One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information
Abstract
1. Introduction
2. Results and Discussion
2.1. Gas Exchange
2.2. Chlorophyll
2.3. Nutrient Balance Ratios
3. Materials and Methods
3.1. Wood Vinegar Characteristics
3.2. Experimental Design
3.3. Gas Exchange Parameters
3.4. Chlorophyll Content
3.5. Nutrient Balance Ratios
3.6. Statistical Analysis
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; Nozal, L.; González, S.; Manjón, J.L.; Peinado, M. Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 2020, 13, 2418. [Google Scholar] [CrossRef]
- Iacomino, G.; Idbella, M.; Staropoli, A.; Nanni, B.; Bertoli, T.; Vinale, F.; Bonanomi, G. Exploring the potential of wood vinegar: Chemical composition and biological effects on crops and pests. Agronomy 2024, 14, 114. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Dong, J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis 2010, 87, 24–28. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood vinegar as a complex growth regulator for rapeseed. Agronomy 2021, 11, 510. [Google Scholar] [CrossRef]
- Maresca, V.; Fedeli, R.; Vannini, A.; Munzi, S.; Corrêa, A.; Cruz, C.; Loppi, S. Wood distillate enhances seed germination. Appl. Sci. 2024, 14, 631. [Google Scholar] [CrossRef]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts enhance growth and yield of tomato. Sci. Hortic. 2013, 154, 66–72. [Google Scholar]
- Benzon, H.R.L.; Lee, S.C. Potential of wood vinegar in enhancing fruit yield and antioxidant capacity in tomato. Korean J. Plant Resour. 2016, 29, 704–711. [Google Scholar] [CrossRef]
- Fedeli, R.; Dichiara, M.; Carullo, G.; Tudino, V.; Gemma, S.; Butini, S.; Campiani, G.; Loppi, S. Unlocking the potential of biostimulants in sustainable agriculture: Effect of wood distillate on the nutritional profiling of apples. Heliyon 2024, 10, e37599. [Google Scholar] [CrossRef]
- Ofoe, R.; Mousavi, S.M.N.; Thomas, R.H.; Abbey, L. Foliar application of pyroligneous acid synergizes with fertilizer in tomato. Sci. Rep. 2024, 14, 1934. [Google Scholar] [CrossRef]
- European Commission. European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 14 August 2025).
- European Commission. Farm to Fork. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 14 August 2025).
- Scopus Data. Available online: https://www.scopus.com/ (accessed on 19 November 2025).
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J. Soils Sediments 2019, 19, 3934–3944. [Google Scholar] [CrossRef]
- Mirsoleimani, A.; Najafi-Ghiri, M.; Boostani, H.R.; Heydari, H. Effect of wood vinegar on vegetative growth and nutrient uptake in two citrus rootstocks. J. Hortic. Postharvest Res. 2024, 7, 301–316. [Google Scholar]
- De Guzman, R.S.; Dadural, M.I.Y. Seed germination and seedling growth of mango as affected by different concentrations of wood vinegar. Galaxy Int. Interdiscip. Res. J. 2021, 9, 49–60. [Google Scholar]
- Theapparat, Y.; Chandumpai, A.; Faroongsarng, D. Physicochemistry and utilization of wood vinegar from tropical biomass. In Tropical Forests; Springer: Cham, Switzerland, 2018; pp. 163–183. [Google Scholar]
- Fedeli, R.; Cruz, C.; Loppi, S.; Munzi, S. Hormetic effect of wood distillate on hydroponically grown lettuce. Plants 2024, 13, 447. [Google Scholar] [CrossRef]
- Fedeli, R.; Loppi, S.; Cruz, C.; Munzi, S. Evaluating seawater and wood distillate for sustainable hydroponic cultivation: Implications for crop growth and nutritional quality. Sustainability 2024, 16, 7186. [Google Scholar] [CrossRef]
- Fedeli, R.; Marotta, L.; Frattaruolo, L.; Panti, A.; Carullo, G.; Fusi, F.; Saponara, S.; Gemma, S.; Butini, S.; Cappello, A.R.; et al. Nutritionally enriched tomatoes (Solanum lycopersicum L.) grown with wood distillate: Chemical and biological characterization. J. Food Sci. 2023, 88, 5324–5338. [Google Scholar] [CrossRef]
- Bienertova-Vasku, J.; Lenart, P.; Scheringer, M. Eustress and distress: Neither good nor bad, but rather the same? BioEssays 2020, 42, 1900238. [Google Scholar] [CrossRef]
- Kupriyanov, R.; Zhdanov, R. The eustress concept: Problems and outlooks. World J. Med. Sci. 2014, 11, 179–185. [Google Scholar]
- Lichtenthaler, H.K. The stress concept in plants: An introduction. Ann. N. Y. Acad. Sci. 1998, 851, 187–198. [Google Scholar] [CrossRef]
- Zhuang, D.; Li, H.B.; Wang, Y.; Zhou, D.; Zhao, L. Nanoparticle-elicited eustress intensifies cucumber adaptation to water deficit. Environ. Sci. Technol. 2025, 59, 3613–3623. [Google Scholar] [CrossRef] [PubMed]
- Caicedo-Lopez, L.H.; Guevara-Gonzalez, R.G.; Ramirez-Jimenez, A.K.; Feregrino-Perez, A.A.; Contreras-Medina, L.M. Eustress application through elicitation for capsaicinoids enhancement: A review. Phytochem. Rev. 2022, 21, 1941–1968. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits secondary metabolites in lettuce. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
- Noel, R.; Schueller, M.J.; Ferrieri, R.A. Radiocarbon flux measurements reveal why pyroligneous acid stimulates plant growth. Int. J. Mol. Sci. 2024, 25, 4207. [Google Scholar] [CrossRef]
- He, Z.; Zhang, P.; Jia, H.; Zhang, S.; Nishawy, E.; Sun, X.; Dai, M. Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 2024, 1, 100029. [Google Scholar] [CrossRef]
- Franco-Navarro, J.D.; Padilla, Y.G.; Álvarez, S.; Calatayud, Á.; Colmenero-Flores, J.M.; Gómez-Bellot, M.J.; Hernández, J.A.; Martínez-Alcalá, I.; Penella, C.; Pérez-Pérez, J.G.; et al. Advancements in water-saving strategies and crop adaptation to drought: A comprehensive review. Physiol. Plant. 2025, 177, e70332. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, Z.; Wei, Z.; Yan, F.; Liu, X.; Li, X.; Hou, J.; Hao, Z.; Liu, F. Stomatal and non-stomatal regulations of photosynthesis in response to salinity, and K and Ca fertigation in cotton (Gossypium hirsutum L cv.). Environ. Exp. Bot. 2025, 230, 106092. [Google Scholar] [CrossRef]
- Salmon, Y.; Lintunen, A.; Dayet, A.; Chan, T.; Dewar, R.; Vesala, T.; Hölttä, T. Leaf carbon and water status control photosynthetic limitations. New Phytol. 2020, 226, 690–703. [Google Scholar] [CrossRef]
- Hur, G.; Ashraf, M.; Nadeem, M.Y.; Rehman, R.S.; Thwin, H.M.; Shakoor, K.; Seleiman, M.F.; Alotaibi, M.; Yuan, B.-Z. Exogenous application of wood vinegar improves rice yield and quality by elevating photosynthetic efficiency. Plant Physiol. Biochem. 2025, 218, 109306. [Google Scholar]
- Mohd Amnan, M.A.; Teo, W.F.A.; Aizat, W.M.; Khaidizar, F.D.; Tan, B.C. Foliar application of oil palm wood vinegar enhances Pandanus amaryllifolius tolerance under drought stress. Plants 2023, 12, 785. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Mostafa, L.Y.; Rihan, H.Z. Enhancing mango productivity with wood vinegar, humic acid, and seaweed extract applications as an environmentally friendly strategy. Sustainability 2024, 16, 8986. [Google Scholar] [CrossRef]
- Afsharipour, S.; Seyedi, A.; Dastjerdi, A.M. Salinity tolerance in Cucumis sativus seedlings: The role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. BMC Plant Biol. 2025, 25, 224. [Google Scholar] [CrossRef] [PubMed]
- Rapacz, M.; Wójcik-Jagła, M.; Fiust, A.; Kalaji, H.M.; Kościelniak, J. Genome-wide associations of chlorophyll fluorescence OJIP parameters in barley. Front. Plant Sci. 2019, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Oxborough, K.; Baker, N.R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency. Photosynth. Res. 1997, 54, 135–142. [Google Scholar] [CrossRef]
- Lootens, P.; Van Waes, J.; Carlier, L. Effect of a short photoinhibition stress on photosynthesis. Photosynthetica 2004, 42, 187–192. [Google Scholar] [CrossRef]
- Zhou, H.; Fu, K.; Shen, Y.; Li, R.; Su, Y.; Deng, Y.; Xia, Y.; Zhang, N. Wood vinegar-induced stress response against tomato Fusarium wilt. Plants 2024, 13, 157. [Google Scholar] [CrossRef]
- Ye, Y.; Sun, H.; Wang, Y.; Xu, Z.; Han, S.; He, G.; Yin, K.; Zhang, H. Wood vinegar alleviates photosynthetic inhibition under Pseudomonas syringae infection. J. Plant Interact. 2022, 17, 801–811. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Tang, Y.; Ding, Y.; Rui, Y. Mechanisms of wood vinegar alleviating salt stress in wheat. Agronomy 2025, 15, 2078. [Google Scholar]
- Junlin, Z.; Guangjie, Z.; Yi, T.; Wenli, L.; Chang, Y.; Yanan, X.; Deshun, X.; Guang, C.; Chumney, X.; Danying, W. Wood vinegar enhances the survival rate of rice seeds under flooding stress. Rice Sci. 2025. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Grattacaso, M.; Loppi, S. Wood distillate (pyroligneous acid) boosts nutritional traits of potato tubers. Ann. Appl. Biol. 2023, 183, 135–140. [Google Scholar] [CrossRef]
- Nestby, R.; Lieten, F.; Pivot, D.; Lacroix, C.R.; Tagliavini, M. Influence of mineral nutrients on strawberry fruit quality. Int. J. Fruit Sci. 2005, 5, 139–156. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Khan, M.I.R.; Nazir, F.; Maheshwari, C.; Chopra, P.; Chhillar, H.; Sreenivasulu, N. Mineral nutrients in plants under changing environments. Plant Genome 2023, 16, e20362. [Google Scholar] [CrossRef]
- Gerretsen, F.C. Manganese in relation to photosynthesis: I carbon dioxide assimilation and manganese deficiency symptoms of oats. Plant Soil. 1949, 1, 346–358. [Google Scholar] [CrossRef]
- Somers, I.I.; Shive, J.W. The iron–manganese relation in plant metabolism. Plant Physiol. 1942, 17, 582. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2011. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Osmolovskaya, N.; Shumilina, J.; Bureiko, K.; Chantseva, V.; Bilova, T.; Kuchaeva, L.; Laman, N.; Wessjohann, L.A.; Frolov, A. Ion homeostasis response to nutrient-deficiency stress in plants. In Cell Growth; Intechopen: London, UK, 2019; Volume 61. [Google Scholar]
- Qu, R.; Han, G. Effects of high Ca and Mg stress on plant water-use efficiency. PeerJ 2022, 10, e13925. [Google Scholar] [CrossRef]
- Xu, C.; Yang, H.; Huang, C.; Lan, M.; Zou, Z.; Zhang, F.; Zhang, L. Interaction mechanism of Fe, Mg and Mn in karst soil–mango system. Land 2023, 12, 256. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Akley, E.K.; Ampim, P.A.; Obeng, E.; Sanyare, S.; Yevu, M.; Owusu Danquah, E.; Amoako, O.A.; Tengey, T.K.; Avedzi, J.K.; Avornyo, V.K.; et al. Wood vinegar promotes soil health and the productivity of cowpea. Agronomy 2023, 13, 2497. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Villagómez-Aranda, A.L.; Feregrino-Pérez, A.A.; García-Ortega, L.F.; González-Chavira, M.M.; Torres-Pacheco, I.; Guevara-González, R.G. Activating stress memory: Eustressors in plant breeding. Plant Cell Rep. 2022, 41, 1481–1498. [Google Scholar] [CrossRef]
- BioDea. 2025. Available online: https://biodea.bio/prodotto/distillato-di-legno-bio/ (accessed on 14 October 2025).
- Fedeli, R.; Celletti, S.; Loppi, S. Wood distillate promotes the tolerance of lettuce in extreme salt stress conditions. Plants 2024, 13, 1335. [Google Scholar] [CrossRef]
- Celletti, S.; Fedeli, R.; Ghorbani, M.; Aseka, J.M.; Loppi, S. Exploring sustainable alternatives: Wood distillate alleviates the impact of bioplastic in basil plants. Sci. Total Environ. 2023, 900, 166484. [Google Scholar] [CrossRef]
- Licor 2025; LI-6800 Portable Photosynthesis System Instruction Manual. Version 3, 2019. Available online: https://www.licor.com/products/photosynthesis/LI-6800 (accessed on 24 September 2025).
- Rico, E.I.; de la Fuente, G.C.M.; Morillas, A.O.; Ocaña, A.M.F. Drought tolerance in 14 olive cultivars. Photosynth. Res. 2024, 159, 1–16. [Google Scholar] [CrossRef]
- Opti-Sciences. CCM-300 Chlorophyll Content Meter. Opti-Sciences Inc.: Hudson, NH, USA, 2025. Available online: https://opti-sciences.com/products/content-meters/ccm-300/ (accessed on 23 September 2025).
- Olympus. Olympus Corporation. (s.d.). X-Ray Fluorescence Analyzer. Olympus Corporation: Waltham, MA, USA, 2025. Available online: https://www.olympus-europa.com/company/country-home/ (accessed on 24 September 2025).
- Et-Tazy, L.; Fedeli, R.; Khibech, O.; Lamiri, A.; Challioui, A.; Loppi, S. Effects of monoterpene-based biostimulants on chickpea (Cicer arietinum L.) plants: Functional and molecular insights. Biology 2025, 14, 657. [Google Scholar] [CrossRef] [PubMed]
- Fedeli, R.; Zhatkanbayeva, Z.; Loppi, S. Wood distillate as a solution for growing crops under water deficiency. Crops 2025, 5, 22. [Google Scholar] [CrossRef]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Cornelissen, J.H.C. Corrigendum: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Fedeli, R.; Di Lella, L.A.; Loppi, S. Suitability of XRF for routine analysis of multi-elemental composition: A multi-standard verification. Methods Protoc. 2024, 7, 53. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 12 October 2025).



| E | A | ||||||
|---|---|---|---|---|---|---|---|
| df | SS | R2 | F-value | SS | R2 | F-value | |
| WS | 2 | 0.65 | 0.08 | 4.96 ** | 0.29 | 0.05 | 2.61 |
| WV | 2 | 2.21 | 0.28 | 17.0 *** | 1.67 | 0.29 | 15.1 *** |
| WS × WV | 4 | 0.93 | 0.12 | 3.56 ** | 0.28 | 0.05 | 1.29 |
| Residual | 63 | 4.11 | 0.52 | 3.48 | 0.61 | ||
| Total | 71 | 7.9 | 1.00 | 5.73 | 1.00 | ||
| Ci | gsw | ||||||
| df | SS | R2 | F-value | SS | R2 | F-value | |
| WS | 2 | 0.04 | 0.13 | 6.95 ** | 0.72 | 0.08 | 4.91 ** |
| WV | 2 | 0.02 | 0.05 | 2.77 | 2.34 | 0.27 | 16.1 *** |
| WS × WV | 4 | 0.08 | 0.25 | 6.96 *** | 1.12 | 0.13 | 3.85 ** |
| Residual | 63 | 0.19 | 0.57 | 4.60 | 0.52 | ||
| Total | 71 | 0.33 | 1.00 | 8.78 | 1.00 | ||
| WUE | Chl tot | ||||||
| df | SS | R2 | F-value | SS | R2 | F-value | |
| WS | 2 | 0.31 | 0.1 | 5.60 ** | 0.03 | 0.11 | 4.82 * |
| WV | 2 | 0.31 | 0.1 | 5.53 ** | 0.02 | 0.08 | 3.41 * |
| WS × WV | 4 | 0.62 | 0.21 | 5.50 *** | 0.02 | 0.06 | 1.25 |
| Residual | 63 | 1.76 | 0.59 | 0.22 | 0.75 | ||
| Total | 71 | 3.00 | 1.00 | 0.29 | 1.00 | ||
| Fe/Mn | K/Ca | ||||||
| df | SS | R2 | F-value | SS | R2 | F-value | |
| WS | 2 | 0.08 | 0.09 | 3.52 * | 0.10 | 0.12 | 5.14 ** |
| WV | 2 | 0.10 | 0.10 | 4.15 * | 0.02 | 0.02 | 0.97 |
| WS × WV | 4 | 0.05 | 0.05 | 1.11 | 0.09 | 0.11 | 2.34 |
| Residual | 63 | 0.73 | 0.76 | 0.63 | 0.74 | ||
| Total | 71 | 0.96 | 1.00 | 0.85 | 1.00 | ||
| Treatment | Water Stress Level | Fe/Mn | K/Ca |
|---|---|---|---|
| UTC | NS | 0.34 ± 0.03 ab | 1.01 ± 0.09 abc |
| MS | 0.34 ± 0.02 a | 1.08 ± 0.04 a | |
| HS | 0.26 ± 0.02 c | 0.77 ± 0.07 c | |
| WV1 | NS | 0.27 ± 0.03 abc | 0.84 ± 0.04 bc |
| MS | 0.29 ± 0.02 abc | 0.91 ± 0.05 bc | |
| HS | 0.27 ± 0.02 bc | 0.85 ± 0.06 bc | |
| WV2 | NS | 0.36 ± 0.03 a | 1.09 ± 0.12 ab |
| MS | 0.34 ± 0.03 ab | 0.89 ± 0.06 bc | |
| HS | 0.30 ± 0.01 abc | 0.82 ± 0.03 c |
| Parameter | Value | Method |
|---|---|---|
| TOC (% DW) | 58.03 | CHNS Elemental Analysis |
| TN (% DW) | 1.06 | CHNS Elemental Analysis |
| H (% DW) | 7.27 | CHNS Elemental Analysis |
| S (% DW) | 0.07 | CHNS Elemental Analysis |
| pH | 4.00 | UNI EN ISO 10523:2012 |
| Density (g mL−1) | 1.05 | |
| Flash point (°C) | >60 | ASTM D6450-16° |
| Total organic compounds (g L−1) | 33.8 | |
| Acidity (mg L−1) | 1289.0 | APAT CNR IRSA 2010 B Man 29 2003 |
| Organic acids (mg L−1) | 32.3 | |
| Acetic acid (mg L−1) | 21.5 | |
| Polyphenols (g L−1) | 24.5 | |
| Phenols (g L−1) | 3.00 | |
| PCBs (mg L−1) | <0.2 | CNR IRSA 24b Q 64 Vol 3 1988 |
| Hydrocarbons C < 12 (mg L−1) | <0.1 | EPA 5021A 2014 + EPA 8015D 2003 |
| Hydrocarbons C10–C40 (mg L−1) | <0.1 | UNI EN ISO 9377-2:2002 |
| 16 US-EPA PAHs (mg L−1) | EPA 3550C 2007 + EPA 8310 1986 | |
| Acenaphthene | <0.05 | |
| Acenaphthylene | <0.05 | |
| Anthracene | <0.05 | |
| Benzo[a]anthracene | <0.05 | |
| Benzo[a]pyrene | <0.05 | |
| Benzo[b]fluoranthene | <0.05 | |
| Benzo[g,h,i]perylene | <0.05 | |
| Benzo[k]fluoranthene | <0.05 | |
| Chrysene | <0.05 | |
| Dibenz[a,h]anthracene | <0.05 | |
| Fluoranthene | <0.05 | |
| Fluorene | <0.05 | |
| Indeno[1,2,3-cd]pyrene | <0.05 | |
| Naphthalene | <0.05 | |
| Phenanthrene | <0.05 | |
| Pyrene | <0.05 | |
| Macronutrients (mg L −1) | Alkaline melting + ICP-MS analysis | |
| Ca | 325.50 | |
| K | 23.49 | |
| Mg | 6.79 | |
| P | 7.28 | |
| Micronutrients (mg L −1) | Alkaline melting + ICP-MS analysis | |
| Cu | 0.18 | |
| Fe | 21.16 | |
| Mn | 0.58 | |
| Mo | 0.0007 | |
| Zn | 3.22 | |
| Other nutrients | Alkaline melting + ICP-MS analysis | |
| Al | 1.96 | |
| Ba | 0.06 | |
| Cr | 0.03 | |
| Na | 103.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Desideri, S.; Grifoni, L.; Fedeli, R.; Loppi, S. One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information. Plants 2026, 15, 262. https://doi.org/10.3390/plants15020262
Desideri S, Grifoni L, Fedeli R, Loppi S. One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information. Plants. 2026; 15(2):262. https://doi.org/10.3390/plants15020262
Chicago/Turabian StyleDesideri, Sara, Lisa Grifoni, Riccardo Fedeli, and Stefano Loppi. 2026. "One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information" Plants 15, no. 2: 262. https://doi.org/10.3390/plants15020262
APA StyleDesideri, S., Grifoni, L., Fedeli, R., & Loppi, S. (2026). One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information. Plants, 15(2), 262. https://doi.org/10.3390/plants15020262

