Climate Change Impacts on Greenhouse Horticulture in the Mediterranean Basin: Challenges and Adaptation Strategies
Abstract
1. Introduction
2. Climate Projections for the Mediterranean Region (2041–2070 Horizon)
| Climate Variable | Projected Change | Time Horizon | Key References |
|---|---|---|---|
| Mean annual T | ↑ 1.5–2.5 °C | 2041–2070 (SSP2-4.5/8.5) | [2,6] |
| Maximum T Extremes | ↑ frequency of >35 °C days | 2041–2070 (SSP2-4.5/8.5) | [6,18] |
| Nighttime T | ↑ 1.5–2.5 °C | 2041–2070 (SSP2-4.5/8.5) | [2] |
| Heatwave frequency | ↑ 2–3× | 2041–2070 | [33] |
| RH | ↓ 5–10% in summer | 2041–2070 | [18,24] |
| VPD | ↑ due to ↑ T and ↓ RH | 2041–2070 | [18,26] |
| Solar radiation intensity | ↑ 2–8% due to reduced cloud cover | 2041–2070 | [28,34] |
| ET | ↑ 10–15% in warm seasons | 2041–2070 | [25,26] |
| Precipitation | ↓ 10–20% (especially summer) | 2041–2070 | [2] |
3. Impacts on Greenhouse Vegetable Crops
3.1. Physiological Responses
| Physiological Response | Relative Significance | Primary Stressors | Key References |
|---|---|---|---|
| Reproductive impairment (flowering, fruit set) | Very High | Heat, VPD | [75,76] |
| Photosynthetic inhibition | High | Heat, Radiation | [77,78] |
| Oxidative stress | High | Heat, Drought, Radiation | [62,79,80] |
| Water stress (turgor loss, transpiration) | Moderate to High | Heat, Drought, VPD | [79,81,82] |
| Respiration imbalance (e.g., carbohydrate depletion) | Moderate | Heat, Drought | [83,84] |
| Nutrient transport disruption (e.g., BER) | Moderate | Heat, Drought | [58,85] |
| Root morphology adaptation | Low to Moderate | Drought | [86] |
| Antioxidant response | Low to Moderate | Heat, Oxidative | [87,88] |
3.2. Yield and Quality
| Climate Stress Factor | Impact on Yield | Impact on Quality | Key References |
|---|---|---|---|
| Heat stress (high T + high VPD) | Very High—disrupts reproduction, increases abortion rate | Very High—promotes BER, fruit cracking, color and flavor loss | [38,85] |
| Water stress (deficit irrigation, low RH) | High—limits cell expansion and nutrient transport | High—reduces firmness, size, and nutritional content | [48,133] |
| Radiation stress (excess solar radiation) | Moderate—exacerbates temperature stress and photodamage | Moderate—increases sunscald and oxidative damage | [11,134] |
| Elevated CO2 | Variable—may increase WUE, but not offset heat effects | Variable—may boost photosynthesis but degrade sugar/acid balance | [135,136] |
| Combined stress (heat + drought + light) | Critical—synergistic effects severely reduce productivity | Critical—results in misshapen, low-quality fruits | [137,138] |
3.3. Pest and Disease Pressure
| Abiotic Stress Factor | Impact on Crop Yield and Quality | Relative Importance | Key References |
|---|---|---|---|
| Elevated T | Enhances pest development, increases virus vector efficiency | High | [147] |
| High RH | Promotes fungal and bacterial disease outbreaks | Moderate | [91] |
| Erratic RH | Triggers downy mildew and foliar diseases in cucumber | Moderate | [153] |
| Elevated VPD | Reduces efficacy of biocontrol agents and beneficial insects | High | [155] |
| Heat and Water Stress | Weakens plant immunity, facilitates Botrytis and Fusarium infections | High | [150,152] |
| Fluctuating T and RH | Limits fungicide efficacy and curative potential | High | [152,154] |
4. Water and Energy Demands
| Abiotic Stress Factor | Impact on Water Demand | Impact on Energy Demand | Relative Significance | Key References |
|---|---|---|---|---|
| High T | ↑ ET; ↑ irrigation frequency and volume | ↑ Cooling energy consumption | High | [183,184] |
| Elevated VPD | ↑ ET; ↑ irrigation frequency and volume | ↑ Ventilation and fogging requirements | High | [76,141] |
| Water Scarcity | ↓ Water availability; necessitates efficiency and reuse | ↑ Pumping energy for water sourcing | Moderate to High | [185] |
| Radiation Intensity | ↑ Leaf T; ↑ water demand for cooling | ↑ Shading and ventilation requirements | Moderate | [44,186] |
| Combined Heat and Water Stress | Synergistic increase in irrigation needs | Multiplicative effect on cooling and irrigation energy use | Very High | [118,187] |
5. Adaptation Strategies
5.1. Greenhouse Structural Innovations
5.2. Water Management
| Stress Factor | Relative Significance | Impact on Water Management | Key References |
|---|---|---|---|
| High T | Very High | Increases ET, requires cooling integration, accelerates water loss | [117,206] |
| Water Scarcity | Very High | Limits water availability, necessitates reuse and alternative sources | [217,220] |
| Salinity Stress | High | Challenges water quality, requires filtration/blending | [208,209] |
| Elevated VPD | High | Increases transpirational demand, complicates irrigation scheduling | [76,210] |
| Erratic Rainfall | Moderate | Reduces reliability of natural water sources, necessitates storage | [172,211] |
| Radiation Stress | Moderate | Increases canopy T, indirect effect on water demand | [11,186] |
5.3. Variety Selection and Agronomic Practices
| Abiotic Stress Factor | Significance for Variety Selection | Key References |
|---|---|---|
| High T (Heat Stress) | Very High—Directly affects reproductive success and yield stability; top priority for thermotolerant breeding | [38,97] |
| Water Scarcity (Drought Stress) | High—Critical during flowering and fruiting; influences WUE and root architecture traits | [220,237] |
| Oxidative Stress | Moderate—Often a secondary effect of heat/drought; relevant for antioxidant-related breeding targets | [62,195] |
| Salinity Stress | Moderate—Important in coastal/irrigated areas; included in some advanced rootstock and varietal programs | [208,209] |
| Radiation Stress | Low—Limited direct breeding focus; mitigated via structural and shading adaptations | [11,186] |
5.4. Renewable Energy Use
5.5. Comparative Cost–Benefit Overview
| Strategy | Initial Investment Cost | Operational/Maintenance Cost | Performance Benefits | Overall Feasibility in Mediterranean Context | Key References |
|---|---|---|---|---|---|
| Greenhouse structural improvements (e.g., shading screens, thermal insulation, natural ventilation upgrades) | Medium–High | Low–Medium | Lowers heat load, reduces energy demand, stabilizes yields under heat stress | Moderate to high, often dependent on subsidies or cooperative investment | [270,271,272] |
| Water-saving irrigation (e.g., drip irrigation, fertigation, DSS-based scheduling) | Medium | Low | +30–40% WUE, +10–20% yield stability under drought | High, widely adopted and cost-effective | [181,273,274] |
| Stress-resistant cultivars/rootstocks | Low | Low | Improves tolerance to heat and drought, enhances yield stability; moderate yield gains | High feasibility; adoption increasing across the region | [275,276,277] |
| Renewable energy integration (e.g., PV panels, geothermal heating/cooling) | High | Low–Medium | Substantial reduction in fossil energy use, long-term cost savings, lower CO2 footprint | Feasible mainly with policy incentives or external financing | [271,278] |
6. Decision Support and Digital Tools
| Tool/Platform | Country | Crop | Functionality | Key Features | Outcomes | Key References |
|---|---|---|---|---|---|---|
| iGreenhouse | Italy | Tomato | Climate & Irrigation Control | AI, IoT, Cloud-based | Improved water and energy efficiency | [273,293] |
| NUTRISENSE | Greece | All | Crop & Cultivation system- specific DSS | Mobile-compatible, cloud based | Improved WUE and NUE, yield increase and custom-made nutrition | [177,283,294] |
| AgriSens | Greece | Pepper | Sensor Integration & DSS | Mobile-compatible, edge computing | Real-time adaptation to stress | [295] |
| Hort@ | Spain | Tomato | Crop-specific DSS | Phenological models, local calendars | Optimized timing, yield stability | [296,297] |
| ClimaView | France | All | Regional Monitoring | Remote sensing, dashboards | Supports planning & resilience | [298] |
| SmartFarmNet | Cyprus | Cucumber | Greenhouse management | Multi-sensor, predictive analytics | Climate response modeling | [299] |
7. Regional Case Studies
| Country | Adaptation Strategies | Technologies and Tools | Key References |
|---|---|---|---|
| Spain | High-tech greenhouses, hydroponics, climate control, DSS | Reflective screens, Hort@ DSS | [74,300,301] |
| Greece | Seasonal shifts, grafted plants, precision irrigation, DSS | Tensiometers, NUTRISENSE, AgriSens DSS | [177,303,304] |
| Turkey | Fogging, insect-proofing, PV integration, DSS | Turkish DSS platforms, solar panels | [307,308,309] |
| Italy | Geothermal heating, high-throughput phenotyping, DSS | iGreenhouse, AI analytics | [163,310] |
| France | Smart irrigation, climate-adapted cultivars | Soil sensors, ET-based scheduling | [312,313] |
| Egypt | Solar greenhouses, hydroponics, national adaptation schemes | Solar-PV, NFT | [314,315] |
| Tunisia | Grafted heat-tolerant crops, mobile DSS, low-cost pest management | Mobile apps, organic biocontrols | [316,317,318] |
| Morocco | Transition to Mid-Tech and Hi-Tech structures, DSS training | DSS tools, training platforms | [319,320] |
8. Policy Framework and Research Priorities
| Thematic Area | Policy/Research Priority | Description | Key References |
|---|---|---|---|
| Financial Incentives | Subsidies for Renewable Energy and Climate Control Technologies | Support adoption of solar, geothermal, and precision irrigation systems in greenhouses, especially for SMEs | [334,335,336,337] |
| Regulatory Support | Streamlined Permits and Tax Relief | Facilitate permits for sustainable greenhouse structures and offer tax incentives for investments in environmental monitoring and automation | [334,337] |
| EU Framework Integration | Alignment with EU Green Deal, CAP, Farm to Fork | Adapt existing EU policies to specifically address Mediterranean greenhouse needs, including regional vulnerabilities | [338,339] |
| Breeding Innovation | Development of Stress-Tolerant Cultivars | Invest in genomic-assisted breeding, high-throughput phenotyping, and farmer-participatory approaches to develop heat-, drought-, and pest-tolerant varieties | [340,341,342] |
| Sustainable Systems | Low-Carbon, Low-Input Greenhouse Design | Promote passive climate control, recyclable materials, and energy-efficient lighting in greenhouse construction | [343,344,345] |
| Decision Support Tools | Localized, User-Friendly DSS Platforms | Develop multilingual, open-access platforms integrating sensors, weather data, and crop models for grower decision-making | [346,347] |
| Research Collaboration | Regional Networks and International Projects | Leverage PRIMA, Horizon Europe, and knowledge hubs for joint trials, farmer schools, and standard harmonization | [340,348,349] |
| Monitoring and Evaluation | Agro-Environmental Monitoring Programs | Establish long-term programs for assessing climate adaptation performance and guiding iterative improvements | [350,351,352,353] |
| Local Knowledge | Inclusion of Farmer Experience and Ecological Knowledge | Use participatory research to enhance relevance, acceptance, and efficacy of adaptation strategies | [345,354] |
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| BER | Blossom-end rot |
| CAP | Common Agricultural Policy |
| CFD | Computational Fluid Dynamics |
| CMV | Cucumber mosaic virus |
| CO2 | Carbon dioxide |
| DSS | Decision Support System |
| ET | Evapotranspiration |
| EU | European Union |
| FAO | Food and Agriculture Organization |
| IR | Infrared |
| IoT | Internet of Things |
| IPCC | Intergovernmental Panel on Climate Change |
| IPM | Integrated Pest Management |
| LCA | Life Cycle Assessment |
| MAS | Marker-assisted selection |
| NDVI | Normalized Difference Vegetation Index |
| NFT | Nutrient film technique |
| NIR | Near-infrared |
| PAR | Photosynthetically Active Radiation |
| PCMs | Phase-Change Materials |
| RDI | Regulated deficit irrigation |
| RH | Relative air humidity |
| ROS | Reactive oxygen species |
| PRIMA | Partnership for Research and Innovation in the Mediterranean Area |
| PV | Photovoltaic |
| SMEs | Small and Medium-sized Enterprises |
| TSWV | Tomato spotted wilt virus |
| TYLCV UNEP | Tomato yellow leaf curl virus United Nations Environment Programme |
| UV | Ultraviolet |
| VPD | Vapor Pressure Deficit |
| WUE | Water-use efficiency |
References
- Giorgi, F. Climate Change Hot-spots. Geophys. Res. Lett. 2006, 33, 101029. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Chericoni, M.; Fosser, G.; Flaounas, E.; Gaetani, M.; Anav, A. Unravelling Drivers of the Future Mediterranean Precipitation Paradox during Cyclones. npj Clim. Atmos. Sci. 2025, 8, 260. [Google Scholar] [CrossRef]
- Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.-A.; Samsó, M. The Mediterranean Climate Change Hotspot in the CMIP5 and CMIP6 Projections. Earth Syst. Dyn. 2022, 13, 321–340. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- IPCC. Climate Change. 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Giannakopoulos, C.; Varotsos, K.V.; Gakis, N. Climate Change Impacts on the Energy System of a Climate Vulnerable Mediterranean Country (Greece). Atmosphere 2024, 15, 286. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Statistical Database; FAO: Rome, Italy, 2013.
- Franco, A.; Valera, D.L.; Peña, A.; Pérez, A.M. Aerodynamic Analysis and CFD Simulation of Several Cellulose Evaporative Cooling Pads Used in Mediterranean Greenhouses. Comput. Electron. Agric. 2011, 76, 218–230. [Google Scholar] [CrossRef]
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic Nets in Agriculture: A General Review of Types and Applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Kitta, E.; Katsoulas, N.; Savvas, D. Shading Effects on Greenhouse Microclimate and Crop Transpiration in a Cucumber Crop Grown Under Mediterranean Conditions. Appl. Eng. Agric. 2012, 28, 129–140. [Google Scholar] [CrossRef]
- Bisbis, M.; Gruda, N.; Blanke, M. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef]
- Alrteimei, H.A.; Ash’aari, Z.H.; Muharram, F.M. Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region. Agriculture 2022, 12, 1787. [Google Scholar] [CrossRef]
- Gaion, L.A.; Braz, L.T.; Carvalho, R.F. Grafting in Vegetable Crops: A Great Technique for Agriculture. Int. J. Veg. Sci. 2018, 24, 85–102. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops. Agronomy 2020, 10, 1945. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Ammari, T.G.; Tahhan, R.; Al Sulebi, N.; Tahboub, A.; Ta’any, R.A.; Abubaker, S. Impact of Intensive Greenhouse Production System on Soil Quality. Pedosphere 2015, 25, 282–293. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Almazroui, M.; Bucchignani, E.; Driouech, F.; El Rhaz, K.; Kurnaz, L.; Nikulin, G.; Ntoumos, A.; Ozturk, T.; et al. Business-as-Usual Will Lead to Super and Ultra-Extreme Heatwaves in the Middle East and North Africa. NPJ Clim. Atmos. Sci. 2021, 4, 20. [Google Scholar] [CrossRef]
- Sadok, W.; Jagadish, S.V.K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 2020, 25, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Wang, D.; Zhu, C.; Chen, J. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types. Front. Plant Sci. 2016, 7, 1774. [Google Scholar] [CrossRef]
- Fanourakis, D.; Aliniaeifard, S.; Sellin, A.; Giday, H.; Körner, O.; Rezaei Nejad, A.; Delis, C.; Bouranis, D.; Koubouris, G.; Kambourakis, E.; et al. Stomatal Behavior Following Mid- or Long-Term Exposure to High Relative Air Humidity: A Review. Plant Physiol. Biochem. 2020, 153, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Fanourakis, D.; Bouranis, D.; Giday, H.; Carvalho, D.R.A.; Rezaei Nejad, A.; Ottosen, C.-O. Improving Stomatal Functioning at Elevated Growth Air Humidity: A Review. J. Plant Physiol. 2016, 207, 51–60. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant Responses to Rising Vapor Pressure Deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. In First Mediterranean Assessment Report; MedECC: Marseille, France, 2020. [Google Scholar]
- Merkoci, A.L.; Idrizi, B.; Dvorani, M. Study on “Vulnerability of agriculture sector in Albania from climate change” powered by the institute of Energy, Water and Environment. Rev. Shk. Ndërkombëtare 2014, 3, 35–48. [Google Scholar]
- Drugé, T.; Nabat, P.; Mallet, M.; Somot, S. Future Evolution of Aerosols and Implications for Climate Change in the Euro-Mediterranean Region Using the CNRM-ALADIN63 Regional Climate Model. Atmos. Chem. Phys. 2021, 21, 7639–7669. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Räisänen, P. Seasonal Changes in Solar Radiation and Relative Humidity in Europe in Response to Global Warming. J. Clim. 2013, 26, 2467–2481. [Google Scholar] [CrossRef]
- Chesnoiu, G.; Chiapello, I.; Ferlay, N.; Nabat, P.; Mallet, M.; Riffault, V. Regional Modeling of Surface Solar Radiation, Aerosol, and Cloud Cover Spatial Variability and Projections over Northern France and Benelux. Atmos. Chem. Phys. 2025, 25, 1307–1331. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tramblay, Y.; Reig, F.; González-Hidalgo, J.C.; Beguería, S.; Brunetti, M.; Kalin, K.C.; Patalen, L.; Kržič, A.; Lionello, P.; et al. High Temporal Variability Not Trend Dominates Mediterranean Precipitation. Nature 2025, 639, 658–666. [Google Scholar] [CrossRef]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat Stress Intensification in the Mediterranean Climate Change Hotspot. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Enriquez-Alonso, A.; Calbó, J.; González, J.-A.; Wild, M.; Folini, D.; Norris, J.R.; Vicente-Serrano, S.M. Fewer Clouds in the Mediterranean: Consistency of Observations and Climate Simulations. Sci. Rep. 2017, 7, 41475. [Google Scholar] [CrossRef]
- Medrano, H. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef]
- Mehmood, M.; Tanveer, N.A.; Joyia, F.A.; Ullah, I.; Mohamed, H.I. Effect of High Temperature on Pollen Grains and Yield in Economically Important Crops: A Review. Planta 2025, 261, 141. [Google Scholar] [CrossRef]
- Camejo, D.; Rodríguez, P.; Angeles Morales, M.; Miguel Dell’Amico, J.; Torrecillas, A.; Alarcón, J.J. High Temperature Effects on Photosynthetic Activity of Two Tomato Cultivars with Different Heat Susceptibility. J. Plant Physiol. 2005, 162, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological Factors Limit Fruit Set of Tomato (Lycopersicon esculentum Mill.) under Chronic, Mild Heat Stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Lai, Y.-S.; Shen, D.; Zhang, W.; Zhang, X.; Qiu, Y.; Wang, H.; Dou, X.; Li, S.; Wu, Y.; Song, J.; et al. Temperature and Photoperiod Changes Affect Cucumber Sex Expression by Different Epigenetic Regulations. BMC Plant Biol. 2018, 18, 268. [Google Scholar] [CrossRef]
- Carmo-Silva, A.E.; Salvucci, M.E. The Temperature Response of CO2 Assimilation, Photochemical Activities and Rubisco Activation in Camelina Sativa, a Potential Bioenergy Crop with Limited Capacity for Acclimation to Heat Stress. Planta 2012, 236, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Scafaro, A.P.; Posch, B.C.; Evans, J.R.; Farquhar, G.D.; Atkin, O.K. Rubisco Deactivation and Chloroplast Electron Transport Rates Co-Limit Photosynthesis above Optimal Leaf Temperature in Terrestrial Plants. Nat. Commun. 2023, 14, 2820. [Google Scholar] [CrossRef]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Kitta, E.; Katsoulas, N.; Kittas, C. Effect of Shading on Photosynthesis in Greenhouse Hydroponic Cucumber Crops. Acta Hortic. 2021, 167–172. [Google Scholar] [CrossRef]
- Doğru, A. Photochemical Responses of Cucumber (Cucumis sativus L.) Plants to Heat Stress. Not. Sci. Biol. 2020, 12, 829–835. [Google Scholar] [CrossRef]
- Du, Q.; Jiao, X.; Song, X.; Zhang, J.; Bai, P.; Ding, J.; Li, J. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants. Front. Plant Sci. 2020, 11, 758. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Domene, M.A.; Baixauli, C.; Pascual-Seva, N. Effects of Deficit Irrigation on the Yield and Irrigation Water Use Efficiency of Drip-Irrigated Sweet Pepper (Capsicum annuum L.) under Mediterranean Conditions. Irrig. Sci. 2020, 38, 89–104. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of Deficit Irrigation on Biomass, Yield, Water Productivity and Fruit Quality of Processing Tomato under Semi-Arid Mediterranean Climate Conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Jin, L.-Q.; Li, Y.-T.; Tikkanen, M.; Li, Q.-M.; Ai, X.-Z.; Gao, H.-Y. Ultraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition and Accelerates the Recovery of CO2 Assimilation in Cucumber (Cucumis sativus L.) Leaves. Sci. Rep. 2016, 6, 34455. [Google Scholar] [CrossRef]
- Jansen, M.A.K.; Bilger, W.; Hideg, É.; Strid, Å.; Urban, O.; Aphalo, P.; Brelsford, C.; Klem, K.; Mátai, A.; Llorens, L.; et al. Editorial: Interactive Effects of UV-B Radiation in a Complex Environment. Plant Physiol. Biochem. 2019, 134, 1–8. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does It Make Any Difference the Fact to Be a C3 or C4 Species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in Vegetative Tissues: A Proposed Unified Function in Photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Burritt, D.J.; Gupta, A.; Tsujimoto, H.; Tran, L.-S.P. Heat Stress Effects on Source–Sink Relationships and Metabolome Dynamics in Wheat. J. Exp. Bot. 2020, 71, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Gautier, H.; Rocci, A.; Buret, M.; Grasselly, D.; Causse, M. Fruit Load or Fruit Position Alters Response to Temperature and Subsequently Cherry Tomato Quality. J. Sci. Food Agric. 2005, 85, 1009–1016. [Google Scholar] [CrossRef]
- Delgado-Vargas, V.A.; Ayala-Garay, O.J.; Arévalo-Galarza, M.d.L.; Gautier, H. Increased Temperature Affects Tomato Fruit Physicochemical Traits at Harvest Depending on Fruit Developmental Stage and Genotype. Horticulturae 2023, 9, 212. [Google Scholar] [CrossRef]
- Laurin, E.; Émond, J.P.; Nunes, M.C.N.; Brecht, J.K. Vapor Pressure Deficit and Water Loss Patterns during Simulated Air Shipment and Storage of Beit Alpha Cucumbers. Acta Hortic. 2005, 1697–1704. [Google Scholar] [CrossRef]
- Saure, M.C. Blossom-End Rot of Tomato (Lycopersicon esculentum Mill.)—A Calcium- or a Stress-Related Disorder? Sci. Hortic. 2001, 90, 193–208. [Google Scholar] [CrossRef]
- Ho, L.C.; Belda, R.; Brown, M.; Andrews, J.; Adams, P. Uptake and Transport of Calcium and the Possible Causes of Blossom-End Rot in Tomato. J. Exp. Bot. 1993, 44, 509–518. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and Redox Signalling in the Response of Plants to Abiotic Stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive Oxygen Species, Abiotic Stress and Stress Combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- El-Remaly, E. Morphological, Physio-Biochemical, and Molecular Indications of Heat Stress Tolerance in Cucumber. Sci. Rep. 2023, 13, 18729. [Google Scholar] [CrossRef]
- Spencer, J.P.E.; Kuhnle, G.G.C.; Hajirezaei, M.; Mock, H.-P.; Sonnewald, U.; Rice-Evans, C. The Genotypic Variation of the Antioxidant Potential of Different Tomato Varieties. Free Radic. Res. 2005, 39, 1005–1016. [Google Scholar] [CrossRef]
- Parkash, V.; Singh, S.; Deb, S.K.; Ritchie, G.L.; Wallace, R.W. Effect of Deficit Irrigation on Physiology, Plant Growth, and Fruit Yield of Cucumber Cultivars. Plant Stress. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root Traits Contributing to Plant Productivity under Drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef]
- Rangaswamy, T.C.; Sridhara, S.; Ramesh, N.; Gopakkali, P.; El-Ansary, D.O.; Mahmoud, E.A.; Abdelmohsen, S.A.M.; Abdelbacki, A.M.M.; Elansary, H.O.; Abdel-Hamid, A.M.E. Assessing the Impact of Higher Levels of CO2 and Temperature and Their Interactions on Tomato (Solanum lycopersicum L.). Plants 2021, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Namizaki, H.; Iwasaki, Y.; Wang, R. Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures. Agronomy 2022, 12, 1872. [Google Scholar] [CrossRef]
- Pan, C.; Ahammed, G.J.; Li, X.; Shi, K. Elevated CO2 Improves Photosynthesis Under High Temperature by Attenuating the Functional Limitations to Energy Fluxes, Electron Transport and Redox Homeostasis in Tomato Leaves. Front. Plant Sci. 2018, 9, 1739. [Google Scholar] [CrossRef]
- Pereyda-González, J.M.; De-la-Peña, C.; Tezara, W.; Zamora-Bustillos, R.; Andueza-Noh, R.H.; Noh-Kú, J.G.; Carrera-Marín, M.; Garruña, R. High Temperature and Elevated CO2 Modify Phenology and Growth in Pepper Plants. Agronomy 2022, 12, 1836. [Google Scholar] [CrossRef]
- Dinar, M.; Rudich, J. Effect of Heat Stress on Assimilate Partitioning in Tomato. Ann. Bot. 1985, 56, 239–248. [Google Scholar] [CrossRef]
- Gallardo, M.; Cedeño, J.M.; Magán, J.J.; Fernández, M.D.; Thompson, R.B. Adaptation of VegSyst-DSS for N, P and K Recommendations for Grafted Tomato Grown in Perlite in Mediterranean Greenhouses. Agric. Water Manag. 2025, 310, 109351. [Google Scholar] [CrossRef]
- Alsamir, M.; Mahmood, T.; Trethowan, R.; Ahmad, N. An Overview of Heat Stress in Tomato (Solanum lycopersicum L.). Saudi J. Biol. Sci. 2021, 28, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of Optimum Temperature, Humidity, and Vapour Pressure Deficit for Microclimate Evaluation and Control in Greenhouse Cultivation of Tomato: A Review. Int. Agrophys 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-High Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, 365. [Google Scholar] [CrossRef]
- Palma, C.F.F.; Castro-Alves, V.; Morales, L.O.; Rosenqvist, E.; Ottosen, C.-O.; Strid, Å. Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber. Front. Plant Sci. 2021, 11, 610011. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.; Wang, Y.; Xia, G.; Yang, H.; Luo, Z.; Zhang, Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024, 14, 283. [Google Scholar] [CrossRef]
- Fan, H.-F.; Ding, L.; Du, C.-X.; Wu, X. Effect of Short-Term Water Deficit Stress on Antioxidative Systems in Cucumber Seedling Roots. Bot. Stud. 2014, 55, 46. [Google Scholar] [CrossRef]
- Song, X.; Miao, L.; Jiao, X.; Ibrahim, M.; Li, J. Regulating Vapor Pressure Deficit and Soil Moisture Improves Tomato and Cucumber Plant Growth and Water Productivity in the Greenhouse. Horticulturae 2022, 8, 147. [Google Scholar] [CrossRef]
- Xu, H.; Gauthier, L.; Gosselin, A. Stomatal and Cuticular Transpiration of Greenhouse Tomato Plants in Response to High Solution Electrical Conductivity and Low Soil Water Content. J. Am. Soc. Hortic. Sci. 1995, 120, 417–422. [Google Scholar] [CrossRef]
- Sharma, N.; Thakur, M.; Suryakumar, P.; Mukherjee, P.; Raza, A.; Prakash, C.S.; Anand, A. ‘Breathing Out’ under Heat Stress—Respiratory Control of Crop Yield under High Temperature. Agronomy 2022, 12, 806. [Google Scholar] [CrossRef]
- Leporino, M.; Cardarelli, M.; Bonini, P.; Proietti, S.; Moscatello, S.; Colla, G. Impact of Drought and Biostimulant in Greenhouse Tomato: Agronomic and Metabolomic Insights. Plants 2025, 14, 2000. [Google Scholar] [CrossRef]
- Peet, M.M.; Bartholemew, M. Effect of Night Temperature on Pollen Characteristics, Growth, and Fruit Set in Tomato. J. Am. Soc. Hortic. Sci. 1996, 121, 514–519. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Lian, X.; Feng, J.; Zhao, J.; Wang, Y.; Liu, Y. Physiological and Biochemical Characteristics of Cucumber Seedlings under Different Levels Drought Stress (PEG 6000 Concentrations). Hortic. Sci. 2024, 51, 202–211. [Google Scholar] [CrossRef]
- Wang, F.; Yin, Y.; Yu, C.; Li, N.; Shen, S.; Liu, Y.; Gao, S.; Jiao, C.; Yao, M. Transcriptomics Analysis of Heat Stress-Induced Genes in Pepper (Capsicum annuum L.) Seedlings. Horticulturae 2021, 7, 339. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Jia, X.-F.; Yu, B.; Gao, Y.; Bai, J.-G. Exogenous Hydrogen Peroxide Influences Antioxidant Enzyme Activity and Lipid Peroxidation in Cucumber Leaves at Low Light. Sci. Hortic. 2011, 129, 656–662. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic Effects of Rising Atmospheric Vapor Pressure Deficit on Plant Physiology and Productivity. Glob. Change Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef]
- Giorno, F.; Wolters-Arts, M.; Mariani, C.; Rieu, I. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. Plants 2013, 2, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar] [PubMed]
- Ghaffarpour, Z.; Fakhroleslam, M.; Amidpour, M. Evaluation of the Cooling, Heating and Water Demands for Tomato Production in a Solar Greenhouse by Integrating the Solar Energy, Evapotranspiration and TOMGRO Models. Sol. Energy 2024, 277, 112710. [Google Scholar] [CrossRef]
- Mahmood, F.; Govindan, R.; Yang, D.; Bermak, A.; Al-Ansari, T. Forecasting Cooling Load and Water Demand of a Semi-Closed Greenhouse Using a Hybrid Modelling Approach. Int. J. Ambient. Energy 2022, 43, 8046–8066. [Google Scholar] [CrossRef]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, R.K.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Mojgan Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of Soil Salinity and Their Correlation with Climate Change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Fernández-Crespo, E.; Liu-Xu, L.; Albert-Sidro, C.; Scalschi, L.; Llorens, E.; González-Hernández, A.I.; Crespo, O.; Gonzalez-Bosch, C.; Camañes, G.; García-Agustín, P.; et al. Exploiting Tomato Genotypes to Understand Heat Stress Tolerance. Plants 2022, 11, 3170. [Google Scholar] [CrossRef]
- Liu, B.; Song, L.; Deng, X.; Lu, Y.; Lieberman-Lazarovich, M.; Shabala, S.; Ouyang, B. Tomato Heat Tolerance: Progress and Prospects. Sci. Hortic. 2023, 322, 112435. [Google Scholar] [CrossRef]
- Allali, F.E.; Fatnassi, H.; Demrati, H.; Errais, R.; Wifaya, A.; Aharoune, A. Greenhouse Cooling Systems: A Systematic Review of Research Trends, Challenges, and Recommendations for Improving Sustainability. Clean. Eng. Technol. 2025, 26, 100973. [Google Scholar] [CrossRef]
- Körner, O.; Van Straten, G. Decision Support for Dynamic Greenhouse Climate Control Strategies. Comput. Electron. Agric. 2008, 60, 18–30. [Google Scholar] [CrossRef]
- Sun, S.N.; Wang, Q.; Sun, C.C.; Liu, F.J.; Bi, H.G.; Ai, X.Z. Response and Adaptation of Photosynthesis of Cucumber Seedlings to High Temperature Stress. J. Appl. Ecol. 2017, 28, 1603–1610. [Google Scholar]
- Zhou, Y.; Li, Q.; Yang, X.; Wang, L.; Li, X.; Liu, K. Mitigating High-Temperature Stress in Peppers: The Role of Exogenous NO in Antioxidant Enzyme Activities and Nitrogen Metabolism. Horticulturae 2024, 10, 906. [Google Scholar] [CrossRef]
- Song, X.; Bai, P.; Ding, J.; Li, J. Effect of Vapor Pressure Deficit on Growth and Water Status in Muskmelon and Cucumber. Plant Sci. 2021, 303, 110755. [Google Scholar] [CrossRef]
- Sanatombi, K. Antioxidant Potential and Factors Influencing the Content of Antioxidant Compounds of Pepper: A Review with Current Knowledge. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3011–3052. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J. Emerging Viral Diseases of Tomato Crops. Mol. Plant-Microbe Interact. ® 2010, 23, 539–548. [Google Scholar] [CrossRef]
- Cohen, Y.; Van den Langenberg, K.M.; Wehner, T.C.; Ojiambo, P.S.; Hausbeck, M.; Quesada-Ocampo, L.M.; Lebeda, A.; Sierotzki, H.; Gisi, U. Resurgence of Pseudoperonospora cubensis: The Causal Agent of Cucurbit Downy Mildew. Phytopathology 2015, 105, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- Ro, N.; Lee, G.-A.; Ko, H.-C.; Oh, H.; Lee, S.; Haile, M.; Lee, J. Exploring Disease Resistance in Pepper (Capsicum spp.) Germplasm Collection Using Fluidigm SNP Genotyping. Plants 2024, 13, 1344. [Google Scholar] [CrossRef] [PubMed]
- Mohawesh, O.; Albalasmeh, A.; Deb, S.; Singh, S.; Simpson, C.; AlKafaween, N.; Mahadeen, A. Effect of Colored Shading Nets on the Growth and Water Use Efficiency of Sweet Pepper Grown under Semi-Arid Conditions. Horttechnology 2022, 32, 21–27. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Polycarpou, P.; Kitta, E.; Katsoulas, N. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae 2021, 7, 521. [Google Scholar] [CrossRef]
- Max, J.F.J.; Horst, W.J.; Mutwiwa, U.N.; Tantau, H.-J. Effects of Greenhouse Cooling Method on Growth, Fruit Yield and Quality of Tomato (Solanum lycopersicum L.) in a Tropical Climate. Sci. Hortic. 2009, 122, 179–186. [Google Scholar] [CrossRef]
- López-Marín, J.; Gálvez, A.; González, A.; Egea-Gilabert, C.; Fernández, J.A. Effect of Shade on Yield, Quality and Photosynthesis-Related Parameters of Sweet Pepper Plants. Acta Hortic. 2012, 545–552. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Battistelli, A.; Moscatello, S.; Proietti, S.; Rea, E. Yield, Water Requirement, Nutrient Uptake and Fruit Quality of Zucchini Squash Grown in Soil and Closed Soilless Culture. J. Hortic. Sci. Biotechnol. 2004, 79, 423–430. [Google Scholar] [CrossRef]
- Serret, M.D.; Yousfi, S.; Vicente, R.; Piñero, M.C.; Otálora-Alcón, G.; del Amor, F.M.; Araus, J.L. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper. Front. Plant Sci. 2018, 8, 2180. [Google Scholar] [CrossRef]
- von Zabeltitz, C. Integrated Greenhouse Systems for Mild Climates; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-14581-0. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Estimating Cucumber Crop Coefficients under Different Greenhouse Microclimatic Conditions. Int. J. Biometeorol. 2023, 67, 1745–1756. [Google Scholar] [CrossRef]
- Abd-El-Baky, H.; Ali, S.; El Haddad, Z.; El Ansary, Z. Some Environmental Parameters Affecting Sweet Pepper Growth and Productivity under Different Greenhouse Forms in Hot and Humid Climatic Conditions. J. Soil. Sci. Agric. Eng. 2010, 1, 225–247. [Google Scholar] [CrossRef][Green Version]
- Marcelis, L.F.M. Achieving Sustainable Greenhouse Cultivation; Burleigh DoddS Science Publishing: Cambridge, UK, 2019; ISBN 9780429266744. [Google Scholar][Green Version]
- Rodriguez, F.; Berenguel, M.; Guzmán, J.L.; Antonio Sánchez-Molina, J. Greenhouse Technologies Applied to Climate and Irrigation Control in Almería Province, Southeastern Spain. In Proceedings of the Joint International Conference on Intelligent Agriculture (ICIA), Beijing, China, 27–30 September 2015. [Google Scholar][Green Version]
- Abdelhakim, L.O.A.; Zhou, R.; Ottosen, C.-O. Physiological Responses of Plants to Combined Drought and Heat under Elevated CO2. Agronomy 2022, 12, 2526. [Google Scholar] [CrossRef]
- Jiang, Z.; van Zanten, M.; Sasidharan, R. Mechanisms of Plant Acclimation to Multiple Abiotic Stresses. Commun. Biol. 2025, 8, 655. [Google Scholar] [CrossRef]
- Chauhan, J.; Prathibha, M.; Singh, P.; Choyal, P.; Mishra, U.N.; Saha, D.; Kumar, R.; Anuragi, H.; Pandey, S.; Bose, B.; et al. Plant Photosynthesis under Abiotic Stresses: Damages, Adaptive, and Signaling Mechanisms. Plant Stress. 2023, 10, 100296. [Google Scholar] [CrossRef]
- Aloni, B.; Peet, M.; Pharr, M.; Karni, L. The Effect of High Temperature and High Atmospheric CO2 on Carbohydrate Changes in Bell Pepper (Capsicum annuum) Pollen in Relation to Its Germination. Physiol. Plant 2001, 112, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Pressman, E. The Effect of Heat Stress on Tomato Pollen Characteristics Is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Ann. Bot. 2002, 90, 631–636. [Google Scholar] [CrossRef]
- Chen, L.; Yun, M.; Cao, Z.; Liang, Z.; Liu, W.; Wang, M.; Yan, J.; Yang, S.; He, X.; Jiang, B.; et al. Phenotypic Characteristics and Transcriptome of Cucumber Male Flower Development Under Heat Stress. Front. Plant Sci. 2021, 12, 758976. [Google Scholar] [CrossRef] [PubMed]
- Aparna; Skarzyńska, A.; Pląder, W.; Pawełkowicz, M. Impact of Climate Change on Regulation of Genes Involved in Sex Determination and Fruit Production in Cucumber. Plants 2023, 12, 2651. [Google Scholar] [CrossRef]
- Tyagi, S.; Sahay, S.; Imran, M.; Rashmi, K.; Mahesh, S. Pre-Harvest Factors Influencing the Postharvest Quality of Fruits: A Review. Curr. J. Appl. Sci. Technol. 2017, 23, 1–12. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Luo, J.; Zhang, Y.; Jiang, N.; Khattak, W.A. Transcriptome Analysis of Sugar and Acid Metabolism in Young Tomato Fruits under High Temperature and Nitrogen Fertilizer Influence. Front. Plant Sci. 2023, 14, 1197553. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M.; Sheded, M.G. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. Plants 2020, 9, 1626. [Google Scholar] [CrossRef]
- Piñero, M.C.; Lorenzo, P.; Sánchez-Guerrero, M.; Medrano, E.; López-Marín, J.; del Amor, F.M. Reducing Extreme Weather Impacts in Greenhouses: The Effect of a New Passive Climate Control System on Nutritional Quality of Pepper Fruits. J. Sci. Food Agric. 2022, 102, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, W.J. Responses of Water Accumulation and Solute Metabolism in Tomato Fruit to Water Scarcity and Implications for Main Fruit Quality Variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef] [PubMed]
- Lagili, H.S.A.; Kassem, Y.; Gokcekus, H.; Kiraz, A. Agrivoltaic Solutions as an Example for Promoting Cost-Effective and Profitable Farming through Renewable Energy in Libya. Eng. Technol. Appl. Sci. Res. 2025, 15, 25699–25709. [Google Scholar] [CrossRef]
- Saeed, F.; Chaudhry, U.K.; Raza, A.; Charagh, S.; Bakhsh, A.; Bohra, A.; Ali, S.; Chitikineni, A.; Saeed, Y.; Visser, R.G.F.; et al. Developing Future Heat-Resilient Vegetable Crops. Funct. Integr. Genom. 2023, 23, 47. [Google Scholar] [CrossRef]
- Abdelaal, K.; Alsubeie, M.S.; Hafez, Y.; Emeran, A.; Moghanm, F.; Okasha, S.; Omara, R.; Basahi, M.A.; Darwish, D.B.E.; Ibrahim, M.F.M.; et al. Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management. Agriculture 2022, 12, 2084. [Google Scholar] [CrossRef]
- Rahil, M.H.; Qanadillo, A. Effects of Different Irrigation Regimes on Yield and Water Use Efficiency of Cucumber Crop. Agric. Water Manag. 2015, 148, 10–15. [Google Scholar] [CrossRef]
- Gent, M.P.N. Effect of Degree and Duration of Shade on Quality of Greenhouse Tomato. HortScience 2007, 42, 514–520. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.; Wen, J.; Jensen, N.B.; dos Santos, T.M.; Wu, Z.; Rosenqvist, E.; Ottosen, C.-O. Interactive Effects of Elevated CO2 Concentration and Combined Heat and Drought Stress on Tomato Photosynthesis. BMC Plant Biol. 2020, 20, 260. [Google Scholar] [CrossRef]
- Ehret, D.L.; Edwards, D.; Helmer, T.; Lin, W.; Jones, G.; Dorais, M.; Papadopoulos, A.P. Effects of Oxygen-Enriched Nutrient Solution on Greenhouse Cucumber and Pepper Production. Sci. Hortic. 2010, 125, 602–607. [Google Scholar] [CrossRef]
- Zhou, R.; Kong, L.; Wu, Z.; Rosenqvist, E.; Wang, Y.; Zhao, L.; Zhao, T.; Ottosen, C. Physiological Response of Tomatoes at Drought, Heat and Their Combination Followed by Recovery. Physiol. Plant 2019, 165, 144–154. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R. Plant Responses to Multifactorial Stress Combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Qadir, S.U.; Alyemeni, M.N.; Ahmad, P. Impact of Drought and Heat Stress Individually and in Combination on Physio-Biochemical Parameters, Antioxidant Responses, and Gene Expression in Solanum lycopersicum. 3 Biotech 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Z.; Li, J.; Chang, Y.; Du, Q.; Pan, T. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season. PLoS ONE 2015, 10, e0133919. [Google Scholar] [CrossRef]
- Van Damme, V.; Berkvens, N.; Moerkens, R.; Berckmoes, E.; Wittemans, L.; De Vis, R.; Casteels, H.; Tirry, L.; De Clercq, P. Overwintering Potential of the Invasive Leafminer Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a Pest in Greenhouse Tomato Production in Western Europe. J. Pest Sci. 2015, 88, 533–541. [Google Scholar] [CrossRef]
- Orosz, S.; Éliás, D.; Balog, E.; Tóth, F. Investigation of Thysanoptera Populations in Hungarian Greenhouses. Acta Univ. Sapientiae Agric. Environ. 2017, 9, 140–158. [Google Scholar] [CrossRef]
- Krumov, V.; Karadjova, O. Influence of Climate Change on the Potential for Establishment of Frankliniella occidentalis (Thysanoptera: Thripidae) in Bulgaria. Acta Phytopathol. Entomol. Hung. 2012, 47, 113–116. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Bale, J.S.; Hayward, S.A.L. Insect Overwintering in a Changing Climate. J. Exp. Biol. 2010, 213, 980–994. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Xie, T.; He, Y.-Z.; Cuellar, W.J.; Wang, X.-W. Heat Stress Promotes the Accumulation of Tomato Yellow Leaf Curl Virus in Its Insect Vector by Activating Heat Shock Factor. Crop Health 2024, 2, 19. [Google Scholar] [CrossRef]
- Stumpf, C.F.; Kennedy, G.G. Effects of Tomato Spotted Wilt Virus Isolates, Host Plants, and Temperature on Survival, Size, and Development Time of Frankliniella occidentalis. Entomol. Exp. Appl. 2007, 123, 139–147. [Google Scholar] [CrossRef]
- Molad, O.; Smith, E.; Luria, N.; Sela, N.; Lachman, O.; Bakelman, E.; Leibman, D.; Dombrovsky, A. New Early Phenotypic Markers for Cucumber Green Mottle Mosaic Virus Disease in Cucumbers Exposed to Fluctuating Extreme Temperatures. Sci. Rep. 2021, 11, 19060. [Google Scholar] [CrossRef]
- Ramegowda, V.; Senthil-Kumar, M. The Interactive Effects of Simultaneous Biotic and Abiotic Stresses on Plants: Mechanistic Understanding from Drought and Pathogen Combination. J. Plant Physiol. 2015, 176, 47–54. [Google Scholar] [CrossRef]
- Desaint, H.; Aoun, N.; Deslandes, L.; Vailleau, F.; Roux, F.; Berthomé, R. Fight Hard or Die Trying: When Plants Face Pathogens under Heat Stress. New Phytol. 2021, 229, 712–734. [Google Scholar] [CrossRef]
- Elad, Y.; Gullino, M.L.; Shtienberg, D.; Aloi, C. Managing Botrytis cinerea on Tomatoes in Greenhouses in the Mediterranean. Crop Prot. 1995, 14, 105–109. [Google Scholar] [CrossRef]
- Sun, S.; Lian, S.; Feng, S.; Dong, X.; Wang, C.; Li, B.; Liang, W. Effects of Temperature and Moisture on Sporulation and Infection by Pseudoperonospora Cubensis. Plant Dis. 2017, 101, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; Gisi, U.; Garibaldi, A.; Gullino, M.L. Effect of Elevated Atmospheric CO2 and Temperature on the Chemical and Biological Control of Powdery Mildew of Zucchini and the Phoma Leaf Spot of Leaf Beet. Eur. J. Plant Pathol. 2017, 148, 229–236. [Google Scholar] [CrossRef]
- Messelink, G.J.; Bennison, J.; Alomar, O.; Ingegno, B.L.; Tavella, L.; Shipp, L.; Palevsky, E.; Wäckers, F.L. Approaches to Conserving Natural Enemy Populations in Greenhouse Crops: Current Methods and Future Prospects. BioControl 2014, 59, 377–393. [Google Scholar] [CrossRef]
- Perring, T.M.; Lackey, L.J. Temperature and Humidity Effects on Mortality and Pre-Adult Development of Two Phytoseiulus persimilis Strains (Acari: Phytoseiidae). Int. J. Acarol. 1989, 15, 47–52. [Google Scholar] [CrossRef]
- Besri, M. New Developments of Alternatives to Methyl Bromide for the Control of Tomato Soil Born Pathogens in Covered Cultivation in a Developing Country: Morocco; Mediterranean and Black Sea Organisation: San Diego, CA, USA, 2001. [Google Scholar]
- Jabnoun-Khiareddine, H.; Mejdoub-Trabelsi, B.; Aydi Ben Abdallah, R.; Sedki Riad El-Mohamedy, R.; Daami-Remadi, M. Efficacy of Organic Amendments and Soil Solarization against Wilt Severity and Their Effects on Pathogenic Fungi and Tomato Production. Int. J. Phytopathol. 2020, 9, 93–103. [Google Scholar] [CrossRef]
- Lombardo, S.; Longo, A.M.G.; Lo Monaco, A.; Mauromicale, G. The Effect of Soil Solarization and Fumigation on Pests and Yields in Greenhouse Tomatoes. Crop Prot. 2012, 37, 59–64. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Boyd, N.S.; Strauss, S.L. Impact of Fumigants on Non-Target Soil Microorganisms: A Review. J. Hazard. Mater. 2022, 427, 128149. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Yang, J.; Wu, D.; Zhang, Y.; Yang, C.; Yin, H.; Hou, Y.; Guo, J.; Hu, Z.; Li, A. The Impact of Natural Ventilation on Airborne Bacteria and Fungi in Greenhouse Environments: A Case Study. SSRN 2025. early view. [Google Scholar]
- Gruda, N.; Bisbis, M.; Katsoulas, N.; Kittas, C. Smart Greenhouse Production Practices to Manage and Mitigate the Impact of Climate Change in Protected Cultivation. Acta Hortic. 2021, 189–196. [Google Scholar] [CrossRef]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A Decision Support System Based on Multisensor Data Fusion for Sustainable Greenhouse Management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Russell, G.E. Plant Breeding for Pest and Disease Resistance: Studies in the Agricultural and Food Sciences; Elsevier Science: Amsterdam, The Netherlands, 2014; ISBN 9781483192369. [Google Scholar]
- van Munster, M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020, 12, 216. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- O’neill, T.M.; Shtienberg, D.; Elad, Y. Effect of Some Host and Microclimate Factors on Infection of Tomato Stems by Botrytis cinerea. Plant Dis. 1997, 81, 36–40. [Google Scholar] [CrossRef]
- Johnson, S.N.; Waterman, J.M.; Hall, C.R. Increased Insect Herbivore Performance under Elevated CO2 Is Associated with Lower Plant Defence Signalling and Minimal Declines in Nutritional Quality. Sci. Rep. 2020, 10, 14553. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric Dryness Reduces Photosynthesis along a Large Range of Soil Water Deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef]
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling Impacts of Future Climate Change on Reservoir Storages and Irrigation Water Demands in a Mediterranean Basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Kourgialas, N.N. A Critical Review of Water Resources in Greece: The Key Role of Agricultural Adaptation to Climate-Water Effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Characteristics and Water Demand in Semi-Arid Mediterranean Catchments under Water Deficit Conditions. Climate 2023, 11, 137. [Google Scholar] [CrossRef]
- Georgopoulou, E.; Kotronarou, A.; Koussis, A.; Restrepo, P.J.; Gómez-Gotor, A.; Rodriguez Jimenez, J.J. A Methodology to Investigate Brackish Groundwater Desalination Coupled with Aquifer Recharge by Treated Wastewater as an Alternative Strategy for Water Supply in Mediterranean Areas. Desalination 2001, 136, 307–315. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Taheripour, F.; Tyner, W.E.; Haqiqi, I.; Sajedinia, E. Water Scarcity in Morocco; World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- Savvas, D.; Giannothanasis, E.; Ntanasi, T.; Karavidas, I.; Ntatsi, G. State of the Art and New Technologies to Recycle the Fertigation Effluents in Closed Soilless Cropping Systems Aiming to Maximise Water and Nutrient Use Efficiency in Greenhouse Crops. Agronomy 2023, 14, 61. [Google Scholar] [CrossRef]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Misra, D.; Ghosh, S. Evaporative Cooling Technologies for Greenhouses: A Comprehensive Review. Agric. Eng. Int. CIGR J. 2018, 20, 1–15. [Google Scholar]
- Di Gennaro, S.F.; Cini, D.; Berton, A.; Matese, A. Development of a Low-Cost Smart Irrigation System for Sustainable Water Management in the Mediterranean Region. Smart Agric. Technol. 2024, 9, 100629. [Google Scholar] [CrossRef]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a Smart Irrigation System to Study the Effects of Irrigation Management on the Agronomic and Physiological Responses of Tomato Plants Grown under Different Temperatures Regimes. Agric. Water Manag. 2017, 183, 158–168. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Dynamic Assessment of Whitewash Shading and Evaporative Cooling on the Greenhouse Microclimate and Cucumber Growth in a Mediterranean Climate. Ital. J. Agrometeorol. 2018, 2018, 15–26. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions. Agronomy 2019, 9, 300. [Google Scholar] [CrossRef]
- Azeb, L.; Hartani, T.; Aitmouheb, N.; Pradeleix, L.; Hajjaji, N.; Aribi, S. Life Cycle Assessment of Cucumber Irrigation: Unplanned Water Reuse versus Groundwater Resources in Tipaza (Algeria). J. Water Reuse Desalination 2020, 10, 227–238. [Google Scholar] [CrossRef]
- Castronuovo, D.; Statuto, D.; Muro, N.; Picuno, P.; Candido, V. The Use of Shading Nets for the Greenhouse Cultivation of Sweet Pepper in the Mediterranean Area. Acta Hortic. 2017, 373–380. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Polycarpou, P.; Kitta, E.; Katsoulas, N. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part II: Irrigation and Fertigation. Horticulturae 2021, 7, 548. [Google Scholar] [CrossRef]
- Bournet, P.E.; Brajeul, E.; Truffault, V.; Chantoiseau, E.; Naccour, R. Impact of Heating Location, Forced Ventilation and Screens on the Energy Efficiency and Condensation Risks inside a Cucumber Greenhouse. Acta Hortic. 2020, 25–32. [Google Scholar] [CrossRef]
- Chenari, B.; Dias Carrilho, J.; Gameiro da Silva, M. Towards Sustainable, Energy-Efficient and Healthy Ventilation Strategies in Buildings: A Review. Renew. Sustain. Energy Rev. 2016, 59, 1426–1447. [Google Scholar] [CrossRef]
- Baeza, E.J.; Pérez-Parra, J.J.; Montero, J.I.; Bailey, B.J.; López, J.C.; Gázquez, J.C. Analysis of the Role of Sidewall Vents on Buoyancy-Driven Natural Ventilation in Parral-Type Greenhouses with and without Insect Screens Using Computational Fluid Dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Benko, B.; Borošić, J.; Šimunović, V. Current Situation and Future Trends of Greenhouse Vegetable Production in Croatia. Acta Hortic. 2016, 483–486. [Google Scholar] [CrossRef]
- Kotilainen, T.; Robson, T.M.; Hernández, R. Light Quality Characterization under Climate Screens and Shade Nets for Controlled-Environment Agriculture. PLoS ONE 2018, 13, e0199628. [Google Scholar] [CrossRef] [PubMed]
- Tinyane, P.P.; Sivakumar, D.; Soundy, P. Influence of Photo-Selective Netting on Fruit Quality Parameters and Bioactive Compounds in Selected Tomato Cultivars. Sci. Hortic. 2013, 161, 340–349. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Kadoglidou, K.; Tsivelika, N.; Krommydas, K.; Kalivas, A.; Ralli, P.; Irakli, M. Performance and Hydroponic Tomato Crop Quality Characteristics in a Novel Greenhouse Using Dye-Sensitized Solar Cell Technology for Covering Material. Horticulturae 2019, 5, 42. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bari, A.; Papaioannou, C. Plant Responses to UV Blocking Greenhouse Covering Materials: A Review. Agronomy 2020, 10, 1021. [Google Scholar] [CrossRef]
- Al-Madani, A.A.; Al-Helal, I.M.; Alsadon, A.A. Assessing the Effectiveness of Reflective and Diffusive Polyethylene Films as Greenhouse Covers in Arid Environments. Agronomy 2024, 14, 1082. [Google Scholar] [CrossRef]
- Abbouda, S.K.; Almuhanna, E.A.; Al-Amri, A.M. Effect of using double layers of polyethylene cover with air gap on control environment inside greenhouses. In Proceedings of the 2012, Dallas, TX, USA, 29 July–1 August 2012; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012. [Google Scholar]
- Lamnatou, C.; Chemisana, D. Solar Radiation Manipulations and Their Role in Greenhouse Claddings: Fresnel Lenses, NIR- and UV-Blocking Materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in Greenhouses in the EU: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Appl. Sci. 2022, 12, 5150. [Google Scholar] [CrossRef]
- Contreras, A.C.; Arellano-García, M.A.; Quezada, M.R.; Morales, G.; Munguía-López, J.; Zermeño-González, A.; Narro, A. Formulation of nano-structured films for greenhouses and their effect on microclimate and cucumber (Cucumis sativus L.) Development and productivity. Acta Hortic. 2014, 217–223. [Google Scholar] [CrossRef]
- Odesola, I.F.; Ezekwem, C. The Effect of Shape and Orientation on a Greenhouse: A Review. Int. J. Sci. Technol. 2012, 1, 122–130. [Google Scholar]
- Katsoulas, N.; Baille, A.; Kittas, C. Effect of Misting on Transpiration and Conductances of a Greenhouse Rose Canopy. Agric. Meteorol. 2001, 106, 233–247. [Google Scholar] [CrossRef]
- Weerakkody, W.A.P.; Jayasinghe, J.M.U.; Prathpasinghe, G. Combined Roof and Side Ventilation with Misting and Air Blowing for Cooling Tropical Greenhouses. Acta Hortic. 2014, 555–561. [Google Scholar] [CrossRef]
- Mutwiwa, U.N.; Tantau, H.J.; Murunga, S.I.; Elsner, B.; Max, J.F.J. Effects of a Near Infrared-Reflecting Greenhouse Roof Cover on Greenhouse Microclimate, Growth and Production of Tomato in the Tropics. Agric. Eng. Int. CIGR J. 2017, 19, 70–79. [Google Scholar]
- Castro, R.P.; Dinho da Silva, P.; Pires, L.C.C. Advances in Solutions to Improve the Energy Performance of Agricultural Greenhouses: A Comprehensive Review. Appl. Sci. 2024, 14, 6158. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Constantinos Kittas, N.K. Modelling Transpiration of Soilless Greenhouse Cucumber and Its Relationship with Leaf Temperature in a Mediterranean Climate. Emir. J. Food Agric. 2018, 29, 911. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahrivar, A.A.; Hagare, D.; Maheshwari, B. Impact of Recycled Water Irrigation on Soil Salinity and Its Remediation. Soil. Syst. 2022, 6, 13. [Google Scholar] [CrossRef]
- Salinas, J.; Padilla, F.M.; Thompson, R.B.; Teresa Peña-Fleitas, M.; López-Martín, M.; Gallardo, M. Responses of Yield, Fruit Quality and Water Relations of Sweet Pepper in Mediterranean Greenhouses to Increasing Salinity. Agric. Water Manag. 2023, 290, 108578. [Google Scholar] [CrossRef]
- Segura, M.L.; Contreras, J.I.; Salinas, R.; Lao, M.T. Influence of Salinity and Fertilization Level on Greenhouse Tomato Yield and Quality. Commun. Soil Sci. Plant Anal. 2009, 40, 485–497. [Google Scholar] [CrossRef]
- Çakir, R.; Kanburoglu-Çebi, U.; Altintas, S.; Ozdemir, A. Irrigation Scheduling and Water Use Efficiency of Cucumber Grown as a Spring-Summer Cycle Crop in Solar Greenhouse. Agric. Water Manag. 2017, 180, 78–87. [Google Scholar] [CrossRef]
- Londra, P.A.; Kotsatos, I.-E.; Theotokatos, N.; Theocharis, A.T.; Dercas, N. Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture. Hydrology 2021, 8, 132. [Google Scholar] [CrossRef]
- Alonso, F.; Contreras, J.I.; Cánovas, G.; Gavilán, P.; Baeza, R. Management of Automated Irrigation with Tensiometers in Greenhouse-Grown Peppers. In Proceedings of the VIII Congresso Ibérico de Ciências Hortícolas, Coimbra, Portugal, 7–10 June 2020. [Google Scholar]
- Buttaro, D.; Santamaria, P.; Signore, A.; Cantore, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer: Effects on Yield, Quality and Water Use. Agric. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision Support Systems and Models for Aiding Irrigation and Nutrient Management of Vegetable Crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Rinaldi, M.; He, Z. Decision Support Systems to Manage Irrigation in Agriculture. Adv. Agron. 2014, 123, 229–279. [Google Scholar]
- Khatib, A.; Sizov, A.P. Mapping the Spatial Distribution and Potential Expansion of Agricultural Plastic Greenhouses in Tartus, Syria Using GIS and Remote Sensing Techniques. Geocarto Int. 2023, 38, 1–24. [Google Scholar] [CrossRef]
- Gava, O.; Antón, A.; Carmassi, G.; Pardossi, A.; Incrocci, L.; Bartolini, F. Reusing Drainage Water and Substrate to Improve the Environmental and Economic Performance of Mediterranean Greenhouse Cropping. J. Clean. Prod. 2023, 413, 137510. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Deng, L.; Bozdar, B.; Li, J.; Chachar, S.; Chachar, Z.; Jahan, I.; Talpur, A.; Gishkori, M.S.; et al. Advancing Horizons in Vegetable Cultivation: A Journey from Ageold Practices to High-Tech Greenhouse Cultivation—A Review. Front. Plant Sci. 2024, 15, 1357153. [Google Scholar] [CrossRef] [PubMed]
- Rameshwaran, P.; Tepe, A.; Yazar, A.; Ragab, R. Effects of Drip-Irrigation Regimes with Saline Water on Pepper Productivity and Soil Salinity under Greenhouse Conditions. Sci. Hortic. 2016, 199, 114–123. [Google Scholar] [CrossRef]
- Fernández, M.D.; Gallardo, M.; Bonachela, S.; Orgaz, F.; Thompson, R.B.; Fereres, E. Water Use and Production of a Greenhouse Pepper Crop under Optimum and Limited Water Supply. J. Hortic. Sci. Biotechnol. 2005, 80, 87–96. [Google Scholar] [CrossRef]
- Diodato, N.; Ljungqvist, F.C.; Bellocchi, G. Fingerprint of Climate Change in Precipitation Aggressiveness across the Central Mediterranean (Italian) Area. Sci. Rep. 2020, 10, 22062. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-Selenium, Silicon and H2O2 Boost Growth and Productivity of Cucumber under Combined Salinity and Heat Stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef]
- Lee, C.; Harvey, J.T.; Nagila, A.; Qin, K.; Leskovar, D.I. Thermotolerance of Tomato Plants Grafted onto Wild Relative Rootstocks. Front. Plant Sci. 2023, 14, 1252456. [Google Scholar] [CrossRef]
- Fu, J.; Bowden, R.L.; Jagadish, S.V.K.; Prasad, P.V.V. Genetic Variation for Terminal Heat Stress Tolerance in Winter Wheat. Front. Plant Sci. 2023, 14, 1132108. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Abd-Alkarim, E.; El-Ramady, H.; El-Aidy, F.; Hamed, E.-S.; Taha, N.; Prohens, J.; Rakha, M. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae 2021, 7, 61. [Google Scholar] [CrossRef]
- Yadav, R.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Asati, R.; Chauhan, S.; Tiwari, P.N.; Payasi, D.K. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life 2023, 13, 1456. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Akter, S.; Sakil, M.A.; Jalil, M.A. Roles of CRISPR to Mitigate Drought and Salinity Stresses on Plants. Plant Stress. 2023, 8, 100169. [Google Scholar] [CrossRef]
- Martina, M.; De Rosa, V.; Magon, G.; Acquadro, A.; Barchi, L.; Barcaccia, G.; De Paoli, E.; Vannozzi, A.; Portis, E. Revitalizing Agriculture: Next-Generation Genotyping and -Omics Technologies Enabling Molecular Prediction of Resilient Traits in the Solanaceae Family. Front. Plant Sci. 2024, 15, 1278760. [Google Scholar] [CrossRef]
- Olivieri, F.; Graci, S.; Francesca, S.; Rigano, M.M.; Barone, A. Accelerating the Development of Heat Tolerant Tomato Hybrids through a Multi-Traits Evaluation of Parental Lines Combining Phenotypic and Genotypic Analysis. Plants 2021, 10, 2168. [Google Scholar] [CrossRef]
- Bineau, E.; Diouf, I.; Carretero, Y.; Duboscq, R.; Bitton, F.; Djari, A.; Zouine, M.; Causse, M. Genetic Diversity of Tomato Response to Heat Stress at the QTL and Transcriptome Levels. Plant J. 2021, 107, 1213–1227. [Google Scholar] [CrossRef] [PubMed]
- López-Marín, J.; González, A.; Pérez-Alfocea, F.; Egea-Gilabert, C.; Fernández, J.A. Grafting Is an Efficient Alternative to Shading Screens to Alleviate Thermal Stress in Greenhouse-Grown Sweet Pepper. Sci. Hortic. 2013, 149, 39–46. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Zenda, T.; Liu, S.; Dong, A.; Li, J.; Wang, Y.; Liu, X.; Wang, N.; Duan, H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. Front. Plant Sci. 2021, 12, 774994. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Owens, L.; Nuñez, M.A.; Khan, A.L. Complexity of Combined Abiotic Stresses to Crop Plants. Plant Stress. 2025, 17, 100926. [Google Scholar] [CrossRef]
- Kurunc, A.; Unlukara, A.; Cemek, B. Salinity and Drought Affect Yield Response of Bell Pepper Similarly. Acta Agric. Scand. B Soil. Plant Sci. 2011, 61, 514–522. [Google Scholar] [CrossRef]
- Mechlia, N.B.; Nagaz, K.; Masmoudi, M.M.; Mechlia, N. Ben Effect of Deficit Drip-Irrigation Scheduling Regimes with Saline Water on Pepper Yield, Water Productivity and Soil Salinity under Arid Conditions of Tunisia Effect of Defi Cit Drip-Irrigation Scheduling Regimes with Saline Water on Pepper Yield, Water Productivity and Soil Salinity under Arid Conditions of Tunisia. J. Appl. Hortic. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Francesca, S.; Vitale, L.; Arena, C.; Raimondi, G.; Olivieri, F.; Cirillo, V.; Paradiso, A.; de Pinto, M.C.; Maggio, A.; Barone, A.; et al. The Efficient Physiological Strategy of a Novel Tomato Genotype to Adapt to Chronic Combined Water and Heat Stress. Plant Biol. 2022, 24, 62–74. [Google Scholar] [CrossRef]
- Mashilo, J.; Odindo, A.O.; Shimelis, H.A.; Musenge, P.; Tesfay, S.Z.; Magwaza, L.S. Photosynthetic Response of Bottle Gourd [Lagenaria siceraria (Molina) Standl.] to Drought Stress: Relationship between Cucurbitacins Accumulation and Drought Tolerance. Sci. Hortic. 2018, 231, 133–143. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy Efficient Operation and Modeling for Greenhouses: A Literature Review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Ureña-Sánchez, R.; Callejón-Ferre, Á.J.; Pérez-Alonso, J.; Carreño-Ortega, Á. Greenhouse Tomato Production with Electricity Generation by Roof-Mounted Flexible Solar Panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Prieto, J.; Ajnannadhif, R.M.; Fernández-del Olmo, P.; Coronas, A. Integration of a Heating and Cooling System Driven by Solar Thermal Energy and Biomass for a Greenhouse in Mediterranean Climates. Appl. Therm. Eng. 2023, 221, 119928. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Yan, S.-R.; Fazilati, M.A.; Samani, N.; Ghasemi, H.R.; Toghraie, D.; Nguyen, Q.; Karimipour, A. Energy Efficiency Optimization of the Waste Heat Recovery System with Embedded Phase Change Materials in Greenhouses: A Thermo-Economic-Environmental Study. J. Energy Storage 2020, 30, 101445. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, T.; Wang, W.; Jia, X.; Wang, J.; Klemeš, J.J. Energy-Saving Design and Control Strategy towards Modern Sustainable Greenhouse: A Review. Renew. Sustain. Energy Rev. 2022, 164, 112602. [Google Scholar] [CrossRef]
- Pardossi, A.; Incrocci, L.; Incrocci, G.; Malorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J. Root Zone Sensors for Irrigation Management in Intensive Agriculture. Sensors 2009, 9, 2809–2835. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of Greenhouse Natural Ventilation: Environmental Monitoring and CFD Simulations of a Study Case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of Local and Imported Tomato: An Energy and Water Trade-Off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Maraveas, C.; Karavas, C.-S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Konfo, T.R.C.; Chabi, A.B.P.; Amoussouga Gero, A.; Lagnika, C.; Avlessi, F.; Biaou, G.; Sohounhloue, C.K.D. Recent Climate-Smart Innovations in Agrifood to Enhance Producer Incomes through Sustainable Solutions. J. Agric. Food Res. 2024, 15, 100985. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Strategy on Climate Change; FAO: Rome, Italy, 2022. [Google Scholar]
- Gillani, S.A.; Abbasi, R.; Martinez, P.; Ahmad, R. Comparison of Energy-Use Efficiency for Lettuce Plantation under Nutrient Film Technique and Deep-Water Culture Hydroponic Systems. Procedia Comput. Sci. 2023, 217, 11–19. [Google Scholar] [CrossRef]
- Ulas, F.; Kılıç, F.N.; Ulas, A. Alleviate the Influence of Drought Stress by Using Grafting Technology in Vegetable Crops: A Review. J. Crop Health 2025, 77, 51. [Google Scholar] [CrossRef]
- Pasala, R.; Chennamsetti, M.; Patil, B.; Kadirvel, P.; Geethanjali, S.; Nagaram, S.; Sajja, S.; Vennapusa, A.R.; Vara Prasad, P.V.; Mathur, R.K. Revolutionizing Crop Production: The Imperative of Speed Breeding Technology in Modern Crop Improvement. Crop Breed. Genet. Genom. 2024, 6, 1–23. [Google Scholar] [CrossRef]
- Giannoulis, A.; Briassoulis, D.; Papardaki, N.-G.; Mistriotis, A. Evaluation of Insect-Proof Agricultural Nets with Enhanced Functionality. Biosyst. Eng. 2021, 208, 98–112. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.C.; Medrano, E.; Fernández-del Olmo, P.; Lorenzo, P. Influence of a Passive Heating System That Combines Heat Accumulators and Thermal Screen on the Greenhouse Microclimate. Acta Hortic. 2020, 41–46. [Google Scholar] [CrossRef]
- Boyaci, S.; Aktaş, M.; Sümeyye Ekiz, M.; Başpinar, A. Determination of heat requirement in greenhouses and evaluation of precautions to be taken for energy efficiency. Infrastruct. Ecol. Rural Areas 2024, 19, 77–92. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, Y.; Zhou, L.; Wei, Z.; Hu, W.; Yang, Y. The Thermal Properties of an Active–Passive Heat Storage Wall System Incorporating Phase Change Materials in a Chinese Solar Greenhouse. Sustainability 2024, 16, 2624. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 9789251077207. [Google Scholar]
- Comincioli, N.; El Khoury, C.; Bazzana, D.; Legrenzi, D.; Nardi, F.; Segovia-Cardozo, D.A.; Vergalli, S.; Rodríguez-Sinobas, L. Towards Sustainable Climate-smart Agriculture: A Cost–Benefit Analysis of a Modernized Irrigation District in Spain. Ann. Public. Coop. Econ. 2025, 96, 513–542. [Google Scholar] [CrossRef]
- Waring, T.; Biagini, L.; Bozzola, M.; Severini, S. Weathering the Storm: A Systematic Review of Climate Change Adaptation in Agriculture. Methods, Metrics, and Impacts. Bio-Based Appl. Econ. 2025. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.-F.; Howden, S.M. Crop and Pasture Response to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef]
- Gudlaugsson, B.; Ahmed, T.G.; Dawood, H.; Ogwumike, C.; Short, M.; Dawood, N. Cost and Environmental Benefit Analysis: An Assessment of Renewable Energy Integration and Smart Solution Technologies in the InteGRIDy Project. Clean. Energy Syst. 2023, 5, 100071. [Google Scholar] [CrossRef]
- Hahn, C.; Lindkvist, E.; Magnusson, D.; Johansson, M. The Role of Agriculture in a Sustainable Energy System—The Farmers’ Perspective. Renew. Sustain. Energy Rev. 2025, 213, 115437. [Google Scholar] [CrossRef]
- Osberghaus, D.; Baccianti, C.; Domisse, A. Adaptation to Climate Change in the Southern Mediterranean: A Theoretical Framework, a Foresight Analysis and Three Case Studies; MEDPRO: Fort Lauderdale, FL, USA; CEPS: Brussels, Belgium, 2013; ISBN 9789461382733. [Google Scholar]
- Pietrapertosa, F.; Olazabal, M.; Simoes, S.G.; Salvia, M.; Fokaides, P.A.; Ioannou, B.I.; Viguié, V.; Spyridaki, N.-A.; De Gregorio Hurtado, S.; Geneletti, D.; et al. Adaptation to Climate Change in Cities of Mediterranean Europe. Cities 2023, 140, 104452. [Google Scholar] [CrossRef]
- Iakovidis, D. Strategies for Sustainable Farming in the Mediterranean: Lessons from Argolida, Greece. Ph.D. Thesis, University of Reading, Reading, UK, 2023. [Google Scholar]
- Kittas, C.; Katsoulas, N.; Bartzanas, T. Greenhouse climate control in mediterranean greenhouses. Cuad. Estud. Agroaliment. (CEA) 2012, 3, 89–114. [Google Scholar]
- Ouazzani Chahidi, L.; Fossa, M.; Priarone, A.; Mechaqrane, A. Energy Saving Strategies in Sustainable Greenhouse Cultivation in the Mediterranean Climate—A Case Study. Appl. Energy 2021, 282, 116156. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Piscia, D.; Lorenzo, P. Shading Screens for the Improvement of the Night Time Climate of Unheated Greenhouses. Span. J. Agric. Res. 2013, 11, 32–46. [Google Scholar] [CrossRef]
- Argento, S.; Garcia, G.; Treccarichi, S. Sustainable and Low-Input Techniques in Mediterranean Greenhouse Vegetable Production. Horticulturae 2024, 10, 997. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Contreras, J.; Baeza, R.; Segura, M.; Lao, M. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Padilla, Y.; Fotopoulos, V.; Ntatsi, G.; Calatayud, Á.; Penella, C.; Sabatino, L.; Mozafarian, M. Strategies for Enhancing Resilience in Horticultural Crops Against Combined Abiotic Stresses. Physiol. Plant 2025, 177, e70502. [Google Scholar] [CrossRef]
- Colla, G.; Fiorillo, A.; Cardarelli, M.; Rouphael, Y. Grafting to Improve Abiotic Stress Tolerance of Fruit Vegetables. Acta Hortic. 2014, 119–125. [Google Scholar] [CrossRef]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a Tool to Improve Tolerance of Vegetables to Abiotic Stresses: Thermal Stress, Water Stress and Organic Pollutants. Sci. Hortic. 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Gholami, M.; Arefi, A.; Hasan, A.; Li, C.; Muyeen, S.M. Enhancing Energy Autonomy of Greenhouses with Semi-Transparent Photovoltaic Systems through a Comparative Study of Battery Storage Systems. Sci. Rep. 2025, 15, 2213. [Google Scholar] [CrossRef]
- Parra-López, C.; Ben Abdallah, S.; Garcia-Garcia, G.; Hassoun, A.; Sánchez-Zamora, P.; Trollman, H.; Jagtap, S.; Carmona-Torres, C. Integrating Digital Technologies in Agriculture for Climate Change Adaptation and Mitigation: State of the Art and Future Perspectives. Comput. Electron. Agric. 2024, 226, 109412. [Google Scholar] [CrossRef]
- Savvas, D.; Giannothanasis, E. Simulation Study to Assess the Efficiency of the Software NUTRISENSE to Optimise Nutrient Supply Using Ion Selective Electrodes in Closed-Loop Soilless Cropping Systems. Mol. Sci. Appl. 2025, 5, 6–18. [Google Scholar] [CrossRef]
- Kapetas, D.; Christakakis, P.; Faliagka, S.; Katsoulas, N.; Pechlivani, E.M. AI-Driven Insect Detection, Real-Time Monitoring, and Population Forecasting in Greenhouses. AgriEngineering 2025, 7, 29. [Google Scholar] [CrossRef]
- Mohd Asaari, M.S.; Mertens, S.; Verbraeken, L.; Dhondt, S.; Inzé, D.; Bikram, K.; Scheunders, P. Non-Destructive Analysis of Plant Physiological Traits Using Hyperspectral Imaging: A Case Study on Drought Stress. Comput. Electron. Agric. 2022, 195, 106806. [Google Scholar] [CrossRef]
- Savvas, D.; Giannothanasis, E.; Ntanasi, T.; Karavidas, I.; Drakatos, S.; Panagiotakis, I.; Neocleous, D.; Ntatsi, G. Improvement and Validation of a Decision Support System to Maintain Optimal Nutrient Levels in Crops Grown in Closed-Loop Soilless Systems. Agric. Water Manag. 2023, 285, 108373. [Google Scholar] [CrossRef]
- Baptista, F.J.; Bailey, B.J.; Meneses, J.F.; Navas, L.M. Greenhouses Climate Modelling. Tests, Adaptation and Validation of a Dynamic Climate Model. Span. J. Agric. Res. 1970, 8, 285–298. [Google Scholar] [CrossRef]
- Giannothanasis, E.; Karavidas, I.; Ntanasi, T.; Ntatsi, G.; Thompson, R.B.; Savvas, D. Sodium Accumulation Management in a Closed-Loop Soilless Cropping System Using Ion Selective Electrodes and a Novel Decision Support System. Smart Agric. Technol. 2025, 12, 101366. [Google Scholar] [CrossRef]
- Sathya, R.; Suganthi, M.; Trisha, M.; Janani, E.; Dhivya, S.; Viswanathan, R.V. AI Powered Ayurvedic Leaf Prediction and Disease Classification: A Comprehensive Analysis. In Proceedings of the 2025 International Conference on Visual Analytics and Data Visualization (ICVADV), Tirunelveli, India, 4–6 March 2025; IEEE: New York, NY, USA, 2025; pp. 1364–1370. [Google Scholar]
- Dhal, S.; Wyatt, B.M.; Mahanta, S.; Bhattarai, N.; Sharma, S.; Rout, T.; Saud, P.; Acharya, B.S. Internet of Things (IoT) in Digital Agriculture: An Overview. Agron. J. 2024, 116, 1144–1163. [Google Scholar] [CrossRef]
- Jans-Singh, M.; Leeming, K.; Choudhary, R.; Girolami, M. Digital Twin of an Urban-Integrated Hydroponic Farm. Data-Centric Eng. 2020, 1, e20. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Abdel-Fatah, L. Artificial Intelligence and Internet of Things in Smart Farming; CRC Press: Boca Raton, FL, USA, 2024; ISBN 9781003400103. [Google Scholar]
- Gruda, N.S.; Popsimonova, G. Current Situation and Future Trends of Protected Cultivation in South East Europe. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries; FAO: Rome, Italy, 2017. [Google Scholar]
- Xu, F.; Wang, B.; He, C.; Liu, D.L.; Feng, P.; Yao, N.; Zhang, R.; Xu, S.; Xue, J.; Feng, H.; et al. Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy 2021, 11, 1452. [Google Scholar] [CrossRef]
- Shamshiri, R. A Review of Greenhouse Climate Control and Automation Systems in Tropical Regions. J. Agric. Sci. Appl. 2013, 2, 175–182. [Google Scholar] [CrossRef]
- Sturiale, S.; Gava, O.; Gallardo, M.; Buendía Guerrero, D.; Buyuktas, D.; Aslan, G.E.; Laarif, A.; Bouslama, T.; Navarro, A.; Incrocci, L.; et al. Environmental and Economic Performance of Greenhouse Cropping in the Mediterranean Basin: Lessons Learnt from a Cross-Country Comparison. Sustainability 2024, 16, 4491. [Google Scholar] [CrossRef]
- Savvas, D.; Drakatos, S.; Panagiotakis, I.; Ntatsi, G. NUTRISENSE: A New Online Portal to Calculate Nutrient Solutions and Optimize Fertilization of Greenhouse Crops Grown Hydroponically. Acta Hortic. 2021, 149–156. [Google Scholar] [CrossRef]
- Roy, S.K.; Misra, S.; Raghuwanshi, N.S.; Das, S.K. AgriSens: IoT-Based Dynamic Irrigation Scheduling System for Water Management of Irrigated Crops. IEEE Internet Things J. 2021, 8, 5023–5030. [Google Scholar] [CrossRef]
- Horta S.r.l. What Is pomodoro.net®? In Pomodoro.net®—Interactive Web-Based Tool for Sustainable Industrial Tomato Farming; Horta S.r.l.: Piacenza, Italy, 2017; Available online: https://www.horta-srl.it/en/pomodoro-net/ (accessed on 2 November 2025).
- Horta S.r.l. Leaflet. In Pomodoro.net®—An Innovative Web-Based Platform for Sustainable Industrial Tomato Farming; Horta S.r.l.: Piacenza, Italy, 2017; Available online: https://www.horta-srl.com (accessed on 2 November 2025).
- INRAE. European Copernicus Climate Services; INRAE Reports: Paris, France, 2023. [Google Scholar]
- Adamides, G.; Kalatzis, N.; Stylianou, A.; Marianos, N.; Chatzipapadopoulos, F.; Giannakopoulou, M.; Papadavid, G.; Vassiliou, V.; Neocleous, D. Smart Farming Techniques for Climate Change Adaptation in Cyprus. Atmosphere 2020, 11, 557. [Google Scholar] [CrossRef]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Gallardo, M.; Pumares, P.; Cabello, J.; Rodríguez, E.; et al. Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Fernández, A.J.; Peña-Fernández, A.; Molina, L.; Aguilera, P.A. The Role of Technology in Greenhouse Agriculture: Towards a Sustainable Intensification in Campo de Dalías (Almería, Spain). Agronomy 2021, 11, 101. [Google Scholar] [CrossRef]
- Gallardo, M.; Peña-Fleitas, M.T.; Padilla, F.M.; Cedeño, J.; Thompson, R.B. Prescriptive-Corrective Irrigation and Macronutrient Management in Greenhouse Soil-Grown Tomato Using the VegSyst-DSS v2 Decision Support Tool. Horticulturae 2023, 9, 1128. [Google Scholar] [CrossRef]
- Vourdoubas, J. The Development of Agricultural Greenhouses in the Island of Crete, Greece. A SWOT Analysis. Eng. Technol. J. 2025, 10, 4189–4198. [Google Scholar] [CrossRef]
- Karatsivou, E.; Elvanidi, A.; Katsoulas, N. Evaluation of a Three-Level Cascade Soilless System Under Saline Greenhouse Conditions. Horticulturae 2025, 11, 1168. [Google Scholar] [CrossRef]
- Vourdoubas, J. Economic and Environmental Assessment of the Use of Renewable Energies in Greenhouses: A Case Study in Crete-Greece. J. Agric. Sci. 2015, 7, 48. [Google Scholar] [CrossRef]
- Şen, B.; Gündoğdu, K.S. The Effect of Greenhouse Structural Features on the Determination of Greenhouse Insurance Premium. J. Biol. Environ. Sci. 2022, 16, 1–8. [Google Scholar]
- Baytorun, A.N.; Zaimoglu, Z. Climate Control in Mediterranean Greenhouses. In Climate Resilient Agriculture—Strategies and Perspectives; InTech: Melbourne, FL, USA, 2018. [Google Scholar]
- Özdemir, Ö.E.; Bretzel, T.; Gfüllner, L.; Gorjian, S.; Katircioglu, Y.; Dur, B.; Trommsdorff, M. Design, Simulation, and Experimental Evaluation of an Agrivoltaic Greenhouse in Turkey. Results Eng. 2025, 26, 105278. [Google Scholar] [CrossRef]
- Kurklu, A. A Feasibility Study for Different Crops in a High-Tech Greenhouse in Turkey. World J. Agric. Soil Sci. 2022, 8, 1–10. [Google Scholar]
- Chicco, J.M.; Fonte, L.; Mandrone, G.; Tartaglino, A.; Vacha, D. Hybrid (Gas and Geothermal) Greenhouse Simulations Aimed at Optimizing Investment and Operative Costs: A Case Study in NW Italy. Energies 2023, 16, 3931. [Google Scholar] [CrossRef]
- Gallardo, M.; Arrabal, F.; Padilla, F.M.; Peña-Fleitas, M.T.; Thompson, R.B. VegSyst-DSS Software to Calculate N and Irrigation Requirements for Seven Vegetable Species Grown with Fertigation in Greenhouses in SE Spain. Acta Hortic. 2017, 65–72. [Google Scholar] [CrossRef]
- Soma-Bonfillon, M. L’irrigation En Provence: Des Aménagements et Des Pratiques Au Coeur Des Transformations Économiques, Environnementales et Sociales. Ann. Midi Rev. Archéologique Hist. Philol. Fr. Méridionale 2010, 122, 495–514. [Google Scholar] [CrossRef]
- Wezel, A.; David, C.; Ferrer, A.; Letort, A. Agroecological Practices Supporting the Provision of Goods and Services in Agriculture. In Examples from France et Europe; ISARA: Lyon, France, 2014. [Google Scholar]
- El Ghetany, H.; Okasha, E.S.; El Awady, M.H. Integrated Solar Power System for Greenhouses Irrigation Using Treated Surface Mixed Water, Delta, Egypt. Egypt. J. Chem. 2020, 63, 4017–4027. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs. Market Study on Protected Cultivation in Egypt: Road toward a Consortium on Climate and Water Smart Protected Cultivation. Commissioned by the Netherlands Enterprise Agency; Delphy: Beringen, Belgium, 2023. [Google Scholar]
- Cherif, A.; Kaouthar, L.G. Trichogramma Cacoeciae as a Biological Control Agent of the Tomato Pinworm Tuta Absoluta in Northeastern Tunisia. Entomol. Hell. 2017, 22, 35. [Google Scholar] [CrossRef]
- Vandôme, P.; Leauthaud, C.; Moinard, S.; Sainlez, O.; Mekki, I.; Zairi, A.; Belaud, G. Making Technological Innovations Accessible to Agricultural Water Management: Design of a Low-Cost Wireless Sensor Network for Drip Irrigation Monitoring in Tunisia. Smart Agric. Technol. 2023, 4, 100227. [Google Scholar] [CrossRef]
- Taoufik, B.; Rhaimi, C.B.; Alomari, S.; Aljuhani, L. Design and Implementation of an Integrated IoT and Artificial Intelligence System for Smart Irrigation Management. Int. J. Adv. Soft Comput. Its Appl. 2024, 16, 197–218. [Google Scholar]
- Lekouch, K.; El Jazouli, M.; Bouirden, L. Study of Temperature Fields Inside a Canarian Greenhouse. WSEAS Trans. FLUID Mech. 2022, 17, 79–88. [Google Scholar] [CrossRef]
- Fakhraddine, M.; Zerrad, N.; Berhili, H.; Morchid, M. Digital Transformation in Moroccan Agriculture: Applications, Used Technologies, Impacts on Marketing, Limitations, and Orientations for Future Research. Smart Agric. Technol. 2025, 11, 100978. [Google Scholar] [CrossRef]
- Karić, L.; Rakita, N.; Marušić, D. Potential of Protected Vegetable Production in Bosnia and Herzegovina and Future Perspectives. Acta Hortic. 2016, 475–482. [Google Scholar] [CrossRef]
- Sidibé, A.; Olabisi, L.S.; Doumbia, H.; Touré, K.; Niamba, C.A. Barriers and Enablers of the Use of Digital Technologies for Sustainable Agricultural Development and Food Security. Elem. Sci. Anthr. 2021, 9, 106. [Google Scholar] [CrossRef]
- Streimikis, J.; Miao, Z.; Balezentis, T. Creation of Climate-smart and Energy-efficient Agriculture in the European Union: Pathways Based on the Frontier Analysis. Bus. Strategy Environ. 2021, 30, 576–589. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Baum, M. Participatory plant breeding in water-limited environments. Exp. Agric. 2007, 43, 411–435. [Google Scholar] [CrossRef]
- Rummukainen, M. State-of-the-art with Regional Climate Models. WIREs Clim. Change 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- van Straten, G.; van Willigenburg, G.; van Henten, E.; van Ooteghem, R. Optimal Control of Greenhouse Cultivation; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429137310. [Google Scholar]
- Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling Biomass Production and Yield of Horticultural Crops: A Review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Rötter, R.P.; Carter, T.R.; Olesen, J.E.; Porter, J.R. Crop–Climate Models Need an Overhaul. Nat. Clim. Chang. 2011, 1, 175–177. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; White, J.W.; Asseng, S.; Lizaso, J.I. Putting Mechanisms into Crop Production Models. Plant Cell Environ. 2013, 36, 1658–1672. [Google Scholar] [CrossRef]
- Baille, A. Trends in greenhouse technology for improved climate control in mild winter climates. Acta Hortic. 2001, 161–168. [Google Scholar] [CrossRef]
- Pekkeriet, E.J.; van Henten, E.J. current developments of high-tech robotic and mechatronic systems in horticulture and challenges for the future. Acta Hortic. 2011, 85–94. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies. Agric. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Hellenic Republic, Ministry of the Economy and Enterprise. National and Climate; Hellenic Republic, Ministry of the Economy and Enterprise: Athens, Greece, 2019. [Google Scholar]
- Office of the European Union. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality (European Climate Law) (Text with EEA relevance). Off. J. Eur. Union 2021, L243, 1–17. [Google Scholar]
- European Commission. Regulation (EU) 2024/1735 of the European Parliament and of the Council of 13 June 2024 on Establishing a Framework of Measures for Strengthening Europe’s Net-Zero Technology Manufacturing Ecosystem and Amending Regulation (EU) 2018/1724. Off. J. Eur. Union 2024. [Google Scholar]
- European Commission. Commission Regulation (EU) No 651/2014 of 17 June 2014 Declaring Certain Categories of Aid Compatible with the Internal Market in Application of Articles 107 and 108 of the Treaty Text with EEA Relevance. Off. J. Eur. Union 2014, 50, 1–78. [Google Scholar]
- European Commission. EU Agricultural Outlook 2023-2035; Publications Office of the European Union: Luxembourg, 2023; ISBN 9789268089347. [Google Scholar]
- European Commission. Communication from the Commission to the European, the Council, the European Economic and Social and the Committee of the Regions; European Commissio: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Horizon Europe-Work Programme 2025 Food, Bioeconomy, Natural Resources, Agriculture and Environment; European Commission: Brussels, Belgium, 2025. [Google Scholar]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef]
- Tüzel, Y.; Biyke, H.; Harouna, O.S.; Durdu, T.; Tepecik, M.; Oztekin, G.B.; Tunalı, U.; Gruda, N.S. Deficit Irrigation Response and Climate Resilience of Mediterranean Tomato Landraces. Horticulturae 2025, 11, 74. [Google Scholar] [CrossRef]
- Bonachela, S.; Granados, M.R.; Hernández, J.; López, J.C.; Magán, J.J. Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops. Agronomy 2024, 14, 374. [Google Scholar] [CrossRef]
- Soussi, M.; Chaibi, M.T.; Buchholz, M.; Saghrouni, Z. Comprehensive Review on Climate Control and Cooling Systems in Greenhouses under Hot and Arid Conditions. Agronomy 2022, 12, 626. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Plant Production and Protection. In Good Agricultural Practices for Greenhouse Vegetable Crops -Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; ISBN 9789251076491. [Google Scholar]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Berckmoes, E.; Miguel Costa, J.; Lonardo, S.D.; Magán, J.J.; Massa, D.; Vänninen, I. EIP-AGRI Focus Group—Circular Horticulture. In Mini-Paper-Monitoring and Metrics to Boost Circularity in Horticulture; EIP-AGRI: Brussels, Belgium, 2019. [Google Scholar]
- PRIMA Foundation. PRIMA9 Funded Projects 2019; PRIMA Foundation: Barcelona, Spain, 2019. [Google Scholar]
- Tittarelli, F. Final Report for the CORE Organic Cofund Funded Project “Organic and Biodynamic Vegetable Production in Low-Energy GREENhouses-Sustainable, RESILIENT and Innovative Food Production Systems-GREENRESILIENT”; Organic Eprints: Foulum, Denmark, 2018. [Google Scholar]
- European Commission. Regulation (EU) 2023/2674 of the European Parliament and of the Council of 22 November 2023 Council Regulation (EC) No 1217/2009 as Regards Conversion of the Farm Accountancy Network into a Farm Sustainability Data Network. Off. J. Eur. Union 2023. [Google Scholar]
- European Commission. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 Rules on Support for Strategic Plans to Be Drawn up by Member States under the common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013 Repealing Regulations. Off. J. Eur. Union 2021. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2024/2746 of 25 October 2024 down Rules for the Application of Council Regulation (EC) No 1217/2009 Setting up the Farm Data Network and Repealing Commission Implementing Regulation (EU) 2015/220. Off. J. Eur. Union 2024. [Google Scholar]
- Hart, K. Securing Greater Environmental and Climate from EU Agricultural Funds; IEP: Sydney, Australia, 2024. [Google Scholar]
- Ceccarelli, S. Efficiency of Plant Breeding. Crop Sci. 2015, 55, 87–97. [Google Scholar] [CrossRef]
- Tokić, M.; Leljak Levanić, D.; Ludwig-Müller, J.; Bauer, N. Growth and Molecular Responses of Tomato to Prolonged and Short-Term Heat Exposure. Int. J. Mol. Sci. 2023, 24, 4456. [Google Scholar] [CrossRef]
- EL-Mansy, A.; Abd El-Moneim, D.; ALshamrani, S.; Safhi, F.; Abdein, M.; Ibrahim, A. Genetic Diversity Analysis of Tomato (Solanum lycopersicum L.) with Morphological, Cytological, and Molecular Markers under Heat Stress. Horticulturae 2021, 7, 65. [Google Scholar] [CrossRef]
- Mansour, A.; Ismail, H.M.; Ramadan, M.F.; Gyulai, G. Variations in Tomato (Lycopersicon esculentum) Cultivars Grown under Heat Stress. J. Für Verbraucherschutz Und Leb. 2009, 4, 118–127. [Google Scholar] [CrossRef]
- Bollier, N.; Micol-Ponce, R.; Dakdaki, A.; Maza, E.; Zouine, M.; Djari, A.; Bouzayen, M.; Chevalier, C.; Delmas, F.; Gonzalez, N.; et al. Various Tomato Cultivars Display Contrasting Morphological and Molecular Responses to a Chronic Heat Stress. Front. Plant Sci. 2023, 14, 1278608. [Google Scholar] [CrossRef] [PubMed]
- Kürklü, A.; Pearson, S.; Felek, T. Climate Change Impacts on Tomato Production in High-Tech Soilless Greenhouses in Türkiye. BMC Plant Biol. 2025, 25, 339. [Google Scholar] [CrossRef]
- Miller, G.; Beery, A.; Singh, P.K.; Wang, F.; Zelingher, R.; Motenko, E.; Lieberman-Lazarovich, M. Contrasting Processing Tomato Cultivars Unlink Yield and Pollen Viability under Heat Stress. AoB Plants 2021, 13, plab046. [Google Scholar] [CrossRef]
- Gisbert-Mullor, R.; Padilla, Y.G.; Martínez-Cuenca, M.-R.; López-Galarza, S.; Calatayud, Á. Suitable Rootstocks Can Alleviate the Effects of Heat Stress on Pepper Plants. Sci. Hortic. 2021, 290, 110529. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Botella, M.Á.; Vicente, E.; Fenoll, J.; Flores, P. Oligosaccharins Alleviate Heat Stress in Greenhouse-Grown Tomatoes during the Spring-Summer Season in a Semi-Arid Climate. Agronomy 2022, 12, 802. [Google Scholar] [CrossRef]
- Douh, B.; Mguidiche, A.; Khila, S.B.; Mansour, M.; Rania, H.; Boujelben, A. Yield and Water Use Efficiency of Cucumber (Cucumis sativus L.) Conducted under Subsurface Drip Irrigation System in a Mediterranean Climate. J. Environ. Sci. Toxicol. Food Technol. 2013, 2, 46–51. [Google Scholar] [CrossRef]
- Ntanasi, T.; Karavidas, I.; Savvas, D.; Spyrou, G.P.; Giannothanasis, E.; Consentino, B.B.; Papasotiropoulos, V.; Sabatino, L.; Ntatsi, G. Physiological and Yield Responses of Pepper (Capsicum annuum L.) Genotypes to Drought Stress. Plants 2025, 14, 1934. [Google Scholar] [CrossRef]
- Gerakari, M.; Mitkou, D.; Antoniadis, C.; Giannakoula, A.; Stefanou, S.; Hilioti, Z.; Chatzidimopoulos, M.; Tsiouni, M.; Pavloudi, A.; Xynias, I.N.; et al. Evaluation of Commercial Tomato Hybrids for Climate Resilience and Low-Input Farming: Yield and Nutritional Assessment Across Cultivation Systems. Agronomy 2025, 15, 929. [Google Scholar] [CrossRef]
- Sirkeci, M.; Tüzel, Y.; Öztekin, G.B.; Aşçıoğul, T.; Durdu, T. Response of Local Tomato Genotypes to Drought Stress. Acta Hortic. 2021, 607–614. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Giannakoula, A.; Ilias, I.; Zamanidis, P. Alleviation of Drought and Salinity Stresses on Growth, Physiology, Biochemistry and Quality of Two Cucumis sativus L. Cultivars by Si Application. Braz. J. Bot. 2016, 39, 531–539. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Pappa, P.; Grillakis, M.G.; Varouchakis, E.A.; Tsanis, I.K. Modeling Soil Salinity in Greenhouse Cultivations Under a Changing Climate With SALTMED. Soil. Sci. 2016, 181, 241–251. [Google Scholar] [CrossRef]
- Badem, A.; Söylemez, S. Effects of Nitric Oxide and Silicon Application on Growth and Productivity of Pepper under Salinity Stress. J. King Saud. Univ. Sci. 2022, 34, 102189. [Google Scholar] [CrossRef]
- Ityel, E.; Lazarovitch, N.; Silberbush, M.; Ben-Gal, A. An Artificial Capillary Barrier to Improve Root-Zone Conditions for Horticultural Crops: Response of Pepper Plants to Matric Head and Irrigation Water Salinity. Agric. Water Manag. 2012, 105, 13–20. [Google Scholar] [CrossRef]
- Ntanasi, T.; Karavidas, I.; Spyrou, G.P.; Giannothanasis, E.; Aliferis, K.A.; Saitanis, C.; Fotopoulos, V.; Sabatino, L.; Savvas, D.; Ntatsi, G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. Plants 2024, 13, 1404. [Google Scholar] [CrossRef]
- Ntanasi, T.; Karavidas, I.; Zioviris, G.; Ziogas, I.; Karaolani, M.; Fortis, D.; Conesa, M.À.; Schubert, A.; Savvas, D.; Ntatsi, G. Assessment of Growth, Yield, and Nutrient Uptake of Mediterranean Tomato Landraces in Response to Salinity Stress. Plants 2023, 12, 3551. [Google Scholar] [CrossRef]
- Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Montero, J.I. Evaluation and Modelling of Greenhouse Cucumber-Crop Transpiration under High and Low Radiation Conditions. Sci. Hortic. 2005, 105, 163–175. [Google Scholar] [CrossRef]
- Gisbert-Mullor, R.; Padilla, Y.G.; Calatayud, Á.; López-Galarza, S. Rootstock-Mediated Physiological and Fruit Set Responses in Pepper under Heat Stress. Sci. Hortic. 2023, 309, 111699. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Mohammedi, S.; Dragonetti, G.; Admane, N.; Fouial, A. The Impact of Agrivoltaic Systems on Tomato Crop: A Case Study in Southern Italy. Processes 2023, 11, 3370. [Google Scholar] [CrossRef]
- Moreno-Teruel, M.d.l.Á.; Molina-Aiz, F.D.; Peña-Fernández, A.; López-Martínez, A.; Valera-Martínez, D.L. The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse. Agronomy 2021, 11, 860. [Google Scholar] [CrossRef]
- Leyva, R.; Constán-Aguilar, C.; Sánchez-Rodríguez, E.; Romero-Gámez, M.; Soriano, T. Cooling Systems in Screenhouses: Effect on Microclimate, Productivity and Plant Response in a Tomato Crop. Biosyst. Eng. 2015, 129, 100–111. [Google Scholar] [CrossRef]
- Botella, M.Á.; Hernández, V.; Mestre, T.; Hellín, P.; García-Legaz, M.F.; Rivero, R.M.; Martínez, V.; Fenoll, J.; Flores, P. Bioactive Compounds of Tomato Fruit in Response to Salinity, Heat and Their Combination. Agriculture 2021, 11, 534. [Google Scholar] [CrossRef]
- Kittas, C.; Rigakis, N.; Katsoulas, N.; Bartzanas, T. Influence of Shading Screens on Microclimate, Growth and Productivity of Tomato. Acta Hortic. 2009, 97–102. [Google Scholar] [CrossRef]
- Metwaly, E.-S.E.; Al-Yasi, H.M.; Ali, E.F.; Farouk, H.A.; Farouk, S. Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine. Agriculture 2022, 12, 2166. [Google Scholar] [CrossRef]
- Salama, A.N.; Haggag, I.A.; Wanas, M.A. Growth, Productivity and Quality of Cucumber Plants as Influenced by Drought Stress and Salicylic Acid under Protected Condition. Egypt. J. Soil. Sci. 2025, 65, 1–14. [Google Scholar] [CrossRef]
- Delfine, S.; Tognetti, R.; Loreto, F.; Alvino, A. Physiological and Growth Responses to Water Stress in Field-Grown Bell Pepper (Capsicum annuum L.). J. Hortic. Sci. Biotechnol. 2002, 77, 697–704. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.d.M.; Blasco, B.; Ríos, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The Effect of Environmental Conditions on Nutritional Quality of Cherry Tomato Fruits: Evaluation of Two Experimental Mediterranean Greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber Green Mottle Mosaic Virus: Rapidly Increasing Global Distribution, Etiology, Epidemiology, and Management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef]
- Varveri, C.; Vassilakos, N.; Bem, F. Characterization and Detection of Cucumber Green Mottle Mosaic Virus in Greece. Phytoparasitica 2002, 30, 493–501. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Belausov, E.; Koren, A.; Mor, N.; Dombrovsky, A. Epidemiological Study of Cucumber Green Mottle Mosaic Virus in Greenhouses Enables Reduction of Disease Damage in Cucurbit Production. Ann. Appl. Biol. 2016, 168, 29–40. [Google Scholar] [CrossRef]
- Shahak, Y.; Gal, E.; Offir, Y.; Ben-Yakir, D. Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops. Acta Hortic. 2008, 75–80. [Google Scholar] [CrossRef]
- Gallitelli, D. The Ecology of Cucumber Mosaic Virus and Sustainable Agriculture. Virus Res. 2000, 71, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C.; Barbetti, M.J. Influence of Climate Change on Plant Disease Infections and Epidemics Caused by Viruses and Bacteria. CABI Rev. 2012, 7, 1–33. [Google Scholar] [CrossRef]
- Ben Othmen, A.; Ben Belgacem, A.; Bel-Kadhi, M.S.; Nagaz, K.; Braham, M. The Invasive Cucurbit Fruit Flies (Diptera: Tephritidae), Dacus Frontalis Becker and Dacus Ciliatus Loew in Southern Tunisia: Preliminary Data on Distribution, Hosts and Infestation. EuroMediterr J. Environ. Integr. 2025, 10, 4121–4131. [Google Scholar] [CrossRef]
- Osdaghi, E.; Jones, J.B.; Sharma, A.; Goss, E.M.; Abrahamian, P.; Newberry, E.A.; Potnis, N.; Carvalho, R.; Choudhary, M.; Paret, M.L.; et al. A Centenary for Bacterial Spot of Tomato and Pepper. Mol. Plant Pathol. 2021, 22, 1500–1519. [Google Scholar] [CrossRef]
- Awad-Allah, E.F.A.; Shams, A.H.M.; Helaly, A.A. Suppression of Bacterial Leaf Spot by Green Synthesized Silica Nanoparticles and Antagonistic Yeast Improves Growth, Productivity and Quality of Sweet Pepper. Plants 2021, 10, 1689. [Google Scholar] [CrossRef]
- Abou Jawdah, Y.; Ezzeddine, N.; Fardoun, A.; Kharroubi, S.; Sobh, H.; Atamian, H.S.; Skinner, M.; Parker, B. Biological Control of Three Major Cucumber and Pepper Pests: Whiteflies, Thrips, and Spider Mites, in High Plastic Tunnels Using Two Local Phytoseiid Mites. Plants 2024, 13, 889. [Google Scholar] [CrossRef]
- Zayed, M.S.; Taha, E.-K.A.; Hassan, M.M.; Elnabawy, E.-S.M. Enhance Systemic Resistance Significantly Reduces the Silverleaf Whitefly Population and Increases the Yield of Sweet Pepper, Capsicum annuum L. Var. Annuum. Sustainability 2022, 14, 6583. [Google Scholar] [CrossRef]
- Ghosh, M. Climate-Smart Agriculture, Productivity and Food Security in India. J. Dev. Policy Pract. 2019, 4, 166–187. [Google Scholar] [CrossRef]
- Aribi, D.; Simoneau, P. Distribution of Large-Spored Alternaria Species Associated with Potato and Tomato Early Blight According to Hosts and Bioclimatic Regions of Algeria. Phytopathol. Mediterr. 2019, 58, 139–149. [Google Scholar] [CrossRef]
- Benabdelkader, M.; Saifi, R.; Saifi, H. Sustainable Agriculture in Some Arab Maghreb Countries (Morocco, Algeria, Tunisia); Springer: Berlin/Heidelberg, Germany, 2021; pp. 233–261. [Google Scholar]
- Greco, N.; Aranda, J.M.L.; Saporiti, M.; Maccarini, C.; de Tommaso, N.; Myrta, A. Sustainability of European Vegetable and Strawberry Production in Relation to Fumigation Practices in the EU. Acta Hortic. 2020, 203–210. [Google Scholar] [CrossRef]
- Çolak, A. PCR Detection of Fusarium oxysporum f. Sp. radicis-lycopersici and Races of F. Oxysporum f. sp. lycopersici of Tomato in Protected Tomato Growing Areas of Eastern Mediterranean Region of Turkey. Turk. J. Agric. For. 2013, 37, 457–467. [Google Scholar] [CrossRef]
- Edel-Hermann, V.; Gautheron, N.; Steinberg, C. Genetic Diversity of Fusarium oxysporum and Related Species Pathogenic on Tomato in Algeria and Other Mediterranean Countries. Plant Pathol. 2012, 61, 787–800. [Google Scholar] [CrossRef]
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Ioannou, N. Cultural Management of Tomato Yellow Leaf Curl Disease in Cyprus. Plant Pathol. 1987, 36, 367–373. [Google Scholar] [CrossRef]
- Hanafi, A.; Schnitzler, W.H. Integrated production and protection in greenhouse tomato in morocco. Acta Hortic. 2004, 295–300. [Google Scholar] [CrossRef]
- Giorgini, M.; Guerrieri, E.; Cascone, P.; Gontijo, L. Current Strategies and Future Outlook for Managing the Neotropical Tomato Pest Tuta Absoluta (Meyrick) in the Mediterranean Basin. Neotrop. Entomol. 2019, 48, 1–17. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated Pest Management of Tuta Absoluta: Practical Implementations across Different World Regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Litskas, V.D.; Migeon, A.; Navajas, M.; Tixier, M.-S.; Stavrinides, M.C. Impacts of Climate Change on Tomato, a Notorious Pest and Its Natural Enemy: Small Scale Agriculture at Higher Risk. Environ. Res. Lett. 2019, 14, 084041. [Google Scholar] [CrossRef]
- Taki, M.; Yildizhan, H. Evaluation the Sustainable Energy Applications for Fruit and Vegetable Productions Processes; Case Study: Greenhouse Cucumber Production. J. Clean. Prod. 2018, 199, 164–172. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.; Dolores Fernández, M.; Gallardo, M.; Thompson, R.B.; Fernández, M.D. Water Requirements and Irrigation Management in Mediterranean Greenhouses: The Case of the Southeast Coast of Spain 6; ResearchGate: Berlin, Germany, 2013. [Google Scholar]
- Hijjaji, K.; Frikha, N.; Gabsi, S.; Kheiri, A. Study of a Solar HDH Desalination Unit Powered Greenhouse for Water and Humidity Self-Sufficiency. Int. J. Energy Environ. Eng. 2023, 14, 335–351. [Google Scholar] [CrossRef]
- Lorenzo, P.; Reyes, R.; Medrano, E.; Granados, R.; Bonachela, S.; Hernández, J.; López, J.C.; Magán, J.J.; del Amor, F.M.; Sánchez-Guerrero, M.C. Hybrid Passive Cooling and Heating System for Mediterranean Greenhouses. Microclimate and Sweet Pepper Crop Response. Agric. Water Manag. 2024, 301, 108937. [Google Scholar] [CrossRef]
- Gázquez, J.C.; López, J.C.; Pérez-Parra, J.J.; Baeza, E.J.; Saéz, M.; Parra, A. Greenhouse cooling strategies for mediterranean climate areas. Acta Hortic. 2008, 425–432. [Google Scholar] [CrossRef]
- Gazquez, J.C.; Lopez, J.C.; Baeza, E.; Saez, M.; Sanchez-Guerrero, M.C.; Medrano, E.; Lorenzo, P. Yield response of a sweet pepper crop to different methods of greenhouse cooling. Acta Hortic. 2006, 507–514. [Google Scholar] [CrossRef]
- Tsafaras, I.; Campen, J.B.; de Zwart, H.F.; Voogt, W.; Harbi, A.A.; Assaf, K.A.; Abdelaziz, M.E.; Qaryouti, M.; Stanghellini, C. Quantifying the Trade-off between Water and Electricity for Tomato Production in Arid Environments. Agric. Water Manag. 2022, 271, 107819. [Google Scholar] [CrossRef]
- Baptista, F.J.; Briassoulis, D.; Stanghellini, C.; Silva, L.L.; Balafoutis, A.T.; Meyer-Aurich, A.; Mistriotis, A. Energy efficiency in tomato greenhouse production. A preliminary study. Acta Hortic. 2014, 179–185. [Google Scholar] [CrossRef]
- Campiotti, C.; Dondi, F.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Bibbiani, C.; Incrocci, L. Preliminary results of a pv closed greenhouse system for high irradiation zones in south Italy. Acta Hortic. 2011, 243–250. [Google Scholar] [CrossRef]
- Baptista, F.J.; Silva, A.T.; Navas, L.M.; Guimarães, A.C.; Meneses, J.F. Greenhouse Energy Consumption for Tomato Production in the Iberian Peninsula Countries. Acta Hortic. 2012, 409–416. [Google Scholar] [CrossRef][Green Version]
- Saraiva, R.; Dias, I.; Grego, J.; Oliveira, M. Greenhouse Tomato Technologies and Their Influence in Mediterranean Region. In Tomato Cultivation and Consumption—Innovation and Sustainability; IntechOpen: London, UK, 2024. [Google Scholar][Green Version]
- Boutelhig, A.; Hanini, S.; Arab, A.H. Geospatial Characteristics Investigation of Suitable Areas for Photovoltaic Water Pumping Erections, in the Southern Region of Ghardaia, Algeria. Energy 2018, 165, 235–245. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Hliaoutakis, A.; Argyriou, A.V.; Morianou, G.; Voulgarakis, A.E.; Kokinou, E.; Daliakopoulos, I.N.; Kalderis, D.; Tzerakis, K.; Psarras, G.; et al. A Web-Based GIS Platform Supporting Innovative Irrigation Management Techniques at Farm-Scale for the Mediterranean Island of Crete. Sci. Total Environ. 2022, 842, 156918. [Google Scholar] [CrossRef]
- Kaya, C. Optimizing Crop Production with Plant Phenomics Through High-Throughput Phenotyping and AI in Controlled Environments. Food Energy Secur. 2025, 14, e70050. [Google Scholar] [CrossRef]
- Yildirim, N.; Bilir, L. Evaluation of a Hybrid System for a Nearly Zero Energy Greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- Caruso, G.; Cozzolino, E.; Cuciniello, A.; Maiello, R.; Cenvinzo, V.; Giordano, M.; De Pascale, S.; Rouphael, Y. Yield and Quality of Greenhouse Organic Pepper as Affected by Shading Net in Mediterranean Area. Acta Hortic. 2020, 335–340. [Google Scholar] [CrossRef]
- Ruiz-Nieves, J.M.; Ayala-Garay, O.J.; Serra, V.; Dumont, D.; Vercambre, G.; Génard, M.; Gautier, H. The Effects of Diurnal Temperature Rise on Tomato Fruit Quality. Can the Management 1 of the Greenhouse Climate Mitigate Such Effects? Sci. Hortic. 2021, 278, 109836. [Google Scholar] [CrossRef]
- Cammarano, D.; Ronga, D.; Di Mola, I.; Mori, M.; Parisi, M. Impact of Climate Change on Water and Nitrogen Use Efficiencies of Processing Tomato Cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Karipcin, M.Z.; Dinc, S.; Kara, M.; Kahraman, S.; Alp, I.; Cicekci, H. High Temperature-Tolerant Tomato Lines: Bioactive Compounds. J. Verbraucherschutz Und Leb. 2016, 11, 117–125. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation Management of European Greenhouse Vegetable Crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Filipe, L.; Manta-Costa, A.; Lidon, F.; Ramalho, J.C.; Barata, J. Intelligent Data-Driven Decision Support for Agricultural Systems-ID3SAS. IEEE Access 2023, 11, 115798–115815. [Google Scholar] [CrossRef]
- Kouider, D.B.; Athmani, H.; Bensefia, S. Reuse of Agricultural Drainage Water and Wastewater for Crop Irrigation in Southeastern Algeria. Open Geosci. 2025, 17, 20220749. [Google Scholar] [CrossRef]
- Sela Saldinger, S.; Rodov, V.; Kenigsbuch, D.; Bar-Tal, A. Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions. Horticulturae 2023, 9, 51. [Google Scholar] [CrossRef]
- Halwani, J.; Halwani, B. Climate Change in Lebanon and the Impact to Water Resources; Springer: Berlin/Heidelberg, Germany, 2022; pp. 395–412. [Google Scholar]
- Daghari, I.; El Zarroug, M.R.; Muanda, C.; Kompany, J.R.; Kanzari, S.; Mimoun, A. Ben Feasibility of Water Desalination for Irrigation: The Case of the Coastal Irrigated Area of Dyiar-Al-Hujjej, Tunisia. Water Supply 2021, 21, 24–45. [Google Scholar] [CrossRef]
- Kassem, Y.; Gökçekuş, H.; Iravanian, A.; Gökçekuş, R. Predictive Suitability of Renewable Energy for Desalination Plants: The Case of Güzelyurt Region in Northern Cyprus. Model. Earth Syst. Environ. 2022, 8, 3657–3677. [Google Scholar] [CrossRef]
- Darwish, T.; Shaban, A.; Faour, G.; Jomaa, I.; Moubarak, P.; Khadra, R. Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation. Sustainability 2024, 16, 10050. [Google Scholar] [CrossRef]
- Penella, C.; Calatayud, A. Pepper Crop under Climate Change: Grafting as an Environmental Friendly Strategy. In Climate Resilient Agriculture—Strategies and Perspectives; InTech: London, UK, 2018. [Google Scholar]
- Zapata-García, S.; Temnani, A.; Berríos, P.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Optimizing Crop Water Productivity in Greenhouse Pepper. Agronomy 2024, 14, 902. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Saridakis, C.; Chrysargyris, A. Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures. Sustainability 2020, 12, 4287. [Google Scholar] [CrossRef]
- Apostolakis, A.; Wagner, K.; Daliakopoulos, I.N.; Kourgialas, N.N.; Tsanis, I.K. Greenhouse Soil Moisture Deficit under Saline Irrigation and Climate Change. Procedia Eng. 2016, 162, 537–544. [Google Scholar] [CrossRef]
- Michalis, E.; Giatra, C.-E.; Ragkos, A. Economic Evaluation of a Hydroponic Tomato Greenhouse Farm in Greece. In Proceedings of the HAICTA 2022, Athens, Greece, 22–25 September 2022. [Google Scholar]
- Ropokis, A.; Ntatsi, G.; Kittas, C.; Katsoulas, N.; Savvas, D. Effects of Temperature and Grafting on Yield, Nutrient Uptake, and Water Use Efficiency of a Hydroponic Sweet Pepper Crop. Agronomy 2019, 9, 110. [Google Scholar] [CrossRef]
- Giorio, P.; Cirillo, V.; Caramante, M.; Oliva, M.; Guida, G.; Venezia, A.; Grillo, S.; Maggio, A.; Albrizio, R. Physiological Basis of Salt Stress Tolerance in a Landrace and a Commercial Variety of Sweet Pepper (Capsicum annuum L.). Plants 2020, 9, 795. [Google Scholar] [CrossRef]
- Berman, A.; Su, N.; Li, Z.; Landau, U.; Chakraborty, J.; Gerbi, N.; Liu, J.; Qin, Y.; Yuan, B.; Wei, W.; et al. Construction of Multi-Targeted CRISPR Libraries in Tomato to Overcome Functional Redundancy at Genome-Scale Level. Nat. Commun. 2025, 16, 4111. [Google Scholar] [CrossRef]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.-J.; Díaz-Pérez, M. Morphology, Yield and Quality of Greenhouse Tomato Cultivation with Flexible Photovoltaic Rooftop Panels (Almería-Spain). Sci. Hortic. 2019, 257, 108768. [Google Scholar] [CrossRef]
- Egea, I.; Estrada, Y.; Flores, F.B.; Bolarín, M.C. Improving Production and Fruit Quality of Tomato under Abiotic Stress: Genes for the Future of Tomato Breeding for a Sustainable Agriculture. Environ. Exp. Bot. 2022, 204, 105086. [Google Scholar] [CrossRef]
- Kayikcioglu, H.H.; Duman, İ.; Asciogul, T.K.; Bozokalfa, M.K.; Elmacı, Ö.L. Effects of Tomato-Based Rotations with Diversified Pre-Planting on Soil Health in the Mediterranean Soils of Western Turkey. Agric. Ecosyst. Environ. 2020, 299, 106986. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Dere, S.; Akhoundnejad, Y.; Arpaci, B.B. Effects of High-Temperature Stress during Plant Cultivation on Tomato (Solanum lycopersicum L.) Fruit Nutrient Content. J. Food Qual. 2021, 7994417. [Google Scholar] [CrossRef]


| Impact Area | Most Important Environmental Factor | Key References |
|---|---|---|
| Physiological Responses | Heat stress, especially combined with high VPD | [89] |
| Yield and Quality | Heat stress affecting reproductive development and postharvest performance | [90] |
| Pest and Disease Pressure | High T (elevates pest survival and virus transmission) | [91] |
| Water and Energy Demands | High T and elevated VPD | [92,93] |
| Structural Innovations | Thermal extremes (e.g., high solar radiation, VPD) | [94] |
| Water Management | ET increase due to high T and elevated VPD; salinity buildup | [76,95] |
| Variety Selection | High T during reproduction; oxidative stress | [96,97] |
| Renewable Energy Use | Thermal extremes affecting climate regulation | [98] |
| DSS | Heat and water limitations as key drivers of adoption | [99] |
| Impact Area | Crop | Key References | ||
|---|---|---|---|---|
| Tomato | Cucumber | Sweet Pepper | ||
| Physiological Responses | Intermediate tolerance; cultivar-dependent resilience | Most sensitive; affected by heat/VPD, floral disruption | Most tolerant; good antioxidant response, heat tolerance | [38,100,101] |
| Yield and Quality | Intermediate resilience; stable reproductive performance | Most sensitive; high water demand and VPD sensitivity | Most tolerant; low fruit deformation, strong antioxidant capacity | [97,102,103] |
| Pest and Disease Pressure | Most susceptible; prone to viruses and fungi | Moderate sensitivity; humidity-driven pathogens (e.g., downy mildew) | Least susceptible; thicker cuticles, moderate pest risk | [104,105,106] |
| Water and Energy Demands | Moderate sensitivity; cultivar-dependent drought and cooling responses | Most sensitive to water/heat overlap; rapid dehydration | Most resilient; performs well with RDI and shading | [48,102,107] |
| Structural Innovations | High yield gain with advanced ventilation/shading | Benefits from misting and insulation for humidity retention | Broad tolerance; benefits from shading and insulation | [108,109,110] |
| Water Management | Moderate WUE; osmotic adjustment possible | Highly sensitive due to shallow roots and high transpiration | Most resilient; maintains fruit set under varied moisture | [48,111,112] |
| Variety Selection | Intermediate; some thermotolerant cultivars available | Resilient vegetatively; but bitterness under high stress | Most sensitive during flowering (BER, Ca transport issues) | [58,65,97] |
| Renewable Energy Use | Highly benefits from energy support during reproduction | Needs improved cooling/humidity due to high transpiration | Moderate benefit; resilient but aided by buffering systems | [113,114,115] |
| DSS | Gains most from DSS due to stress sensitivity during flowering | Gains from DSS for rapid growth and climate regulation | Least DSS-dependent; resilient but improves with DSS | [116,117] |
| Stress Factor | Relative Significance | Impact on Water Management | Key References |
|---|---|---|---|
| High T | Very High | Increases ET, requires cooling integration, accelerates water loss | [206] |
| Water Scarcity | Very High | Limits water availability, necessitates reuse and alternative sources | [185,207] |
| Salinity Stress | High | Challenges water quality, requires filtration/blending | [208,209] |
| Elevated VPD | High | Increases transpiration rate, complicates irrigation scheduling | [76,210] |
| Erratic Rainfall | Moderate | Reduces reliability of natural water sources, necessitates storage | [211] |
| Radiation Stress | Moderate | Increases canopy T, indirect effect on water demand | [11,198] |
| Abiotic Stress Factor | Impact on Energy Use | Relative Significance | Key References |
|---|---|---|---|
| High air T | ↑↑↑ Cooling energy demand, overheating risk | Very High | [184,188] |
| Increased solar radiation | ↑↑ Internal heat load, shading and insulation needed | High | [186,198] |
| Elevated VPD | ↑↑ Transpiration-driven cooling needs | Moderate to High | [76] |
| Low RH | ↑ Pumping energy demand for irrigation | Moderate | [220] |
| Water scarcity | ↑ Indirectly affects energy via irrigation systems | Moderate | [185,217] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanourakis, D.; Tsaniklidis, G.; Makraki, T.; Nikoloudakis, N.; Bartzanas, T.; Sabatino, L.; Fatnassi, H.; Ntatsi, G. Climate Change Impacts on Greenhouse Horticulture in the Mediterranean Basin: Challenges and Adaptation Strategies. Plants 2025, 14, 3390. https://doi.org/10.3390/plants14213390
Fanourakis D, Tsaniklidis G, Makraki T, Nikoloudakis N, Bartzanas T, Sabatino L, Fatnassi H, Ntatsi G. Climate Change Impacts on Greenhouse Horticulture in the Mediterranean Basin: Challenges and Adaptation Strategies. Plants. 2025; 14(21):3390. https://doi.org/10.3390/plants14213390
Chicago/Turabian StyleFanourakis, Dimitrios, Georgios Tsaniklidis, Theodora Makraki, Nikolaos Nikoloudakis, Thomas Bartzanas, Leo Sabatino, Hicham Fatnassi, and Georgia Ntatsi. 2025. "Climate Change Impacts on Greenhouse Horticulture in the Mediterranean Basin: Challenges and Adaptation Strategies" Plants 14, no. 21: 3390. https://doi.org/10.3390/plants14213390
APA StyleFanourakis, D., Tsaniklidis, G., Makraki, T., Nikoloudakis, N., Bartzanas, T., Sabatino, L., Fatnassi, H., & Ntatsi, G. (2025). Climate Change Impacts on Greenhouse Horticulture in the Mediterranean Basin: Challenges and Adaptation Strategies. Plants, 14(21), 3390. https://doi.org/10.3390/plants14213390

