Genome-Wide Association Studies for Grain Micronutrient Concentration in Spring Wheat (Triticum aestivum L.)
Abstract
1. Introduction
2. Results
2.1. Variability of Grain Ca and Mg Concentrations
| Source | Df | Ca_SS | Mg_SS |
|---|---|---|---|
| Year | 1 | 42.2 * | 476 * |
| Entry | 104 | 8.79 * | 9.68 * |
| Replication | 2 | 10.3 | 60.5 |
| Year × Entry | 104 | 5.35 * | 7.61 * |
| Statistics | 2021–2022 | 2022–2023 | ||
|---|---|---|---|---|
| BLUP Ca | BLUP Mg | BLUP Ca | BLUP Mg | |
| Heritability | 0.66 | 0.73 | 0.68 | 0.78 |
| Genotypic variance | 2312.00 | 10,528.4 | 2786.74 | 4323.17 |
| Grand Mean | 398.62 | 1211.88 | 380.42 | 1118.02 |
| LSD | 49.83 | 73.2 | 49.36 | 85.21 |
| CV | 8.36 | 3.88 | 8.55 | 5.34 |
2.2. Population Structure Analysis
2.3. MTAs for the Target Trait Utilizing GWASs
2.3.1. MTAs for GCaC
2.3.2. MTAs for GMgC
2.3.3. Multi-Effect MTA Locus for Ca and Mg
3. Discussion
4. Materials and Methods
4.1. Genetic Material and Experimental Conditions
4.2. DNA Extraction and Genotyping
4.3. Elemental Analysis of GCaC and GMgC
4.4. Statistical Analyses
4.5. Population Structure, Kinship Matrix, and Principal Components Analyses (PCAs)
4.6. Genome-Wide Association Analyses
4.7. Putative Candidate Gene Predictions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BIC | Bayesian information criterion |
| BLINK | Bayesian-information and linkage disequilibrium iteratively nested keyway |
| BLUP | Best Linear Unbiased Prediction |
| CIMMYT | International Maize and Wheat Improvement Center |
| CV | Coefficient of variation |
| FarmCPU | Fixed, and random model circulating probability unification |
| GCaC | Grain calcium content |
| GMgC | Grain magnesium content |
| GWAS | Genome-wide association study |
| ICP-OES | Inductively coupled plasma–optical emission spectroscopy |
| Mg | Magnesium |
| MTAs | Marker trait associations |
| PCA | Principal component analysis |
| QTL | Quantitative trait loci |
| r2 | Pairwise squared allele–frequency correlations |
| REML | Restricted maximum likelihood |
| TASSEL | Trait Analysis by aSSociation, Evolution and Linkage |
| WAMI | Wheat Association Mapping Initiative |
| Ca | Calcium |
| IWIN | International Wheat Improvement Network |
| LD | Utilizes linkage disequilibrium |
| LSD | Least significant difference |
| MAF | Minor allele frequency |
| Q-Q | Quantile–Quantile |
References
- FAOSTAT. Food and Agriculture Organization. 2025. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 7 May 2025).
- Jiang, T.; Wang, B.; Xu, X.; Cao, Y.; Li-Liu, D.; He, L.; Jin, N.; Ma, H.; Chen, S.; Zhao, K.; et al. Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate. Agric. For. Meteorol. 2022, 319, 108933. [Google Scholar] [CrossRef]
- World Health Organization. Fact Sheets. 2025. Available online: https://www.who.int/health-topics/nutrition/infographics-wasting#tab=tab_2 (accessed on 10 May 2025).
- Weaver, C.M. Calcium. In Present Knowledge in Nutrition; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Wiley-Blackwell: Cambridge, MA, USA, 2022; pp. 21–48. [Google Scholar]
- Mulet-Cabero, A.I.; Wilde, P.J. Role of calcium on lipid digestion and serum lipids: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 813–826. [Google Scholar] [CrossRef]
- Institute of Medicine (IOM). Food and Nutrition Board. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Rude, R.K. Magnesium. In Modern Nutrition in Health and Disease; Ross, A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Baltimore, MA, USA, 2012; pp. 159–175. [Google Scholar]
- Rude, R.K.; Singer, F.R.; Gruber, H.E. Skeletal and hormonal effects of magnesium deficiency. J. Am. Coll. Nutr. 2009, 28, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.; Brazauskas, G.; Gaikpa, D.S.; Henriksson, T.; Islamov, B.; Jørgensen, L.N.; Koppel, M.; Koppel, R.; Liatukas, Ž.; Svensson, J.; et al. Genome-wide association analysis and genomic prediction for adult-plant resistance to Septoria tritici blotch and powdery mildew in winter wheat. Front. Genet. 2021, 12, 661742. [Google Scholar] [CrossRef] [PubMed]
- Rabieyan, E.; Bihamta, M.R.; Moghaddam, M.E.; Alipour, H.; Mohammadi, V.; Azizyan, K.; Javid, S. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biol. 2023, 23, 431. [Google Scholar] [CrossRef]
- Tadesse, W.; Gataa, Z.; Rachdad, F.E.; El Baouchi, A.; Kehel, Z.; Alemu, A. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment. Mol. Genet. Genom. 2023, 298, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Krishnappa, G.; Khan, H.; Krishna, H.; Kumar, S.; Mishra, C.N.; Parkash, O.; Devate, N.B.; Nepolean, T.; Rathan, N.D.; Mamrutha, H.M.; et al. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci. Rep. 2022, 12, 12444. [Google Scholar] [CrossRef]
- Emam, A.I.I.; Kamal, N.M.; Gorafi, Y.S.A.; Tahir, I.S.A.; Balla, M.Y.; Tsujimoto, H.; Ishii, T. Enriched grain minerals in Aegilops tauschii-derived common wheat population under heat-stress environments. Sci. Rep. 2025, 15, 5624. [Google Scholar] [CrossRef]
- Bhadana, D.; Kaur, P.; Kaur, R.; Ravat, V.K.; Ashutosh; Kumar, R.; Vasistha, N.K. Genome-wide association study for powdery mildew resistance in CIMMYT’s spring wheat germplasm. Plant Pathol. 2024, 74, 455–464. [Google Scholar] [CrossRef]
- Kaler, A.S.; Gillman, J.D.; Beissinger, T.; Purcell, L.C. Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front. Plant Sci. 2020, 10, 1794. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PloS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Giga Sci. 2019, 8, giy154. [Google Scholar] [CrossRef]
- Kaur, R.; Vasistha, N.K.; Ravat, V.K.; Mishra, V.K.; Sharma, S.; Joshi, A.K.; Dhariwal, R. Genome-wide association study reveals novel powdery mildew resistance loci in bread wheat. Plants 2023, 12, 3864. [Google Scholar] [CrossRef]
- Hill, W.G.; Weir, B.S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol. 1988, 33, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Elkelish, A.; Alqudah, A.M.; Alomari, D.Z.; Alammari, B.S.; Alsubeie, M.S.; Hamed, S.M.; Thabet, S.G. Targeting candidate genes for the macronutrient accumulation of wheat grains for improved human nutrition. Cereal Res. Commun. 2024, 53, 719–732. [Google Scholar] [CrossRef]
- Aljabri, M.; El-Soda, M. Genome-wide association mapping of macronutrient mineral accumulation in wheat (Triticum aestivum L.) grain. Plants 2024, 13, 3472. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Batley, J.; Snowdon, R.J. Accessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 2013, 126, 1–11. [Google Scholar] [CrossRef]
- Yu, P.; Ye, C.; Li, L.; Yin, H.; Zhao, J.; Wang, Y.; Zhang, Z.; Li, W.; Long, Y.; Hu, X.; et al. Genome-wide association study and genomic prediction for yield and grain quality traits of hybrid rice. Mol. Breed. 2022, 42, 16. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, C.; Wang, D.; Amand, P.S.; Bernardo, A.; Li, W.; He, F.; Li, L.; Wang, L.; Yuan, X.; et al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant. 2020, 13, 1311–1327. [Google Scholar] [CrossRef]
- Shariatipour, N.; Heidari, B.; Tahmasebi, A.; Richards, C. Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 12, 709817. [Google Scholar] [CrossRef]
- Alomari, D.Z.; Eggert, K.; von Wirén, N.; Pillen, K.; Röder, M.S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars. Front. Plant Sci. 2017, 8, 1797. [Google Scholar] [CrossRef]
- Lopes, M.S.; Dreisigacker, S.; Pena, R.J.; Sukumaran, S.; Reynolds, M.P. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor. Appl. Genet. 2015, 128, 453–464. [Google Scholar] [CrossRef]
- Kang, Y.; Barry, K.; Cao, F.; Zhou, M. Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Mol. Biol. Rep. 2020, 47, 1241–1256. [Google Scholar] [CrossRef]
- Mazumder, A.K.; Yadav, R.; Kumar, M.; Babu, P.; Kumar, N.; Singh, S.K.; Solanke, A.U.; Wani, S.H.; Alalawy, A.I.; Alasmari, A.; et al. Discovering novel genomic regions explaining adaptation of bread wheat to conservation agriculture through GWAS. Sci. Rep. 2024, 14, 16351. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ren, J.; Yuan, X.; Yuan, M.; Zhang, D.; Li, C.; Zeng, Q.; Wu, J.; Han, D.; Jiang, L. Genome-wide association study reveals the genetic variation and candidate gene for grain calcium content in bread wheat. Plant Cell Rep. 2023, 42, 1379–1390. [Google Scholar] [CrossRef]
- Bhatta, M.; Baenziger, P.S.; Waters, B.M.; Poudel, R.; Belamkar, V.; Poland, J.; Morgounov, A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int. J. Mol. Sci. 2018, 19, 3237. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhou, Z.; Li, W.; Qin, M.; Yang, P.; Hou, J.; Huang, F.; Lei, Z.; Wu, Z.; Wang, J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2022, 22, 229. [Google Scholar] [CrossRef] [PubMed]
- Rathan, N.D.; Krishna, H.; Ellur, R.K.; Sehgal, D.; Govindan, V.; Ahlawat, A.K.; Krishnappa, G.; Jaiswal, J.P.; Singh, J.B.; Sv, S. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Sci. Rep. 2022, 12, 7037. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Wu, C.; Yu, H.; Li, X.; Chen, G.; Tian, J.; Deng, Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biol. 2021, 21, 311. [Google Scholar] [CrossRef]
- Sigalas, P.P.; Shewry, P.R.; Riche, A.; Wingen, L.; Feng, C.; Siluveru, A.; Chayut, N.; Burridge, A.; Uauy, C.; Castle, M.; et al. Improving wheat grain composition for human health by constructing a QTL atlas for essential minerals. Commun. Biol. 2024, 7, 1001. [Google Scholar] [CrossRef]
- Yang, F.; Dong, F.S.; Hu, F.H.; Liu, Y.W.; Chai, J.F.; Zhao, H.; Lv, M.Y.; Zhou, S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet. 2020, 21, 105. [Google Scholar] [CrossRef]
- Peleg, Z.; Cakmak, I.; Ozturk, L.; Yazici, A.; Jun, Y.; Budak, H.; Korol, A.B.; Fahima, T.; Saranga, Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009, 119, 353–369. [Google Scholar] [CrossRef]
- Genc, Y.; Taylor, J.; Rongala, J.; Oldach, K. A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS ONE 2014, 9, 98845. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Elkelish, A.; Abu-Elsaoud, A.M.; Hassan, S.E.D.; Thabet, S.G. Genome-wide association study reveals the genetic basis controlling mineral accumulation in wheat grains under potassium deficiency. Genet. Res. Crop Evol. 2025, 72, 783–796. [Google Scholar] [CrossRef]
- Zhang, F.S. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agric. 2013, 12, 1512–1521. [Google Scholar] [CrossRef]
- Hao, Y.; Kong, F.; Wang, L.; Zhao, Y.; Li, M.; Che, N.; Li, S.; Wang, M.; Hao, M.; Zhang, X.; et al. Genome-wide association study of grain micronutrient concentrations in bread wheat. J. Integr. Agri. 2024, 23, 1468–1480. [Google Scholar] [CrossRef]
- Alomari, D.Z.; Alqudah, A.M.; Pillen, K.; von Wirén, N.; Röder, M.S. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. J. Exp. Bot. 2021, 72, 6305–6318. [Google Scholar] [CrossRef]
- Sukumaran, S.; Crossa, J.; Jarquín, D.; Lopes, M.; Reynolds, M.P. Genomic and pedigree prediction with genotype x environment interaction in spring wheat grown in South and Western Asia, North Africa, and Mexico. G3 Genes|Genomes|Genet. 2016, 7, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Dean, M.E.; Johnson, J.L. Human Hsp90 cochaperones: Perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021, 26, 3–13. [Google Scholar] [CrossRef]
- Maciejewski, A.; Prado, V.F.; Prado, M.A.M.; Choy, W.-Y. Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochem. J. 2017, 474, 1853–1866. [Google Scholar] [CrossRef]
- Gao, F.; Han, X.; Wu, J.; Zheng, S.; Shang, Z.; Sun, D.; Zhou, R.; Li, B. A heat-activated calcium-permeable channel–Arabidopsis cyclic nucleotide-gated ion channel 6–is involved in heat shock responses. Plant J. 2012, 70, 1056–1069. [Google Scholar] [CrossRef] [PubMed]
- Valmonte-Cortes, G.R.; Higgins, C.M.; MacDiarmid, R.M. Arabidopsis Calcium Dependent Protein Kinase 3, and Its Orthologues OsCPK1, OsCPK15, and AcCPK16, Are Involved in Biotic and Abiotic Stresses. Plants 2025, 14, 294. [Google Scholar] [CrossRef]
- Atif, R.M.; Shahid, L.; Waqas, M.; Ali, B.; Rashid, M.A.R.; Azeem, F.; Nawaz, M.A.; Wani, S.H.; Chung, G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2019, 20, 5298. [Google Scholar] [CrossRef]
- Khan, F.S.; Goher, F.; Paulsmeyer, M.N.; Hu, C.G.; Zhang, J.Z. Calcium (Ca2+) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. Plant Biol. 2023, 25, 1025–1034. [Google Scholar] [CrossRef]
- Cao, P.; Wang, Y.; Ma, Z.; Xu, X.; Ma, D.; Yang, L. Genome-wide identification of long intergenic non-coding RNAs of responsive to powdery mildew stress in wheat (Triticum aestivum). Front. Plant Sci. 2023, 14, 1297580. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Ali, G.S.; Celesnik, H.; Day, I.S. Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 2011, 23, 2010–2032. [Google Scholar] [CrossRef] [PubMed]
- Avramov, A.P.; Hwang, H.J.; Burnap, R.L. The role of Ca2+ and protein scaffolding in the formation of nature’s water oxidizing complex. Proc. Natl. Acad. Sci. USA 2020, 117, 28036–28045. [Google Scholar] [CrossRef]
- Shi, H.; Yang, K.; Xiong, L. Effect of calcium ions on the secondary structures of photosystem II and its relations with photoinhibition. Chin. Sci. Bull. 1998, 43, 1722–1727. [Google Scholar] [CrossRef]
- Knight, H. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000, 195, 269–324. [Google Scholar]
- Wu, Z.; Liang, F.; Hong, B.; Young, J.C.; Sussman, M.R.; Harper, J.F.; Sze, H. An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol. 2002, 130, 128–137. [Google Scholar] [CrossRef]
- Wdowiak, A.; Podgórska, A.; Szal, B. Calcium in plants: An important element of cell physiology and structure, signaling, and stress responses. Acta Physiol. Plant. 2024, 46, 108. [Google Scholar] [CrossRef]
- DeFalco, T.A.; Bender, K.W.; Snedden, W.A. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 2010, 425, 27–40. [Google Scholar] [CrossRef]
- Taneja, M.; Upadhyay, S.K. Molecular characterization and differential expression suggested diverse functions of P-type II Ca2+ ATPases in Triticum aestivum L. BMC Genomics 2018, 19, 389. [Google Scholar]
- Taneja, M.; Tyagi, S.; Sharma, S.; Upadhyay, S.K. Ca2+/cation antiporters (CaCA): Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.). Front. Plant Sci. 2016, 7, 1775. [Google Scholar] [CrossRef]
- Kleczkowski, L.A.; Igamberdiev, A.U. Magnesium signaling in plants. Int. J. Mol. Sci. 2021, 22, 1159. [Google Scholar] [CrossRef]
- Qiu, H.; Nadaud, I.; Ledoigt, G.; Piquet-Pissaloux, A.; Branlard, G. Interruption of magnesium supply at heading influenced proteome of peripheral layers and reduced grain dry weight of two wheat (Triticum aestivum L.) genotypes. J. Proteom. 2016, 143, 83–92. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Xia, W.; Dai, M.; Dai, Y.; Wang, Y.; Ma, H.; Ma, H. The regulation of grain weight in wheat. Seed Biol. 2023, 2, 17. [Google Scholar] [CrossRef]
- Shao, Y.; Li, S.; Gao, L.; Sun, C.; Hu, J.; Ullah, A.; Gao, J.; Li, X.; Liu, S.; Jiang, D.; et al. Magnesium application promotes rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling. Front. Plant Sci. 2021, 12, 675582. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Guo, Q.; Lu, Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front. Microbiol. 2022, 13, 1034811. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.E.; Shirzadeh, M.; Sun, H.M.; McCabe, J.W.; Roth, A.; Moghadamchargari, Z.; Clemmer, D.E.; Laganowsky, A.; Rye, H.; Russell, D.H. Temperature regulates stability, ligand binding (Mg2+ and ATP), and stoichiometry of GroEL–GroES complexes. J. Am. Chem. Soc. 2022, 144, 2667–2678. [Google Scholar] [CrossRef]
- Dukic, E.; Van Maldegem, K.A.; Shaikh, K.M.; Fukuda, K.; Töpel, M.; Solymosi, K.; Hellsten, J.; Hansen, T.H.; Husted, S.; Higgins, J.; et al. Chloroplast magnesium transporters play essential but differential roles in maintaining magnesium homeostasis. Front. Plant Sci. 2023, 14, 221436. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Bozdar, B.; Chachar, S.; Rai, M.; Li, J.; Li, Y.; Hayat, F.; Chachar, Z.; Tu, P. The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front. Plant Sci. 2023, 14, 1285512. [Google Scholar] [CrossRef]
- Grabarek, Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. BBA Mol. Cell Res. 2011, 1813, 913–921. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Yadav, D.; Khan, A.L.; Hashem, A.; Abd_Allah, E.F.; Al-Harrasi, A. Molecular players of EF-hand containing calcium signaling event in plants. Int. J. Mol. Sci. 2019, 20, 1476. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Mohanta, N.; Mohanta, Y.K.; Parida, P.; Bae, H. Genome-wide Identification of Calcineurin B-Like (CBL) Gene Family of Plants Reveals Novel Conserved Motifs and Evolutionary Aspects In Calcium Signaling Events. BMC Plant Biol. 2015, 15, 189. [Google Scholar] [CrossRef]
- Mohanta, T.; Mohanta, N.; Mohanta, Y.; Bae, H. Genome-Wide Identification of Calcium Dependent Protein Kinase Gene Family in Plant Lineage Shows Presence of Novel D-x-D and D-E-L Motifs in EF-Hand Domain. Front. Plant Sci. 2015, 6, 1146. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Kumar, P.; Bae, H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol. 2017, 17, 38. [Google Scholar] [CrossRef]
- Kaur, A.; Sharma, A.; Verma, P.C.; Upadhyay, S.K. EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. S. Afr. J. Bot. 2022, 149, 663–681. [Google Scholar] [CrossRef]
- Sukumaran, S.; Lopes, M.; Dreisigacker, S.; Reynolds, M. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor. Appl. Genet. 2018, 131, 985–998. [Google Scholar] [CrossRef]
- Ahirwar, R.N.; Mishra, V.K.; Chand, R.; Budhlakoti, N.; Mishra, D.C.; Kumar, S.; Singh, S.; Joshi, A.K. Genome-wide association mapping of spot blotch resistance in wheat association mapping initiative (WAMI) panel of spring wheat (Triticum aestivum L.). PLoS ONE 2018, 13, e0208196. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A Software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Marroni, F.; Pinosio, S.; Zaina, G.; Fogolari, F.; Felice, N.; Cattonaro, F.; Morgante, M. Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) Gene. Tree Genet. Genomes 2011, 7, 1011–1023. [Google Scholar] [CrossRef]
- Singh, S.; Gaurav, S.S.; Vasistha, N.K.; Joshi, A.K.; Mishra, V.K.; Chand, R.; Gupta, P.K. Genetics of spot blotch resistance in bread wheat (Triticum aestivum L.) using five models for GWAS. Front. Plant Sci. 2023, 13, 1036064. [Google Scholar] [CrossRef]
- Maccaferri, M.; El-Feki, W.; Nazemi, G.; Salvi, S.; Canè, M.A.; Colalongo, M.C.; Stefanelli, S.; Tuberosa, R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J. Exp. Bot. 2016, 67, 1161–1178. [Google Scholar] [CrossRef]



| Marker | Chr | Pos (cM) # | Pos (Mb) * | Effect | Trait | Year | MAF | Ref. |
|---|---|---|---|---|---|---|---|---|
| wsnp_BE591290B_Ta_2_7 | 1A | 133.0 | 661.8 | −21.85 | Ca | 2022–2023 | 0.19 | PNF |
| wsnp_BG274294B_Ta_2_3 | 1B | 77.0 | 543.0 | 36.33 | Mg | 2021–2022 | 0.37 | PNF |
| IAAV565 | 1B | 122.0 | 652.4 | 18.64 | Ca | 2022–2023 | 0.26 | PNF |
| Excalibur_c23906_303 | 1D | 115.0 | 436.9 | −34.07 | Ca | 2022–2023 | 0.14 | PNF |
| wsnp_Ra_c193_406396 | 1D | 115.0 | 435.8 | −34.07 | Ca | 2022–2023 | 0.14 | PNF |
| BS00068139_51 | 2A | 62.0 | 30.4 | 34.28 | Ca | 2021–2022 | 0.07 | PNF |
| Kukri_c11327_977 | 2A | 101.0 | 361.3 | 19.62 10.69 | Ca | 2021–2022, 2022–2023 | 0.13 | [21] |
| wsnp_Ex_c61879_61748626 | 2A | 62.0 | 30.4 | 21.38 | Ca | 2021–2022 | 0.13 | PNF |
| RAC875_c39634_370 | 2A | 27.0 | 10.7 | −35.81 | Mg | 2021–2022 | 0.40 | PNF |
| wsnp_Ex_c11827_18986376 | 2A | 133.0 | 733.9 | −17.24 | Ca | 2022–2023 | 0.29 | PNF |
| RFL_Contig3509_229 | 2A | 128.0 | 723.8 | −32.11 | Mg | 2022–2023 | 0.09 | PNF |
| TA005606-1282 | 2B | 96.0 | 212.2 | −36.83 | Mg | 2021–2022 | 0.23 | PNF |
| Ra_c10607_524 | 2B | 114.0 | 692.9 | −26.26 | Ca | 2022–2023 | 0.11 | PNF |
| Kukri_c19751_873 | 2B | 108.0 | 594.1 | 20.46 | Ca | 2022–2023 | 0.47 | PNF |
| wsnp_Ex_rep_c67543_66165372 | 2B | 108.0 | 593.6 | 20.25 | Ca | 2022–2023 | 0.48 | PNF |
| BS00022800_51 | 2B | 108.0 | 595.1 | 19.23 | Ca | 2022–2023 | 0.48 | PNF |
| Kukri_c25815_263 | 2B | 108.0 | 594.8 | 18.76 | Ca | 2022–2023 | 0.49 | PNF |
| Excalibur_c7963_1722 | 2B | 69.0 | 31.0 | −19.95 | Mg | 2022–2023 | 0.46 | PNF |
| GENE-1421_802 | 2B | 69.0 | 46.0 | −19.80 | Mg | 2022–2023 | 0.45 | PNF |
| Tdurum_contig12879_1273 | 2B | 115.0 | 712.6 | −21.51 | Ca | 2022–2023 | 0.20 | PNF |
| Ku_c51309_212 | 2B | 115.0 | 714.7 | −22.06 | Ca | 2022–2023 | 0.19 | PNF |
| Kukri_c29640_212 | 2B | 69.0 | 47.1 | −20.51 | Mg | 2022–2023 | 0.47 | PNF |
| Gene_1421_706 | 2B | 69.0 | 46.0 | 19.73 | Mg | 2022–2023 | 0.45 | PNF |
| Excalibur_c2050_748 | 2B | 69.0 | 46.1 | −20.77 | Mg | 2022–2023 | 0.45 | PNF |
| GENE-1421_124 | 2B | 69.0 | 47.1 | −21.02 | Mg | 2022–2023 | 0.44 | PNF |
| RAC875_c66820_684 | 2D | 91.0 | 622.9 | 20.76 | Ca | 2022–2023 | 0.23 | PNF |
| wsnp_Ku_c2249_4335279 | 3A | 188.0 | 611.2 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| D_contig35269_394 | 3A | 33.0 | 16.1 | −34.31 | Mg | 2022–2023 | 0.13 | PNF |
| RAC875_rep_c111781_179 | 3B | 5.0 | 13.0 | −22.87 | Ca | 2022–2023 | 0.20 | PNF |
| Kukri_c17082_519 | 3B | 5.0 | 24.8 | −23.06 | Ca | 2022–2023 | 0.18 | PNF |
| RAC875_c13385_1268 | 3B | 5.0 | 24.8 | −23.06 | Ca | 2022–2023 | 0.18 | PNF |
| BS00062806_51 | 3D | 143.0 | 604.6 | 26.18 | Ca | 2021–2022 | 0.10 | PNF |
| BS00070060_51 | 3D | 143.0 | 614.6 | 26.18 | Ca | 2021–2022 | 0.10 | PNF |
| D_GBF1XID02HLMWB_65 | 3D | 143.0 | 604.4 | 26.18 | Ca | 2021–2022 | 0.10 | PNF |
| Excalibur_c51976_119 | 3D | 143.0 | 611.2 | 26.18 | Ca | 2021–2022 | 0.10 | PNF |
| TA006354-0937 | 3D | 143.0 | 611.2 | 26.18 | Ca | 2021–2022 | 0.10 | PNF |
| BobWhite_c5246_196 | 3D | 143.0 | 746.6 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| BS00070059_51 | 3D | 143.0 | 614.6 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| BS00105800_51 | 3D | 143.0 | 611.5 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| D_GDEEGVY01CO81T_81 | 3D | 143.0 | 604.3 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| Excalibur_c17654_1090 | 3D | 143.0 | 611.2 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| Excalibur_c6906_804 | 3D | 143.0 | 612.8 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| wsnp_Ex_c12963_20529964 | 3D | 143.0 | 612.9 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| wsnp_Ku_c7264_12545135 | 3D | 143.0 | 612.9 | 25.67 | Ca | 2021–2022 | 0.10 | PNF |
| Excalibur_c12032_1101 | 4A | 26.0 | 10.6 | 39.71 | Mg | 2021–2022 | 0.36 | PNF |
| wsnp_Ex_c7280_12498193 | 4A | 144.0 | 725.6 | 48.11 | Mg | 2021–2022 | 0.12 | PNF |
| Ra_c7973_1185 | 4A | 43.0 | 46.1 | 46.51 | Mg | 2021–2022 | 0.14 | PNF |
| Tdurum_contig59603_74 | 4A | 26.0 | 99.2 | 37.64 | Mg | 2021–2022 | 0.39 | PNF |
| Tdurum_contig59603_94 | 4A | 26.0 | 99.2 | 37.64 | Mg | 2021–2022 | 0.39 | PNF |
| Tdurum_contig31139_143 | 4B | 35.0 | 13.9 | −22.53 | Mg | 2022–2023 | 0.22 | PNF |
| Tdurum_contig31139_79 | 4B | 35.0 | 13.9 | −22.53 | Mg | 2022–2023 | 0.22 | PNF |
| wsnp_Ku_c9140_15390166 | 4D | 79.0 | 50.1 | −35.87 | Mg | 2022–2023 | 0.07 | PNF |
| wsnp_Ex_c2718_5038582 | 5A | 43.0 | 46.7 | 16.98 18.48 | Ca | 2021–2022, 2022–2023 | 0.43 0.23 | [21] |
| RAC875_c9984_1003 | 5A | 89.0 | 585.4 | 16.55 11.10 | Ca | 2021–2022, 2022–2023 | 0.31 0.23 | [21] |
| Excalibur_c52167_355 | 5A | 76.0 | 549.5 | −28.63 | Ca | 2022–2023 | 0.12 | PNF |
| wsnp_Ra_c17216_26044790 | 5A | 76.0 | 549.5 | −22.78 | Ca | 2022–2023 | 0.13 | PNF |
| wsnp_Ku_c5308_9450093 | 5B | 21.0 | 16.4 | −20.67 | Mg | 2022–2023 | 0.39 | PNF |
| GENE-3277_145 | 5B | 20.0 | 16.9 | −20.05 | Mg | 2022–2023 | 0.40 | PNF |
| wsnp_Ex_c12927_20480163 | 5B | 20.0 | 16.4 | −20.05 | Mg | 2022–2023 | 0.40 | PNF |
| Tdurum_contig28802_213 | 6A | 125.0 | 597.8 | 17.94 18.12 | Mg | 2021–2022, 2022–2023 | 0.19 0.38 | [22] |
| BS00077044_51 | 6A | 140.0 | 614.6 | −33.63 | Mg | 2022–2023 | 0.09 | PNF |
| wsnp_Ex_c34597_42879693 | 6A | 125.0 | 597.8 | 19.21 21.02 | Mg | 2021–2022, 2022–2023 | 0.29 0.37 | [22] |
| RFL_Contig6053_3082 | 6A | 126.0 | 597.7 | 17.76 24.84 | Mg | 2021–2022, 2022–2023 | 0.24 0.26 | [22] |
| wsnp_Ex_c34597_42879718 | 6B | 93.0 | 597.8 | Ca, Mg | 2021–2022, 2022–2023 | 0.35 0.31 0.46 0.32 | PNF | |
| CAP11_c1473_320 | 7A | 82.0 | 52.9 | −19.47 | Ca | 2021–2022 | 0.20 | PNF |
| BS00078460_51 | 7A | 82.0 | 52.9 | −18.50 | Ca | 2021–2022 | 0.22 | PNF |
| Ex_c9615_1202 | 7A | 82.0 | 52.9 | −18.50 | Ca | 2021–2022 | 0.22 | PNF |
| Ex_c9615_574 | 7A | 82.0 | 49.8 | −18.50 | Ca | 2021–2022 | 0.22 | PNF |
| RAC875_c52560_123 | 7A | 76.0 | 46.7 | 22.30 | Ca | 2021–2022 | 0.11 | PNF |
| BS00022751_51 | 7A | 126.0 | 159.5 | −41.85 | Mg | 2021–2022 | 0.34 | PNF |
| wsnp_Ex_c25025_34285478 | 7A | 126.0 | 159.4 | −41.85 | Mg | 2021–2022 | 0.34 | PNF |
| Tdurum_contig45437_1667 | 7A | 74.0 | 42.1 | 45.24 | Mg | 2021–2022 | 0.12 | PNF |
| Kukri_c31824_636 | 7A | 183.0 | 696.9 | 24.44 | Mg | 2022–2023 | 0.32 | PNF |
| Tdurum_contig31699_276 | 7A | 183.0 | 696.9 | 24.44 | Mg | 2022–2023 | 0.32 | PNF |
| RAC875_c10555_178 | 7B | 8.0 | 35.4 | 20.69 | Ca | 2021–2022 | 0.29 | PNF |
| IAAV1902 | 7B | 8.0 | 36.8 | 20.44 | Ca | 2021–2022 | 0.29 | PNF |
| wsnp_JD_c1285_1848292 | 7B | 10.0 | 37.0 | 19.93 | Ca | 2021–2022 | 0.30 | PNF |
| BobWhite_c47269_128 | 7B | 10.0 | 37.0 | 19.65 | Ca | 2021–2022 | 0.30 | PNF |
| Tdurum_contig97814_355 | 7B | 95.0 | 641.1 | 18.45 | Ca | 2022–2023 | 0.35 | PNF |
| wsnp_Ex_c10430_17064001 | 7D | 118.0 | 112.4 | −37.60 | Mg | 2021–2022 | 0.48 | PNF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025, Chandranandani Negi, Krishan Kumar, Pritesh Vyas, Neeraj Kumar Vasistha, and His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada for the contribution of Raman Dhariwal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Share and Cite
Negi, C.; Kumar, K.; Dhariwal, R.; Vyas, P.; Vasistha, N.K. Genome-Wide Association Studies for Grain Micronutrient Concentration in Spring Wheat (Triticum aestivum L.). Plants 2025, 14, 3472. https://doi.org/10.3390/plants14223472
Negi C, Kumar K, Dhariwal R, Vyas P, Vasistha NK. Genome-Wide Association Studies for Grain Micronutrient Concentration in Spring Wheat (Triticum aestivum L.). Plants. 2025; 14(22):3472. https://doi.org/10.3390/plants14223472
Chicago/Turabian StyleNegi, Chandranandani, Krishan Kumar, Raman Dhariwal, Pritesh Vyas, and Neeraj Kumar Vasistha. 2025. "Genome-Wide Association Studies for Grain Micronutrient Concentration in Spring Wheat (Triticum aestivum L.)" Plants 14, no. 22: 3472. https://doi.org/10.3390/plants14223472
APA StyleNegi, C., Kumar, K., Dhariwal, R., Vyas, P., & Vasistha, N. K. (2025). Genome-Wide Association Studies for Grain Micronutrient Concentration in Spring Wheat (Triticum aestivum L.). Plants, 14(22), 3472. https://doi.org/10.3390/plants14223472

