24-Epibrassinolide-Succinic Acid Conjugate Is Involved in the Acclimation of Rape Plants to Salt Stress
Abstract
1. Introduction
2. Results
2.1. Effects of EBL THS and EBL on Rapeseed Growth Under Salt Stress
2.2. Effect of EBL THS and EBL on the Content of Major Pigments and the Functional Activity of PSII Under Salinization
2.3. Effect of EBL THS and EBL Pretreatment on the Inorganic Ion Contents in the Leaves, Stems, and Roots of Plants Under Salt Stress
2.4. Effects of EBL, THS and EBL on the Water and Osmotic Status of Plants Under Salt Stress
2.5. Effect of EBL THS and EBL on the Intensity of Lipid Peroxidation in Plants Under Salinization
2.6. Effect of EBL THS and EBL on Proline Content in Plants Under Chloride Salinization
2.7. Effects of EBL, THS and EBL on the Activity of Superoxide Dismutase and Peroxidase in Rapeseed Leaves Under Salt Stress
3. Discussion
3.1. Pretreatment of Rapeseed with EBL THS and EBL Regulates Growth and Osmotic Status of Plants Under Salt Stress
3.2. EBL THS and EBL Reduce the Inhibitory Effects of Salt Stress on the Contents of Chlorophylls and Carotenoids and the Functional Activity of PSII
3.3. EBL THS Is More Effective than EBL in Increasing the Antioxidant Activity of Rapeseed Plants Under Salt Stress
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Determination of Plant Biomass
4.3. Determining the Osmotic Potential
4.4. Determination of Photosynthetic Pigments
4.5. Determination of Chlorophyll Fluorescence
4.6. Evaluating Lipid Peroxidation Levels
4.7. Determination of the Free Proline Content
4.8. Determination of the Activity of Antioxidant Enzymes
4.9. Determination of Total Protein Content
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 2016, 3, 30. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freita, H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, B.; Huo, D.; Yan, H.; Jia, L.; Du, Y.; Qian, H.; Yang, Y.; Wang, X.; Li, J.; et al. Increased norovirus activity was associated with a novel norovirus GII.17 variant in Beijing, China during winter 2014–2015. BMC Infect Dis. 2015, 15, 574. [Google Scholar] [CrossRef]
- Nxele, X.; Klein, A.; Ndimba, B.K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S. Afr. J. Bot. 2017, 108, 261. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R.; Asard, H.; Abuelsoud, W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef] [PubMed]
- Zorb, C.; Geilfus, C.M.; Diet, K.J. Salinity and crop yield. Plant Biol. 2019, 1, 31. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef]
- Sadaf, A.; Balal, R.M.; Jaffar, M.T.; Javed, S.A.; Javaid, M.M. Influence of brassinosteroid and silicon on growth, antioxidant enzymes, and metal uptake of leafy vegetables under wastewater irrigation. Int. J. Phytoremediation 2024, 26, 936. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, V.; Kaur, G.; Lata, C.; Dasila, H.; Perveen, K.; Khan, F.; Gupta, V.K.; Khanam, M.N. Brassinosteroids as promoters of seedling growth and antioxidant activity under heavy metal zinc stress in mung bean (Vigna radiata L.). Front. Microbiol. 2023, 14, 1259103. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Z.; Jia, Z.; Zhang, H.; Wang, T. Brassinosteroids alleviate nanoplastic toxicity in edible plants by activating antioxidant defense systems and suppressing nanoplastic uptake. Environ. Int. 2023, 174, 107901. [Google Scholar] [CrossRef]
- Gutiérrez-Villamil, D.A.; Balaguera-López, H.E.; Álvarez-Herrera, J.G. Brassinosteroids improve postharvest quality, antioxidant compounds, and reduce chilling injury in ‘Arrayana’ mandarin fruits under cold storage. Horticulturae 2023, 9, 622. [Google Scholar] [CrossRef]
- Nazir, F.; Fariduddin, Q.; Hussain, A.; Khan, T.A. Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu-triggered oxidative burst in tomato. Ecotoxicol. Environ. Saf. 2021, 207, 111081. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, T.A.; Ahmad, A.; Yusuf, A.; Kappachery, S.; Fariduddin, Q.; Mudgal, G.; Gururani, M.A. Exploring the effects of selenium and brassinosteroids on photosynthesis and protein expression patterns in tomato plants under low temperatures. Plants 2023, 12, 3351. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Y.C.; Rodrigues, W.S.; Lima, E.J.A.; Santos, L.R.; Silva, M.H.L.; Lobato, A.K.S. Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit. Photosynthetica 2019, 57, 181–191. [Google Scholar] [CrossRef]
- Phan, V.H.; Le, T.T.H.; Pham, D.M.; Nguyen, L.T.T.; Nguyen, K.C.; Bui, T.M. Effects of concentration and time of brassinosteroid treatment on growth and yield of soybean under drought stress conditions. Plant Sci. Today 2024, 11. [Google Scholar] [CrossRef]
- Perez-Borroto, L.S.; Guzzo, M.C.; Posada, G.; Malavera, A.N.P.; Castagnaro, A.P.; Gonzalez-Olmedo, G.L.; Coll-García, Y.; Pardo, E.M. A brassinosteroid functional analogue increases soybean drought resilience. Sci. Rep. 2022, 12, 11294. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xie, Y.; Liu, C.; Jiang, H. The exogenous application of brassinosteroids confers tolerance to heat stress by increasing antioxidant capacity in soybeans. Agriculture 2022, 12, 1095. [Google Scholar] [CrossRef]
- Litvinovskaya, R.P.; Minin, M.E.; Raiman, G.A.; Zhilitskaya, A.L.; Kurtikova, K.G.; Kozharnovich, K.G.; Derevyanchuk, M.V.; Kravets, V.S.; Khripach, V.A. Indolyl-3-acetoxy derivatives of brassinosteroids: Synthesis and growth-regulating activity. Chem. Nat. Compd. 2013, 49, 478. [Google Scholar] [CrossRef]
- Litvinovskaya, R.P.; Manzhalesava, N.E.; Savachka, A.P.; Sauchuk, A.L.; Khripach, V.A. Synthesis of tetraesters of indolyl-3-acetic acid with 24-epibrassinosteroids and their influence on the initial growth of wheat plants. Russ. J. Bioorg. Chem. 2025, 51, 1571–1578. [Google Scholar] [CrossRef]
- Litvinovskaya, R.P.; Vayner, A.A.; Zhylitskaya, H.A.; Kolupaev, Y.E.; Savachka, A.P.; Khripach, V.A. Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. Chem. Nat. Compd. 2016, 52, 452. [Google Scholar] [CrossRef]
- Archibasova, Y.V.; Litvinovskaya, R.P. The influence of epibrassinolide and its conjugates with sulfuric acid on the growth and salt tolerance of Helianthus annuus L. Visn. Kharkiv. Nats. Agrar. Univ. Ser. Biol. 2021, 2, 41. [Google Scholar] [CrossRef]
- Khomyuk, Y.V.; Artemuk, E.G.; Litvinovskaya, R.P. The effect of epicasterone and its conjugates with acids on the morphometric and physiological-biochemical parameters of Trifolium pratense L. Vestn. Brest. Un-ta. Ser. 5. Biol. Nauk. O Zemle 2022, 2, 52. Available online: http://rep.brsu.by:80/handle/123456789/7940 (accessed on 1 March 2025).
- Litvinovskaya, R.P.; Manzhelesova, N.E.; Savochka, A.P.; Khripach, V.A. Synthesis of brassinosteroid tetrahemisuccinates and their effect on the initial growth of spring barley plants. Russ. J. Bioorg. Chem. 2022, 48, 543–547. [Google Scholar] [CrossRef]
- Nyzhnyk, T.; Kiedrzyński, M.; Kiedrzyńska, E.; Kots, S. Salicylic and succinic acids as inducers of phytoimmunity in winter wheat for the management of powdery mildew (Blumeria graminis (DC) Speer f. sp. tritici). BMC Plant Biol. 2025, 25, 376. [Google Scholar] [CrossRef]
- Wang, N.; Ping, L.; Mei, X.; Zhang, Y.; Zhang, Y.; Yang, X.; Guo, Y.; Gao, Y.; Xu, Y.; Shen, Q.; et al. Succinic acid reduces tomato bacterial wilt disease by recruiting Sphingomonas sp. Environ. Microbiome 2025, 20, 85. [Google Scholar] [CrossRef]
- Kiliç, T. Seed treatments with salicylic and succinic acid to mitigate drought stress in flowering kale cv. ‘Red Pigeon F1’. Sci. Hortic. 2023, 313, 111939. [Google Scholar] [CrossRef]
- Kolomeichuk, L.V.; Litvinovskaya, R.P.; Khripach, V.A.; Kuznetsov, V.V.; Efimova, M.V. Effect of 24-epibrassinolide and its conjugate with succinic acid on the resistance of rapeseed plants to chloride salinity. Dokl. Biol. Sci. 2025, 521, 111. [Google Scholar] [CrossRef]
- Yu, B.; Chao, D.Y.; Zhao, Y. How plants sense and respond to osmotic stress. J. Integr. Plant Biol. 2024, 66, 394. [Google Scholar] [CrossRef]
- Malakar, P.; Chattopadhyay, D. Adaptation of plants to salt stress: The role of the ion transporters. J. Plant Biochem. Biotechnol. 2021, 30, 668. [Google Scholar] [CrossRef]
- Al-Taey, D.K.A.; Al-Musawi, Z.J.M.; Kadium, S.M.A.; Abbas, A.K.; Alsaffar, M.F.; Mahmood, S.S. Brassinolides’ function and involvement in salt stress response: A Review. IOP Conf. Ser. Earth Environ. Sci. 2024, 1371, 042032. [Google Scholar] [CrossRef]
- Basit, F.; Liu, J.; An, J.; Chen, M.; He, C.; Zhu, X.; Li, Z.; Hu, J.; Guan, Y. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses. Environ. Sci. Pollut. Res. 2021, 28, 44768. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res. 2022, 152, 23. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Zhang, R.; Feng, N.; Zheng, D. Photosynthetic Responses to Salt Stress in Two Rice (Oryza sativa L.) Varieties. Agronomy 2024, 14, 2134. [Google Scholar] [CrossRef]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life 2021, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Pilarska, M.; Niewiadomska, E.; Kruk, J. Salinity-induced changes in plastoquinone pool redox state in halophytic Mesembryanthemum crystallinum L. Sci. Rep. 2023, 13, 11160. [Google Scholar] [CrossRef]
- Ma, X.; Bai, L. Elevated CO2 and reactive oxygen species in stomatal closure. Plants 2021, 10, 410. [Google Scholar] [CrossRef]
- Mansoor, S.; Wani, O.A.; Lone, J.K.; Manhas, S.; Kour, N.; Alam, P.; Ahmad, A.; Ahmad, P. Reactive oxygen species in plants: From source to sink. Antioxidants 2022, 11, 225. [Google Scholar] [CrossRef]
- Rozentsvet, O.A.; Bogdanova, E.S.; Tabalenkova, G.N.; Rozina, S.N. Morphological, physiological, and biochemical characteristics of adaptation of calcephytes of the genus Hedysarum. Contemp. Probl. Ecol. 2021, 14, 465. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Proline alleviates abiotic stress induced oxidative stress in plants. J. Plant Growth Regul. 2023, 42, 4629. [Google Scholar] [CrossRef]
- Renzetti, M.; Bertolini, E.; Trovato, M. Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. Plants 2024, 13, 1913. [Google Scholar] [CrossRef]
- Signorelli, S.; Coitiño, E.L.; Borsani, O.; Monza, J. Molecular mechanisms for the reaction between •OH radicals and proline: Insights on the role as reactive oxygen species scavenger in plant stress. J. Phys. Chem. B 2014, 118, 37–47. [Google Scholar] [CrossRef]
- Rehman, A.U.; Bashir, F.; Ayaydin, F.; Kóta, Z.; Páli, T.; Vass, I. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol. Plant. 2021, 172, 7–18. [Google Scholar] [CrossRef]
- Reddy, P.S.; Jogeswar, G.; Rasineni, G.K.; Maheswari, M.; Reddy, A.R.; Varshney, R.K.; Kavi Kishor, P.B. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol. Biochem. 2015, 94, 104–113. [Google Scholar] [CrossRef]
- Renzetti, M.; Funck, D.; Trovato, M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? Plants 2025, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, Y.K. Proline as a key player in heat stress tolerance: Insights from maize. Discov. Agric. 2024, 2, 121. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth. Enzymol. 1987, 148, 350. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276. [Google Scholar] [CrossRef] [PubMed]
- Ridge, I.; Osborne, D.J. Role peroxidase when hydroxyprolin-rich protein in plant cell wall is increased by ethylene. Nat. New Biol. 1971, 229, 205. [Google Scholar] [CrossRef] [PubMed]
- Esen, A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. Anal. Biochem. 1978, 89, 264. [Google Scholar] [CrossRef]







| Treatment | Hypocotyl Length (cm) | Stem Length (cm) | Root Length (cm) | Number of Leaves | Leaf Surface Area (cm2) | Fresh Weight of Entire Plant (g) | |
|---|---|---|---|---|---|---|---|
| 1 day | Control | 3.33 ± 0.21 a | 3.28 ± 0.12 a | 17.20 ± 0.88 a | 4.50 ± 0.23 a | 78.46 ± 5.58 a | 4.21 ± 0.35 a |
| NaCl | 3.25 ± 0.25 a | 2.66 ± 0.12 b | 17.21 ± 0.31 a | 3.50 ± 0.25 b | 61.28 ± 7.57 ab | 2.59 ± 0.30 b | |
| EBL + NaCl | 3.46 ± 0.12 a | 2.90 ± 0.23 a | 17.10 ± 0.42 a | 3.80 ± 0.36 b | 80.22 ± 8.45 a | 3.21 ± 0.24 c | |
| EBL THS + NaCl | 4.18 ± 0.34 b | 3.05 ± 0.19 a | 18.10 ± 2.54 a | 3.80 ± 0.36 b | 69.64 ± 5.32 a | 2.49 ± 0.27 b | |
| 3 days | Control | 3.55 ± 0.25 a | 3.40 ± 0.18 a | 17.90 ± 1.30 a | 4.90 ± 0.23 a | 88.90 ± 6.01 a | 4.44 ± 0.40 a |
| NaCl | 3.50 ± 0.26 a | 2.80 ± 0.20 ab | 17.95 ± 1.80 a | 3.50 ± 0.26 b | 65.98 ± 2.70 b | 2.94 ± 0.28 b | |
| EBL + NaCl | 3.55 ± 0.32 a | 3.05 ± 0.16 a | 17.80 ± 1.94 a | 3.94 ± 0.32 b | 82.06 ± 8.89 a | 3.25 ± 0.39 b | |
| EBL THS + NaCl | 4.25 ± 0.46 a | 3.11 ± 0.29 a | 18.64 ± 0.25 a | 3.89 ± 0.27 b | 89.59 ± 6.43 a | 3.81 ± 0.54 a | |
| 5 days | Control | 3.80 ± 0.36 a | 3.90 ± 0.27 a | 20.21 ± 1.39 a | 5.00 ± 0.21 a | 97.47 ± 5.52 a | 4.44 ± 0.48 a |
| NaCl | 3.45 ± 0.30 a | 3.00 ± 0.26 b | 19.15 ± 1.94 a | 3.90 ± 0.28 b | 68.45 ± 4.65 b | 3.02 ± 0.16 b | |
| EBL + NaCl | 3.70 ± 0.28 a | 3.20 ± 0.15 b | 20.80 ± 1.45 a | 4.10 ± 0.18 b | 86.35 ± 3.25 ac | 3.75 ± 0.42 a | |
| EBL THS + NaCl | 4.28 ± 0.36 ab | 3.15 ± 0.36 ab | 19.30 ± 2.27 a | 4.00 ± 0.21 b | 94.44 ± 5.31 a | 4.09 ± 0.24 a | |
| 7 days | Control | 4.20 ± 0.51 a | 4.25 ± 0.40 a | 23.00 ± 0.97 a | 5.00 ± 0.21 a | 101.98 ± 6.04 a | 4.64 ± 0.43 a |
| NaCl | 3.44 ± 0.36 a | 3.05 ± 0.34 b | 22.50 ± 2.03 a | 4.30 ± 0.31 b | 70.45 ± 3.64 b | 3.26 ± 0.30 b | |
| EBL + NaCl | 3.75 ± 0.28 a | 3.30 ± 0.30 b | 20.80 ± 2.41 a | 4.20 ± 0.25 b | 90.24 ± 6.79 a | 4.32 ± 0.47 a | |
| EBL THS + NaCl | 4.80 ± 0.33 a | 3.70 ± 0.44 ab | 22.65 ± 2.71 a | 4.50 ± 0.34 ab | 98.13 ± 9.92 a | 4.92 ± 0.24 a | |
| Treatment | Leaf | Stem | Root | Leaf | Stem | Root | Leaf | Stem | Root |
| Na+, At % | K+, At % | Cl−, At % | |||||||
| Control | 1.23 ± 0.09 a | 1.74 ± 0.40 a | 2.72 ± 0.23 a | 48.31 ± 2.16 a | 56.84 ± 1.30 a | 34.85 ± 2.16 a | 1.75 ± 0.27 a | 1.48 ± 0.19 a | 2.11 ± 0.13 a |
| NaCl | 25.47 ± 1.34 b | 24.37 ± 1.95 b | 17.25 ± 1.48 b | 17.16 ± 2.14 b | 29.98 ± 3.36 b | 19.45 ± 0.67 b | 38.30 ± 1.39 b | 25.55 ± 1.88 b | 22.69 ± 1.37 b |
| EBL + NaCl | 20.02 ± 0.80 c | 18.90 ± 0.95 c | 16.99 ± 0.35 b | 14.77 ± 0.90 b | 31.76 ± 1.20 b | 20.08 ± 2.87 b | 38.46 ± 2.22 b | 24.52 ± 0.68 b | 22.86 ± 1.35 b |
| EBL THS + NaCl | 20.79 ± 0.80 c | 17.12 ± 1.45 c | 16.75 ± 0.84 b | 15.12 ± 0.74 b | 31.55 ± 3.06 b | 23.48 ± 0.60 c | 23.45 ± 0.79 c | 23.07 ± 1.84 b | 38.86 ± 1.60 c |
| Mg++, At % | Ca++, At % | S++, At % | |||||||
| Control | 7.52 ± 0.57 a | 4.87 ± 0.23 a | 4.74 ± 0.67 a | 21.67 ± 1.34 a | 8.28 ± 0.50 a | 16.20 ± 1.78 a | 7.65 ± 0.48 a | 8.16 ± 0.45 a | 9.51 ± 1.02 a |
| NaCl | 3.61 ± 0.24 b | 3.09 ± 0.86 b | 2.31 ± 0.38 b | 5.38 ± 0.46 b | 3.06 ± 0.29 b | 9.28 ± 1.09 b | 3.43 ± 0.29 b | 4.54 ± 0.23 b | 7.18 ± 0.43 b |
| EBL + NaCl | 5.76 ± 0.26 c | 4.26 ± 0.28 a | 2.76 ± 0.39 b | 9.76 ± 1.11 c | 4.54 ± 0.38 c | 7.78 ± 0.67 b | 3.86 ± 0.48 b | 4.79 ± 0.38 b | 6.65 ± 0.11 b |
| EBL THS + NaCl | 5.98 ± 0.11 c | 4.87 ± 0.40 a | 2.73 ± 0.18 b | 10.04 ± 0.45 c | 5.65 ± 0.24 d | 7.74 ± 0.24 c | 3.43 ± 0.24 b | 4.15 ± 0.15 b | 6.68 ± 0.57 b |
| P+++, At % | Al+++, At % | Fe++, At % | |||||||
| Control | 7.71 ± 0.72 a | 11.31 ± 1.11 a | 17.87 ± 1.55 a | 1.11 ± 0.06 a | 1.00 ± 0.22 a | 1.54 ± 0.40 a | 7.06 ± 0.64 a | 5.82 ± 0.50 a | 9.26 ± 0.63 a |
| NaCl | 3.81 ± 0.62 b | 5.36 ± 0.28 b | 13.42 ± 0.62 b | 0.66 ± 0.13 b | 0.75 ± 0.02 a | 0.63 ± 0.13 b | 3.27 ± 0.32 b | 3.90 ± 0.29 b | 7.81 ± 0.44 b |
| EBL + NaCl | 2.62 ± 0.24 c | 6.51 ± 0.28 c | 13.26 ± 0.69 b | 0.63 ± 0.13 b | 0.39 ± 0.05 b | 0.79 ± 0.10 b | 2.68 ± 0.25 b | 4.44 ± 0.32 b | 8.66 ± 0.42 a |
| EBL THS + NaCl | 3.03 ± 0.24 b | 7.36 ± 0.67 c | 13.62 ± 0.15 b | 0.75 ± 0.03 b | 0.64 ± 0.02 c | 0.79 ± 0.03 b | 3.36 ± 0.32 b | 4.26 ± 0.14 b | 8.25 ± 0.83 a |
| Treatment | Water Content (%) | ||
|---|---|---|---|
| Shoot | Roots | ||
| 1 days | Control | 88.36 ± 0.85 a | 90.35 ± 0.72 a |
| NaCl | 87.75 ± 0.67 a | 90.35 ± 0.36 a | |
| EBL + NaCl | 88.58 ± 0.38 a | 89.84 ± 0.16 a | |
| EBL THS + NaCl | 88.49 ± 0.26 a | 90.84 ± 0.84 a | |
| 3 days | Control | 88.51 ± 0.60 a | 89.01 ± 0.76 a |
| NaCl | 89.61 ± 0.32 a | 90.93 ± 0.76 a | |
| EBL + NaCl | 90.24 ± 0.79 a | 90.36 ± 0.65 a | |
| EBL THS + NaCl | 90.35 ± 0.22 b | 92.43 ± 0.26 b | |
| 5 days | Control | 90.17 ± 0.76 a | 91.84 ± 0.28 a |
| NaCl | 88.98 ± 0.70 a | 92.67 ± 0.92 a | |
| EBL + NaCl | 87.84 ± 0.93 a | 91.14 ± 0.25 a | |
| EBL THS + NaCl | 88.33 ± 0.79 a | 87.76 ± 0.79 b | |
| 7 days | Control | 85.85 ± 0.82 a | 90.14 ± 1.40 a |
| NaCl | 83.88 ± 0.65 b | 89.20 ± 0.16 a | |
| EBL + NaCl | 86.72 ± 1.11 a | 90.81 ± 0.43 a | |
| EBL THS + NaCl | 85.35 ± 0.72 a | 89.57 ± 0.80 a | |
| Treatment | TBARS Content (µM/g Fresh Weight) | |||
|---|---|---|---|---|
| Leaves | Stem | Roots | ||
| 1 days | Control | 0.026 ± 0.001 a | 0.012 ± 0.001 a | 0.024 ± 0.002 a |
| NaCl | 0.037 ± 0.003 b | 0.025 ± 0.003 b | 0.039 ± 0.003 b | |
| EBL + NaCl | 0.033 ± 0.003 b | 0.025 ± 0.002 b | 0.039 ± 0.004 b | |
| EBL THS + NaCl | 0.033 ± 0.002 b | 0.018 ± 0.001 c | 0.024 ± 0.001 a | |
| 3 days | Control | 0.036 ± 0.002 a | 0.012 ± 0.001 a | 0.028 ± 0.002 a |
| NaCl | 0.043 ± 0.003 b | 0.021 ± 0.001 b | 0.045 ± 0.003 b | |
| EBL + NaCl | 0.039 ± 0.003 ab | 0.012 ± 0.001 a | 0.026 ± 0.002 a | |
| EBL THS + NaCl | 0.036 ± 0.002 a | 0.021 ± 0.002 b | 0.035 ± 0.003 c | |
| 5 days | Control | 0.042 ± 0.004 a | 0.012 ± 0.001 a | 0.017 ± 0.001 a |
| NaCl | 0.067 ± 0.006 b | 0.016 ± 0.001 b | 0.025 ± 0.002 b | |
| EBL + NaCl | 0.042 ± 0.003 a | 0.021 ± 0.003 b | 0.015 ± 0.002 a | |
| EBL THS + NaCl | 0.041 ± 0.006 a | 0.020 ± 0.002 b | 0.027 ± 0.003 b | |
| 7 days | Control | 0.021 ± 0.002 a | 0.012 ± 0.001 a | 0.015 ± 0.001 a |
| NaCl | 0.049 ± 0.004 b | 0.024 ± 0.002 b | 0.021 ± 0.002 b | |
| EBL + NaCl | 0.024 ± 0.003 a | 0.022 ± 0.002 b | 0.016 ± 0.001 a | |
| EBL THS + NaCl | 0.020 ± 0.005 a | 0.025 ± 0.002 b | 0.022 ± 0.002 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolomeichuk, L.V.; Khripach, V.A.; Litvinovskaya, R.P.; Savachka, A.P.; Liang, M.; Xu, L.; Kuznetsov, V.V.; Efimova, M.V. 24-Epibrassinolide-Succinic Acid Conjugate Is Involved in the Acclimation of Rape Plants to Salt Stress. Plants 2025, 14, 3404. https://doi.org/10.3390/plants14213404
Kolomeichuk LV, Khripach VA, Litvinovskaya RP, Savachka AP, Liang M, Xu L, Kuznetsov VV, Efimova MV. 24-Epibrassinolide-Succinic Acid Conjugate Is Involved in the Acclimation of Rape Plants to Salt Stress. Plants. 2025; 14(21):3404. https://doi.org/10.3390/plants14213404
Chicago/Turabian StyleKolomeichuk, Liliya V., Vladimir A. Khripach, Raisa P. Litvinovskaya, Aleh P. Savachka, Mingxiang Liang, Li Xu, Vladimir V. Kuznetsov, and Marina V. Efimova. 2025. "24-Epibrassinolide-Succinic Acid Conjugate Is Involved in the Acclimation of Rape Plants to Salt Stress" Plants 14, no. 21: 3404. https://doi.org/10.3390/plants14213404
APA StyleKolomeichuk, L. V., Khripach, V. A., Litvinovskaya, R. P., Savachka, A. P., Liang, M., Xu, L., Kuznetsov, V. V., & Efimova, M. V. (2025). 24-Epibrassinolide-Succinic Acid Conjugate Is Involved in the Acclimation of Rape Plants to Salt Stress. Plants, 14(21), 3404. https://doi.org/10.3390/plants14213404

