Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype
Abstract
1. Introduction
2. Results
2.1. Phenolic Content and Profile
2.2. Antioxidant Activity
2.3. Anti-Inflammatory Activity
2.4. Antiproliferative Activity
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Extracts Preparation
4.2. Total Phenolic Content
4.3. ESI-IT-MSn Analysis
4.4. Antioxidant Activity
4.4.1. DPPH Assay
4.4.2. FRAP Assay
4.5. Cell Culture
4.6. Anti-Inflammatory Activity
4.6.1. Cytotoxic Effect
4.6.2. Quantification of NO Production
4.6.3. Quantification of TNF-α Production
4.7. Antiproliferative Effect
4.7.1. MTT Assay
4.7.2. Selective Index
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Izah, S.C.; Ogidi, O.I.; Ogwu, M.C.; Salimon, S.S.; Yusuf, Z.M.; Akram, M.; Raimi, M.O.; Iyingiala, A.-A. Historical perspectives and overview of the value of herbal medicine. In Herbal Medicine Phytochemistry: Applications and Trends; Springer: Cham, Switzerland, 2024; pp. 3–35. [Google Scholar]
- Balkrishna, A.; Sharma, N.; Srivastava, D.; Kukreti, A.; Srivastava, S.; Arya, V. Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare. Future Integr. Med. 2024, 3, 35–49. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Dhanave, S.S.; Mane, N.R.; Shitole, P.D.; Pore, A.V.; Bais, S. Current scenario of pharmaceutical and herbal medicines. Int. J. Pharm. Herb. Technol. 2024, 2, 1650–1656. [Google Scholar]
- Cervantes-Ceballos, L.; Sánchez-Hoyos, J.; Sanchez-Hoyos, F.; Torres-Niño, E.; Mercado-Camargo, J.; Echeverry-Gómez, A.; Jotty Arroyo, K.; del Olmo-Fernández, E.; Gómez-Estrada, H. An Overview of Genus Malachra L.—Ethnobotany, Phytochemistry, and Pharmacological Activity. Plants 2022, 11, 2808. [Google Scholar] [CrossRef] [PubMed]
- Abuga, I.; Sulaiman, S.F.; Wahab, R.A.; Ooi, K.L.; Rasad, M.S.B.A. Phytochemical constituents and antibacterial activities of 45 Malay traditional medicinal plants. J. Herb. Med. 2022, 32, 100496. [Google Scholar] [CrossRef]
- Park, Y.L.; Canaway, R. Integrating traditional and complementary medicine with national healthcare systems for universal health coverage in Asia and the Western Pacific. Health Syst. Reform 2019, 5, 24–31. [Google Scholar] [CrossRef]
- Dávila-Rangel, I.E.; Charles-Rodríguez, A.V.; López-Romero, J.C.; Flores-López, M.L. Plants from Arid and Semi-Arid Zones of Mexico Used to Treat Respiratory Diseases: A Review. Plants 2024, 13, 792. [Google Scholar] [CrossRef]
- Torres-Montúfar, A.; Jiménez-Noriega, M.S. From miracle medicine to fuel: Uses of the multifaceted genus Randia (Rubiaceae) in Mexico. Bol. Latinoam. Caribe Plantas Med. Aromat. 2025, 24, 186–198. [Google Scholar] [CrossRef]
- Martínez-González, R.E.; Huerta-Martínez, F.M.; Neri-Luna, C.; Barrientos-Ramírez, L.; Muñoz-Urias, A. Ethnobotany in a Modern City: The Persistence in the Use of Medicinal Plants in Guadalajara, Mexico. Plants 2025, 14, 2788. [Google Scholar] [CrossRef] [PubMed]
- Adorisio, S.; Fierabracci, A.; Gigliarelli, G.; Muscari, I.; Cannarile, L.; Liberati, A.M.; Marcotullio, M.C.; Riccardi, C.; Curini, M.; Robles Zepeda, R.E. The Hexane Fraction of Bursera microphylla A Gray Induces p21-Mediated Antiproliferative and Proapoptotic Effects in Human Cancer–Derived Cell Lines. Integr. Cancer Ther. 2017, 16, 426–435. [Google Scholar] [CrossRef]
- Messina, F.; Curini, M.; Di Sano, C.; Zadra, C.; Gigliarelli, G.; Rascón-Valenzuela, L.A.; Robles Zepeda, R.E.; Marcotullio, M.C. Diterpenoids and triterpenoids from the resin of Bursera microphylla and their cytotoxic activity. J. Nat. Prod. 2015, 78, 1184–1188. [Google Scholar] [CrossRef]
- Gigliarelli, G.; Becerra, J.; Curini, M.; Marcotullio, M. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.). Molecules 2015, 20, 22383–22394. [Google Scholar] [CrossRef]
- Torres-Moreno, H.; Lopez-Romero, J.C.; Vidal-Gutiérrez, M.; Rodriguez-Martinez, K.L.; Robles-Zepeda, R.E.; Vilegas, W.; Velarde-Rodríguez, G.M. Seasonality impact on the anti-inflammatory, antiproliferative potential and the lignan composition of Bursera microphylla. Ind. Crops Prod. 2022, 184, 115095. [Google Scholar] [CrossRef]
- Vidal-Gutiérrez, M.; Robles-Zepeda, R.E.; Vilegas, W.; Gonzalez-Aguilar, G.A.; Torres-Moreno, H.; Lopez-Romero, J.C. Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Ind. Crops Prod. 2020, 152, 112412. [Google Scholar] [CrossRef]
- Mobin, M.; Khan, M.N.; Abbas, Z.K. Ecotype difference in bioactive constituents and In vitro antioxidant activities of some Saudi medicinal plants. Eur. J. Med. Plants 2015, 7, 125–136. [Google Scholar] [CrossRef]
- Eghlima, G.; Aghamir, F.; Mohammadi, M.; Seyed Hajizadeh, H.; Kaya, O. Bioactive Compounds and Antimicrobial Activities in Iranian Crataegus persica Ecotypes for Potential Food and Medicinal Uses. Food Sci. Nutr. 2025, 13, e4748. [Google Scholar] [CrossRef]
- Medeiros, A.S.; Drezner, T.D. Vegetation, climate, and soil relationships across the Sonoran Desert. Ecoscience 2012, 19, 148–160. [Google Scholar] [CrossRef]
- Van Devender, T.R.; Reina-Guerrero, A. The vegetation of Sonora, Mexico. Phytoneuron 2021, 67, 1–22. [Google Scholar]
- Araújo, L.C.C.; Aguiar, J.S.; Napoleão, T.H.; Mota, F.V.B.; Barros, A.L.S.; Moura, M.C.; Coriolano, M.C.; Coelho, L.C.B.B.; Silva, T.G.; Paiva, P.M.G. Evaluation of Cytotoxic and Anti-Inflammatory Activities of Extracts and Lectins from Moringa oleifera Seeds. PLoS ONE 2013, 8, e81973. [Google Scholar] [CrossRef] [PubMed]
- Al-Huqail, A.; El-Dakak, R.M.; Sanad, M.N.; Badr, R.H.; Ibrahim, M.M.; Soliman, D.; Khan, F. Effects of Climate Temperature and Water Stress on Plant Growth and Accumulation of Antioxidant Compounds in Sweet Basil (Ocimum basilicum L.) Leafy Vegetable. Scientifica 2020, 2020, 3808909. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Mammela, P.; Savolainen, H.; Lindroos, L.; Kangas, J.; Vartiainen, T. Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A 2000, 891, 75–83. [Google Scholar] [CrossRef]
- Bazghaleh, N.; Prashar, P.; Purves, R.W.; Vandenberg, A. Polyphenolic Composition of Lentil Roots in Response to Infection by Aphanomyces euteiches. Front. Plant Sci. 2018, 9, 1131. [Google Scholar] [CrossRef]
- Lay-Keow, N.; Lafontaine, P.; Vanier, M. Characterization of cigarette tobacco by direct electrospray ionization-ion trap mass spectrometry (ESI-ITMS) analysis of the aqueous extract—A novel and simple approach. J. Agric. Food Chem. 2004, 52, 7251–7257. [Google Scholar]
- Hughes, R.J.; Croley, T.R.; Metcalfe, C.D.; March, R.E. A tandem mass spectrometric study of selected characteristic flavonoids. Int. J. Mass Spectrom. 2001, 210–211, 371–385. [Google Scholar] [CrossRef]
- Ben Mansour, R.; Wided, M.K.; Cluzet, S.; Krisa, S.; Richard, T.; Ksouri, R. LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line. Pharm. Biol. 2017, 55, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Lima, N.; Vallverdú-Queralt, A.; Meudec, E.; Pinasseau, L.; Verbaere, A.; Bordignon-Luiz, M.T.; Le Guernevé, C.; Cheynier, V.; Sommerer, N. Quantification of hydroxycinnamic derivatives in wines by UHPLC-MRM-MS. Anal. Bioanal. Chem. 2018, 410, 3483–3490. [Google Scholar] [CrossRef] [PubMed]
- Won, J.Y.; Son, S.Y.; Lee, S.; Singh, D.; Lee, S.; Lee, J.S.; Lee, C.H. Strategy for Screening of Antioxidant Compounds from Two Ulmaceae Species Based on Liquid Chromatography-Mass Spectrometry. Molecules 2018, 23, 1830. [Google Scholar] [CrossRef]
- Blois, M. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Wong, S.; Leong, L.; Koh, J. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in Phenolic Compounds Content and Antioxidant Activity of Different Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X. A Comprehensive Review of Phenolic Compounds in Horticultural Plants. Int. J. Mol. Sci. 2025, 26, 5767. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, S.G.; Leopoldini, M.; Russo, N.; Toscano, M. The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Phys. Chem. Chem. Phys. 2010, 12, 7662–7670. [Google Scholar] [CrossRef] [PubMed]
- Daud, S.; Karunakaran, T.; Santhanam, R.; Nagaratnam, S.R.; Jong, V.Y.M.; Ee, G.C.L. Cytotoxicity and nitric oxide inhibitory activities of Xanthones isolated from Calophyllum hosei Ridl. Nat. Prod. Res. 2021, 35, 6067–6072. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Ren, Y.; Huang, J.; Wang, X.; Wang, O.; Cai, S. Preparation of Rutin–Whey Protein Pickering Emulsion and Its Effect on Zebrafish Skeletal Muscle Movement Ability. Nutrients 2024, 16, 3050. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.; Sotelo-Mundo, R.; Balandrán-Quintana, R.; Glossman-Mitnik, D.; Sántiz-Gómez, M.; García-Orozco, K. Exploration of the kinetic and thermochemical abilities for the free radical scavenging of two quercetin conformers. J. Mol. Struct. 2010, 981, 187–193. [Google Scholar] [CrossRef]
- Vengadeshprabhu, K.; Somasundara, A.; Rajarajan, A.; Reyma, S.; Vijayasree, V.; Kenichi, W. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drugs Discov. Today 2016, 21, 632–639. [Google Scholar]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Parameswaran, N.; Patial, S. Tumor Necrosis Factor-α Signaling in Macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Mussbacher, M.; Derler, M.; Basílio, J.; Schmid, J.A. NF-κB in monocytes and macrophages—An inflammatory master regulator in multitalented immune cells. Front. Immunol. 2023, 14, 1134661. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Tu, Y.; Long, Z.; Liu, J.; Kong, D.; Peng, J.; Wu, H.; Zheng, G.; Zhao, J.; Chen, Y.; et al. Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. Oxid. Med. Cell. Longev. 2022, 2022, 2606928. [Google Scholar] [CrossRef]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef]
- Ghosh, R.; Mitchell, D.L. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999, 27, 3213–3218. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’Andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Vidal Gutiérrez, M.; Torres Moreno, H.; Velázquez Contreras, C.A.; Rascón Valenzuela, L.A.; Robles Zepeda, R.E. Actividad Antioxidante y Antiproliferativa de Seis Plantas Medicinales del Noroeste de México. Biotecnia 2020, 22, 40–45. [Google Scholar] [CrossRef]
- Torres-Moreno, H.; López-Romero, J.C.; Vázquez-Solorio, J.Y.; Velázquez-Contreras, C.A.; Garibay-Escobar, A.; Díaz-López, R.; Robles-Zepeda, R.E. Antioxidant, anti-inflammatory and antiproliferative properties of Ibervillea sonorae. Ind. Crops Prod. 2019, 125, 207–213. [Google Scholar] [CrossRef]




| Compound | MS1 | MS2 | MS3 | Fruit | Stem | |
|---|---|---|---|---|---|---|
| 1 | Gallic acid | 169 | 125 | 97 | X | |
| 2 | Quinic acid | 191 | 173, 127, 111, 93, 85 | - | X | |
| 3 | Ellagic acid | 301 | 283, 272, 257 | - | X | X |
| 4 | Quercetin | 301 | 179, 151 | - | X | X |
| 5 | Gallic acid glucoside | 331 | 169 | 125 | X | |
| 6 | Caffeic acid glucoside | 341 | 179 | 135 | X | |
| 7 | Kaempferol rhamnoside * | 431 | 285 | - | X | |
| 8 | Quercetin rhamnoside ** | 447 | 301 | 179, 151 | X | |
| 9 | Isorhamnetin xyloside * | 447 | 315, 301, 131, 161, 285, 379 | - | X | |
| 10 | Quercetin glucoside ** | 463 | 301 | 179, 151 | X | X |
| 11 | Rutin | 609 | 301 | 179, 151 | X |
| Extract | DPPH IC50 (μg/mL) | FRAP μMFe(II)/gdw |
| Fruit | 105.40 ± 0.48 a | 2034.3 ± 89.7 a |
| Stem | 52.90 ± 0.02 b | 1419.5 ± 115.3 b |
| Extract | NO (μg/mL) | TNF-α (μg/mL) |
|---|---|---|
| Fruit | 93.6 ± 4.6 a | 101.5 ± 9.1 a |
| Stem | 119.7 ± 2.8 b | 143.4 ± 4.9 b |
| Extract | LS180 | C-33 A | ARPE-19 |
|---|---|---|---|
| Fruit | 0.7 ± 0.001 a | 0.6 ± 0.07 a | 77.9 ± 4.3 a |
| Stem | 2.2 ± 0.1 b | 0.7 ± 0.08 a | 85.2 ± 3.5 b |
| Extract | LS180 | C-33 A |
|---|---|---|
| Fruit | 111.2 | 129.8 |
| Stem | 38.7 | 121.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Moreno, H.; López-Romero, J.C.; Vidal-Gutiérrez, M.; Rodríguez-Martínez, K.L.; Robles Zepeda, R.E.; Vilegas, W.; Oros-Morales, A. Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype. Plants 2025, 14, 3357. https://doi.org/10.3390/plants14213357
Torres-Moreno H, López-Romero JC, Vidal-Gutiérrez M, Rodríguez-Martínez KL, Robles Zepeda RE, Vilegas W, Oros-Morales A. Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype. Plants. 2025; 14(21):3357. https://doi.org/10.3390/plants14213357
Chicago/Turabian StyleTorres-Moreno, Heriberto, Julio César López-Romero, Max Vidal-Gutiérrez, Karen Lillian Rodríguez-Martínez, Ramón E. Robles Zepeda, Wagner Vilegas, and Ailyn Oros-Morales. 2025. "Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype" Plants 14, no. 21: 3357. https://doi.org/10.3390/plants14213357
APA StyleTorres-Moreno, H., López-Romero, J. C., Vidal-Gutiérrez, M., Rodríguez-Martínez, K. L., Robles Zepeda, R. E., Vilegas, W., & Oros-Morales, A. (2025). Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype. Plants, 14(21), 3357. https://doi.org/10.3390/plants14213357

