Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Lolium perenne Varieties
| Variety | Ploidy Level | Methods of Creation | Reference |
|---|---|---|---|
| Tetramis | 4n | Polyploidization, flow cytometric screening, selection, polycross | [37] |
| Tetrany | 4n | Polyploidization, flow cytometric screening, selection, polycross | [36] |
| Harmoniya | 2n | Selection, hybridization, polycross | [35] |
2.2. Laboratory Test for Induced Drought
2.3. Assessment of Effect of Drought Under Laboratory Conditions
2.4. Assessment of the Drought Effect in Field Conditions
2.5. Statistical Analyses
3. Results
3.1. Effect of Induced Drought on Seed Germination
3.2. Effect of Induced Drought on Plant Growth and Development
3.3. Effect of Induced Drought on Biomass Accumulation
3.4. Drought Effect Evaluation in Field Conditions
3.5. Drought Tolerance Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tester, M.; Bacic, A. Abiotic Stress Tolerance in Grasses. From Model Plants to Crop Plants, State of the Field. Plant Physiol. 2005, 137, 791–793. [Google Scholar] [CrossRef]
- Georgieva, V.; Kazandjiev, V.; Bozhanova, V.; Mihova, G.; Ivanova, D.; Todorovska, E.; Uhr, Z.; Ilchovska, M.; Sotirov, D.; Malasheva, P. Climatic Changes—A Challenge for the Bulgarian Farmers. Agriculture 2022, 12, 2090. [Google Scholar] [CrossRef]
- Paudel, S.; Cobb, A.B.; Boughton, E.H.; Spiegal, S.; Boughton, R.K.; Silveira, M.L.; Swain, H.M.; Reuter, R.; Goodman, L.E.; Steiner, J.L. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021, 12, e03837. [Google Scholar] [CrossRef]
- Aroca, R. Plant Responses to Drought Stress from Morphological to Molecular Features; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherland; London, UK, 2011; ISBN 978-3-642-32652-3. [Google Scholar]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought stress in plants: An overview. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin, Germany, 2011; pp. 1–33. [Google Scholar]
- Easton, H.; Stewart, A.; Kerr, G. Ryegrass in pastures–breeding for resilience. Pasture Persistence 2011, 15, 139–148. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Jiang, Y.; Li, H.; Zhang, Z.; Xu, Z.; Xu, B.; Huang, B. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biol. 2020, 20, 520. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, Y.; Bai, X.; Qin, T. Insights into the Response of Perennial Ryegrass to Abiotic Stress: Underlying Survival Strategies and Adaptation Mechanisms. Life 2022, 12, 860. [Google Scholar] [CrossRef]
- Xofis, P.; Feloni, E.; Emmanouloudis, D.; Chatzigiovanakis, S.; Kravari, K.; Samourkasidou, E.; Kefalas, G.; Nastos, P. Long-Term Monitoring of Trends in Xerothermality and Vegetation Condition of a Northeast Mediterranean Island Using Meteorological and Remote Sensing Data. Land 2024, 13, 2129. [Google Scholar] [CrossRef]
- Chai, Q.; Jin, F.; Merewitz, E.; Huang, B.R. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. J. Am. Soc. Hortic. Sci. 2010, 135, 125–133. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, J.; Wang, X.; Jiang, Y. Phenotypic and Genotypic Diversity for Drought Tolerance among and within Perennial Ryegrass Accessions. HortScience 2015, 50, 1148–1154. [Google Scholar] [CrossRef]
- Pornaro, C.; Serena, M.; Macolino, S.; Leinauer, B. Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy 2020, 10, 1810. [Google Scholar] [CrossRef]
- Murthy Reddi, V.R.; Gumma, M.K.; Pyla, K.R.; Eadara, A.; Gummapu, J.S. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery. Land 2017, 6, 72. [Google Scholar] [CrossRef]
- Arojju, S.K.; Cao, M.; Jahufer, M.Z.Z.; Barrett, B.A.; Faville, M.J. Genomic predictive ability for foliar nutritive traits in perennial ryegrass. G3 Genes Genomes Genet. 2020, 10, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Konkolewska, A.; Phang, S.; Conaghan, P.; Milbourne, D.; Lawlor, A.; Byrne, S. Genomic prediction of seasonal forage yield in perennial ryegrass. Grassl. Res. 2023, 2, 167–181. [Google Scholar] [CrossRef]
- Peeters, A. Wild and Sown Grasses. Profiles of a Temperate Species Selection: Ecology, Biodiversity and Use; FAO: Rome, Italy, 2004. [Google Scholar]
- Wang, R.; Gao, Y.; Li, J.; Wang, X.; Yang, Y.; Huang, H.; Zhou, Z.; Wang, P.; Zhao, L. Drought and heat stress studies in perennial ryegrass: A bibliometric analysis 1994–2024. Front. Sustain. Food Syst. 2024, 8, 1458552. [Google Scholar] [CrossRef]
- Toporan, R.L.; Samfira, I. The impact of perennial lolium on the biodiversity and the structure of the grasslands. Res. J. Agric. Sci. 2021, 53, 176–182. [Google Scholar]
- van Dobben, H.V.; Quik, C.; Wieger Wamelink, G.W.; Lantinga, E.A. Vegetation composition of Lolium perenne-dominated grasslands under organic and conventional farming. Basic Appl. Ecol. 2019, 36, 45–53. [Google Scholar] [CrossRef]
- Weißhuhn, P.; Reckling, M.; Stachow, U.; Wiggering, H. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability 2017, 9, 2267. [Google Scholar] [CrossRef]
- Boller, B.; Green, S. Genetic resources. In Fodder Crops and Amenity Grasses. Handbook of Plant Breeding; Boller, B., Posselt, U.K., Veronesi, F., Eds.; Springer Science + Business Media: New York, NY, USA, 2010; pp. 13–37. [Google Scholar]
- Vázquez-Blanco, R.; Arias-Estévez, M.; Fernández-Calviño, D.; Arenas-Lago, D. Early Growth Assessment of Lolium perenne L. as a Cover Crop for Management of Copper Accumulation in Galician Vineyard Soils. Horticulturae 2023, 9, 1029. [Google Scholar] [CrossRef]
- Fan, J.B.; Zhang, W.H.; Amombo, E.; Hu, L.X.; Kjorven, J.O.; Chen, L. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef]
- Sun, T.X.; Shao, K.; Huang, Y.; Lei, Y.Y.; Tan, L.Y.; Chan, Z.L. Natural variation analysis of perennial ryegrass inresponse to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environ. Exp. Bot. 2020, 179, 104192. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Chen, C.; Chen, R.; Bai, X.; Qiang, Z.; Fu, J.; Qin, T. The genetic variation in drought resistance in eighteen perennial ryegrass varieties and the underlying adaptation mechanisms. BMC Plant Biol 2023, 23, 451. [Google Scholar] [CrossRef] [PubMed]
- Casler, M.D. Breeding perennial grasses for abiotic stress tolerance. In Breeding for Stress Tolerance in Fodder Crops and Amenity Grasses, Proceedings of the 23rd Meeting of the Fodder Crops and Amenity Grasses Section if Eucarpia, Azores, Portugal, 1–4 October 2000; Monjardino, P., da Camara Machdo, A., Carnide, V., Eds.; Department of Agricultural Sciences, University of Azores: Terceira Island, Portugal, 2001; pp. 119–125, ISBN 972-8612-05-2. [Google Scholar]
- Bothe, A.; Westermeier, P.; Wosnitza, A.; Willner, E.; Schum, A.; Dehmer, K.J.; Hartmann, S. Drought tolerance in perennial ryegrass (Lolium perenne L.) as assessed by two contrasting phenotyping systems. J Agro Crop Sci. 2018, 204, 375–389. [Google Scholar] [CrossRef]
- Demirkol, G.; Felek, A.F.; Aşcı, Ö.Ö.; Yılmaz, N. Physiological and transcriptional status of genetically diverse perennial ryegrass (Lolium perenne L.) populations under drought stress. Plant Genet. Resour. 2023, 21, 331–339. [Google Scholar] [CrossRef]
- Westermeier, P.; Wosnitza, A.; Willner, E.; Feuerstein, U.; Luesink, W.; Schulze, S.; Schum, A.; Hartmann, S. Variation in Drought Tolerance of Perennial Ryegrass (Lolium perenne L.). In Breeding in a World of Scarcity; Roldán-Ruiz, I., Baert, J., Reheul, D., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Duller, S.; Lovatt, A.; Skot, L. One hundred years of forage grass breeding at Aberystwyth. In Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section “Fodder Crops and Amenity Grasses”, Zürich, Switzerland, 24–27 June 2019; pp. 376–378. [Google Scholar]
- OECD. List-of-Varieties-Grasses-and-Legumes. 2024. Available online: http://www.oecd.org/agriculture/seeds/documents/codes-schemes-list-of-varieties-grasses-and-legumes.pdf (accessed on 22 August 2025).
- Katova, A. Species and varieties of perennial grasses for high quality forage in Bulgaria. Chin. J. Heilongjiang Agric. Sci. 2016, 1, 138–145. [Google Scholar]
- Kemesyte, V.; Statkeviciute, G.; Brazauskas, G. Perennial ryegrass yield performance under abiotic stress. Crop Sci. 2017, 57, 1935–1940. [Google Scholar] [CrossRef]
- Ramsey, J.; Ramsey, T.S. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R Soc. Lond B Biol. Sci. 2014, 369, 20130352. [Google Scholar] [CrossRef]
- Katova, A. Approaches and achievements in breeding of perennial grasses in Bulgaria (Review). Bulg. J. Crop Sci. 2025, 62, 69–93. [Google Scholar] [CrossRef]
- Katova, A. Tetrany—The first Bulgarian tetraploid perennial ryegrass variety (Lolium perenne L.). J. Mt. Agric. Balk. 2017, 20, 110–122. [Google Scholar]
- Katova, A. Tetramis—New tetraploid perennial ryegrass variety. J. Mt. Agric. Balk. 2017, 20, 123–134. [Google Scholar]
- Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int J Mol Sci. 2018, 19, 4089. [Google Scholar] [CrossRef]
- Darko, E.; Végh, B.; Khalil, R.; Marček, T.; Szalai, G.; Pál, M. Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE 2019, 14, e0226151. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.H.; Murthy, H.N.; Wu, C.H.; Paek, K.Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Organ Cult 2010, 103, 7–14. [Google Scholar] [CrossRef]
- Thomas, A.; Beena, R. Sucrose Metabolism in Plants under Drought Stress Condition: A Review. Indian J. Agric. Res. 2024, 58, 943–952. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, R.; Li, X.; Dong, D.; Wang, S. Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis. Agronomy 2025, 15, 320. [Google Scholar] [CrossRef]
- Skała, E.; Olszewska, M.A.; Makowczyńska, J.; Kicel, A. Effect of Sucrose Concentration on Rhaponticum carthamoides (Willd.) Iljin Transformed Root Biomass, Caffeoylquinic Acid Derivative, and Flavonoid Production. Int. J. Mol. Sci. 2022, 23, 13848. [Google Scholar] [CrossRef]
- Bewley, J.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; p. 392. [Google Scholar] [CrossRef]
- Ibrahim, A.; Parreira, M.; Mohammed, A.; Halshoy, H. Allelopathic effects of Rumex azoricus on lettuce: Impacts on seed germination and early growth. Rev. Bras. De Agropecuária Sustentável 2025, 15, 45–54. [Google Scholar] [CrossRef]
- Ahn, J.K.; Hahn, S.J.; Kim, J.T.; Khanh, T.D.; Chung, L.M. Evaluation of allelopathic potential among rice (Oryza sativa L.) germplasm for control of Echinochloa crus-galli P. Beauv in the field. Crop Prot. 2005, 24, 413–419. [Google Scholar] [CrossRef]
- Noel, Z.A.; Wang, J.; Chilvers, M.I. Significant Influence of EC50 Estimation by Model Choice and EC50 Type. Plant Dis. 2018, 102, 708–714. [Google Scholar] [CrossRef]
- Abdul-Baki, A.; Anderson, J. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Gariglio, N.; Buyatti, M.; Pillati, R.; Rossa, D.; Acosta, M. Use a germination bioassay to test compost maturity of willow (Salix sp.) sawdust. New Zealand J. Crop Hortic. Sci. 2022, 30, 135–139. [Google Scholar] [CrossRef]
- Katova, A. Seed Productivity and its Elements of Bulgarian Perennial Ryegrass (Lolium perenne L.) Varieties. J. Mt. Agric. Balk. 2025, 28, 160–181. [Google Scholar]
- Jafarpour, M.; Adib, A.; Lotfirad, M.; Kisi, Ö. Spatial evaluation of climate change-induced drought characteristics in different climates based on De Martonne Aridity Index in Iran. Appl Water Sci 2023, 13, 133. [Google Scholar] [CrossRef]
- Koleva, M.; Dimitrova, V.; Nedyalkova, S.; Valkova, N. Drought Tolerance Indices of Cotton Genotypes. J. Mt. Agric. Balk. 2025, 28, 446–462. [Google Scholar]
- Lan, J. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-Occident. Sin. 1998, 7, 85–87. [Google Scholar]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Yazdi, S.B.; Naghavi, M.R.; Zali, A.A.; Dashti, H.; Pourshahbazi, A. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 2008, 12, 165–178. [Google Scholar]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Cyriac, D.; Hofmann, R.W.; Stewart, A.; Sathish, P.; Winefield, C.S.; Moot, D.J. Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE 2018, 13, e0194977. [Google Scholar] [CrossRef]
- Waldron, B.L.; Jensen, K.B.; Peel, M.D.; Picasso, V.D. Breeding for Resilience to Water Deficit and Its Predicted Effect on Forage Mass in Tall Fescue. Agronomy 2021, 11, 2094. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma 2015, 259–260, 251–258. [Google Scholar] [CrossRef]
- Chabuz, W.; Kulik, M.; Sawicka-Zugaj, W.; Żółkiewski, P.; Warda, M.; Pluta, M.; Lipiec, A.; Bochniak, A.; Zdulski, J. Impact of the type of use of permanent grasslands areas in mountainous regions on the floristic diversity of habitats and animal welfare. Glob. Ecol. Conserv. 2019, 19, e00629. [Google Scholar] [CrossRef]
- Volaire, F.; Morvan-Bertrand, A.; Prud’homme, M.P.; Benot, M.L.; Augusti, A.; Zwicke, M.; Roy, J.; Landais, D.; Picon-Cochard, C. The resilience of perennial grasses under two climate scenarios is correlated with carbohydrate metabolism in meristems. J. Exp. Bot. 2020, 71, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Bazot, S.; Mikola, J.; Nguyen, C.; Robin, C. Defoliation-induced changes in carbon allocation and root soluble carbon concentration in field-grown Lolium perenne plants: Do they affect carbon availability, microbes and animal trophic groups in soil? Funct. Ecol. 2005, 19, 886–896. [Google Scholar]
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Gilliland, T.J.; Ball, T.; Hennessy, D. Opportunities and challenges for breeding perennial ryegrass cultivars with improved livestock production potential. Ir. J. Agric. Food Res. 2021, 59, 233–245. [Google Scholar] [CrossRef]
- Rezvani, M.; Taghinia, N.; Nikkhah Kouchaksaraei, H. Study of Seed Germination Ecology of Rye Grass (Lolium perenne L.) and goat grass (Aegilops cylindrica Host.). Thai J. Agric. Sci. 2017, 50, 146–154. [Google Scholar]





| Factor A Genotype | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Tetramis | Tetrany | Harmoniya | ||||||||
| Indicators | GP, % | GPC, % | IR, % | GP, % | GPC, % | IR, % | GP, % | GPC, % | IR, % | |
| Factor B Sucrose concentration, % | 0.0% | 85.0 e | 100.0 | 0.0 | 87.5 f | 100.0 | 0.0 | 72.5 d | 100.0 | 0.0 |
| 1.0% | 70.0 d | 82.4 | 17.6 | 80.0 e | 91.4 | 8.6 | 37.5 c | 51.7 | 48.3 | |
| 3.0% | 25.0 c | 29.4 | 70.6 | 37.5 d | 42.9 | 57.1 | 27.5 b | 37.9 | 62.1 | |
| 6.0% | 22.5 c | 26.5 | 73.5 | 17.5 c | 20.0 | 80.0 | 2.5 a | 3.4 | 96.6 | |
| 9.0% | 12.5 b | 14.7 | 85.3 | 10.0 b | 11.4 | 88.6 | 2.5 a | 3.4 | 96.6 | |
| 12.0% | 2.5 a | 2.9 | 97.1 | 2.5 a | 2.9 | 97.1 | 2.5 a | 3.4 | 96.6 | |
| Factor A Genotype Variety | Factor B Sucrose Concentration, % | Root | Shoot | Seedling | |||
|---|---|---|---|---|---|---|---|
| Length, cm | IR, % | Length, cm | IR, % | Length, cm | IR, % | ||
| Tetramis | 0.0% | 6.45 c | 0.0 | 8.65 d | 0.0 | 15.1 c | 0.00 |
| 1.0% | 4.57 b | 29.1 | 5.79 c | 33.1 | 10.6 b | 31.41 | |
| 3.0% | 0.40 a | 93.9 | 1.77 b | 79.5 | 2.17 a | 85.65 | |
| 6.0% | 0.08 a | 98.7 | 0.59 a | 93.2 | 0.67 a | 95.57 | |
| 9.0% | 0.00 a | 100.0 | 0.35 a | 96.0 | 0.35 a | 97.68 | |
| 12.0% | 0.00 a | 100.0 | 0.10 a | 98.8 | 0.10 a | 99.34 | |
| Tetrany | 0.0% | 7.15 c | 0.0 | 8.90 d | 0.0 | 16.05 d | 0.00 |
| 1.0% | 5.14 b | 28.1 | 6.94 c | 22.0 | 12.08 c | 24.74 | |
| 3.0% | 0.35 a | 95.1 | 2.69 b | 69.8 | 3.04 b | 81.06 | |
| 6.0% | 0.12 a | 98.3 | 0.79 a | 91.1 | 0.91 a | 94.31 | |
| 9.0% | 0.00 a | 100.0 | 0.65 a | 92.7 | 0.65 a | 95.95 | |
| 12.0% | 0.00 a | 100.0 | 0.15 a | 98.3 | 0.15 a | 99.07 | |
| Harmoniya | 0.0% | 4.48 c | 0.0 | 8.05 c | 0.0 | 12.53 c | 0.00 |
| 1.0% | 3.41 b | 23.7 | 4.73 b | 41.2 | 8.15 b | 34.96 | |
| 3.0% | 0.06 a | 98.7 | 0.60 a | 92.6 | 0.65 a | 94.79 | |
| 6.0% | 0.00 a | 100.0 | 0.50 a | 93.8 | 0.50 a | 96.01 | |
| 9.0% | 0.00 a | 100.0 | 0.10 a | 98.8 | 0.10 a | 99.20 | |
| 12.0% | 0.00 a | 100.0 | 0.05 a | 99.4 | 0.05 a | 99.60 | |
| Genotype/ Variety | Indices | ||||
|---|---|---|---|---|---|
| DTI | DSI | SSPI | TOL | YI | |
| Harmoniya | 0.88 | 0.020 | 0.214 | 18.23 | 0.486 |
| Tetrany | 1.69 | 0.014 | 0.385 | 32.77 | 1.069 |
| Tetramis | 3.58 | 0.037 | 0.846 | 72.01 | 1.445 |
| Factor | Variable | Weight |
|---|---|---|
| Factor A Genotype | a1 | 36.25 b |
| a2 | 39.17 b | |
| a3 | 24.17 a | |
| Factor B Sucrose concentration, % | b1 | 81.7 f |
| b2 | 62.5 e | |
| b3 | 30.0 d | |
| b4 | 14.2 c | |
| b5 | 8.3 b | |
| b6 | 2.5 a | |
| Factorial relationship | MS | η2 |
| A | 2277.1 | 4.4 |
| B | 18507.1 | 90.3 |
| A × B | 429.6 | 4.2 |
| Factor | Variable | Root | Shoot | Seedling | |||
|---|---|---|---|---|---|---|---|
| Factor A Genotype | a1 | 1.983 b | 2.881 b | 4.864 b | |||
| a2 | 2.332 b | 3.486 c | 5.819 c | ||||
| a3 | 1.044 a | 2.239 a | 3.282 a | ||||
| Factor B Sucrose concentration, % | b1 | 6.025 c | 8.533 d | 14.558 d | |||
| b2 | 4.410 b | 5.903 c | 10.312 c | ||||
| b3 | 0.256 a | 1.693 b | 1.949 b | ||||
| b4 | 0.070 a | 0.592 a | 0.591 a | ||||
| b5 | 0.000 a | 0.368 a | 0.357 a | ||||
| b6 | 0.000 a | 0.123 a | 0.162 a | ||||
| Factorial relationship | MS | η2 | MS | η2 | MS | η2 | |
| A | 9.10 | 1.0 | 13.09 | 0.9 | 43.54 | 1.0 | |
| B | 277.41 | 72.9 | 455.03 | 79.9 | 1438.53 | 83.4 | |
| A × B | 4.30 | 2.3 | 2.11 | 0.7 | 7.26 | 0.8 | |
| Genotype/ Variety | Seed Germination | Length, cm | Seedling Biomass, g | ||
|---|---|---|---|---|---|
| Root | Shoot | Seedling | |||
| Harmoniya | −0.895 | −0.792 | −0.844 | −0.822 | −0.966 |
| Tetrany | −0.927 | −0.788 | −0.880 | −0.842 | −0.937 |
| Tetramis | −0.850 | −0.774 | −0.787 | −0.785 | −0.835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katova, A.; Marinov-Serafimov, P.; Golubinova, I.; Nikolov, B.; Petrova, S. Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties. Plants 2025, 14, 3704. https://doi.org/10.3390/plants14233704
Katova A, Marinov-Serafimov P, Golubinova I, Nikolov B, Petrova S. Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties. Plants. 2025; 14(23):3704. https://doi.org/10.3390/plants14233704
Chicago/Turabian StyleKatova, Aneliya, Plamen Marinov-Serafimov, Irena Golubinova, Bogdan Nikolov, and Slaveya Petrova. 2025. "Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties" Plants 14, no. 23: 3704. https://doi.org/10.3390/plants14233704
APA StyleKatova, A., Marinov-Serafimov, P., Golubinova, I., Nikolov, B., & Petrova, S. (2025). Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties. Plants, 14(23), 3704. https://doi.org/10.3390/plants14233704

