; Wang, Z.; Cao, X. SmJAZ1/8 Inhibits the Stimulation of SmbHLH59, Which Limits the Accumulation of Salvianolic Acids and Tanshinones in Salvia miltiorrhiza. Int. J. Biol. Macromol. 2025, 285, 138348. [Google Scholar] [CrossRef]
- Wang, Z.X. Molecular Mechanisms of Synergistic Regulation by SmMYB39 and SmbHLH51-SmMYB111-SmTTG1 Complexes on the Synthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza Bunge. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2023. [Google Scholar]
- Zhang, C.; Xing, B.; Yang, D.; Ren, M.; Guo, H.; Yang, S.; Liang, Z. SmbHLH3 Acts as a Transcription Repressor for Both Phenolic Acids and Tanshinone Biosynthesis in Salvia miltiorrhiza Hairy Roots. Phytochemistry 2020, 169, 112183. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, H.; Liu, W.; Ji, A.; Zhang, X.; Song, J.; Luo, H.; Chen, S. bHLH Transcription Factor SmbHLH92 Negatively Regulates Biosynthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza. Chin. Herb. Med. 2020, 12, 237–246. [Google Scholar] [CrossRef]
- Du, T.; Niu, J.; Su, J.; Li, S.; Guo, X.; Li, L.; Cao, X.; Kang, J. SmbHLH37 Functions Antagonistically With SmMYC2 in Regulating Jasmonate-Mediated Biosynthesis of Phenolic Acids in Salvia miltiorrhiza. Front. Plant Sci. 2018, 9, 1720. [Google Scholar] [CrossRef]
- Wang, T.; Li, M.; Tang, X.; He, Y.; Fang, Q.; Fan, T.; Liu, S.; Deng, K. Deciphering the Role of a Novel Basic Helix-Loop-Helix (bHLH) Transcription Factor: SmbHLH125 in Salvia miltiorrhiza Secondary Metabolism through Transcriptomic and Metabolomic Insights. Int. J. Biol. Macromol. 2025, 318, 145067. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xiao, Y.; Tan, R.; Zheng, X.; Lv, Z.; Zhao, S. The APETALA2/ETHYLENE RESPONSE FACTOR Transcription Factor SmERF005 Negatively Regulates Meristem Cell Division and Biosynthesis of Phenolic Acids and Diterpenoids in Salvia miltiorrhiza Hairy Roots. Int. J. Biol. Macromol. 2025, 311, 143688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qi, X.; Zhu, R.; Ye, D.; Shou, M.; Peng, L.; Qiu, M.; Shi, M.; Kai, G. Transcriptome Analysis of Salvia miltiorrhiza under Drought Stress. Plants 2024, 13, 161. [Google Scholar] [CrossRef]
- Yu, H.; Liao, J.; Jiang, Y.; Zhong, M.; Tao, S.; Chai, S.; Wang, L.; Lin, L.; Yang, R.; Deng, X.; et al. Ecotype-specific Phenolic Acid Accumulation and Root Softness in Salvia miltiorrhiza Are Driven by Environmental and Genetic Factors. Plant Biotechnol. J. 2025, 23, 2224–2241. [Google Scholar] [CrossRef]
- Wang, S. Transcription Factor SmWRKY20 Regulating the Biosynthesis of Effective Components of Salvia miltiorrhiza. Master’s Thesis, Guangdong Pharmaceutical University, Guangzhou, China, 2022. [Google Scholar]
- Chen, C.; Zhang, Y.; Li, L.; Wang, Z.; Li, S. Cloning and Expression Analysis of WRKY Family Member SmWRKY14 in Salvia miltiorrhiza. Chin. Tradit. Herbal Drugs 2020, 51, 5590–5597. (In Chinese) [Google Scholar]
- Zhang, X. The Functional Study of SmWRKY9 Transcription Factor in Salvia miltiorrhiza. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2019. [Google Scholar]
- Ding, M.; Xie, Y.; Zhang, Y.; Cai, X.; Zhang, B.; Ma, P.; Dong, J. Salicylic Acid Regulates Phenolic Acid Biosynthesis via SmNPR1–SmTGA2/SmNPR4 Modules in Salvia miltiorrhiza. J. Exp. Bot. 2023, 74, 5736–5751. [Google Scholar] [CrossRef]
- Shi, M.; Du, Z.; Hua, Q.; Kai, G. CRISPR/Cas9-Mediated Targeted Mutagenesis of bZIP2 in Salvia miltiorrhiza Leads to Promoted Phenolic Acid Biosynthesis. Ind. Crops Prod. 2021, 167, 113560. [Google Scholar] [CrossRef]
- Li, H. Molecular Mechanism of bZIP Transcription Factors in Regulating the Biosynthesis of Bioactive Ingredients in Salvia miltiorrhiza. Master’s Thesis, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2020. [Google Scholar]
- Li, W. The Function of Five SmGRAS Transcription Factors in Regulating the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Ph.D. Thesis, University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences), Beijing, China, 2020. [Google Scholar]
- Li, W.; Bai, Z.; Pei, T.; Yang, D.; Mao, R.; Zhang, B.; Liu, C.; Liang, Z. SmGRAS1 and SmGRAS2 Regulate the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Front. Plant Sci. 2019, 10, 1367. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Fan, H.; Chen, Y.; Li, L.; Song, W.; Fan, Y.; Zhou, W.; Ma, G.; Alolga, R.N.; Li, W.; et al. Integrative Omic and Transgenic Analyses Reveal the Positive Effect of ultraviolet-B Irradiation on Salvianolic Acid Biosynthesis through Upregulation of SmNAC1. Plant J. 2020, 104, 781–799. [Google Scholar] [CrossRef]
- Zhang, H. The Studies on miRNA Responsing to Salvia miltiorrhiza Continuous Cropping Problem and Its Role in Secondary Metabolic Regulation. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Feng, S. Cloning and Functional Study of Salvia miltiorrhiza Transcription Factors SmLBD23 and SmLBD16. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2018. [Google Scholar]
- Zhou, L. Cloning and Functional Study of Salvia miltiorrhiza Transcription Factor SmLBD44. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2021. [Google Scholar]
- Wang, X.; Cao, Y.; Yang, J.; Zhang, T.; Yang, Q.; Zhang, Y.; Wang, D.; Cao, X. Transcription Factor SmSPL2 Inhibits the Accumulation of Salvianolic Acid B and Influences Root Architecture. Int. J. Mol. Sci. 2022, 23, 13549. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, R.; Wang, W.-T.; Wang, D.-H.; Cao, X.-Y. SmSPL6 Induces Phenolic Acid Biosynthesis and Affects Root Development in Salvia miltiorrhiza. Int. J. Mol. Sci. 2021, 22, 7895. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Cao, Y.; Wang, W.; Li, Y.; Wang, D.; Wang, S.; Cao, X. Transcription Factor SmSPL7 Promotes Anthocyanin Accumulation and Negatively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza. Plant Sci. 2021, 310, 110993. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, S.; Peng, F.; Tao, S.; Wan, X.; Liao, H.; Wang, P.; Yuan, C.; Mao, C.; Zhao, X.; Zhang, C.; et al. Recent Advances in Transcription Factor–Mediated Regulation of Salvianolic Acid Biosynthesis in Salvia miltiorrhiza. Plants 2026, 15, 263. https://doi.org/10.3390/plants15020263
Chen S, Peng F, Tao S, Wan X, Liao H, Wang P, Yuan C, Mao C, Zhao X, Zhang C, et al. Recent Advances in Transcription Factor–Mediated Regulation of Salvianolic Acid Biosynthesis in Salvia miltiorrhiza. Plants. 2026; 15(2):263. https://doi.org/10.3390/plants15020263
Chicago/Turabian StyleChen, Song, Fang Peng, Shan Tao, Xiufu Wan, Hailang Liao, Peiyuan Wang, Can Yuan, Changqing Mao, Xinyi Zhao, Chao Zhang, and et al. 2026. "Recent Advances in Transcription Factor–Mediated Regulation of Salvianolic Acid Biosynthesis in Salvia miltiorrhiza" Plants 15, no. 2: 263. https://doi.org/10.3390/plants15020263
APA StyleChen, S., Peng, F., Tao, S., Wan, X., Liao, H., Wang, P., Yuan, C., Mao, C., Zhao, X., Zhang, C., He, B., & Zhong, M. (2026). Recent Advances in Transcription Factor–Mediated Regulation of Salvianolic Acid Biosynthesis in Salvia miltiorrhiza. Plants, 15(2), 263. https://doi.org/10.3390/plants15020263

