Potential Hypotheses Predicting Leaf Litter Nitrogen and Phosphorus Patterns at the Global Scale
Abstract
1. Introduction
2. Results
2.1. Leaf Litter Stoichiometry at Global Scale
2.2. Variation in Leaf Litter Stoichiometry with Latitude and Climate
2.3. Relationship Between Leaf Litter Stoichiometry and Potential Driving Factors
2.4. Determinants of Leaf Litter N and P at Global Scale
3. Discussion
3.1. Variation in Leaf Litter Stoichiometries Among Plant Functional Types
3.2. Influence of Soil pH on Concentrations of Leaf Litter N and P
3.3. Hypothetical Relationships Between Latitude and Leaf Litter N and P
3.4. Factors Controlling Global Leaf Litter N and P
4. Materials and Methods
4.1. Data Collection
4.2. Criteria Used to Filter Collected Data
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Craig, M.E.; Geyer, K.M.; Beidler, K.V.; Brzostek, E.R.; Frey, S.D.; Stuart Grandy, A.; Liang, C.; Phillips, R.P. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat. Commun. 2022, 13, 1229. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, H.; Zheng, J.; Li, X.; Wang, G.; Guo, J. Ecological Stoichiometric Characteristics of Plant–Litter–Soil Among Different Forest Stands in a Limestone Region of China. Plants 2025, 14, 1758. [Google Scholar] [CrossRef]
- Mooshammer, M.; Wanek, W.; Schnecker, J.; Wild, B.; Leitner, S.; Hofhansl, F.; Blöchl, A.; Hämmerle, I.; Frank, A.H.; Fuchslueger, L.; et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 2012, 93, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Han, W.X.; Fang, J.Y.; Reich, P.B.; Ian Woodward, F.; Wang, Z.H. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 2011, 14, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Vallicrosa, H.; Sardans, J.; Maspons, J.; Zuccarini, P.; Fernández-Martínez, M.; Bauters, M.; Goll, D.S.; Ciais, P.; Obersteiner, M.; Janssens, I.A.; et al. Global maps and factors driving forest foliar elemental composition: The importance of evolutionary history. New Phytol. 2022, 233, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.; Hayat, U.; Gopakumar, L.; Xiong, S.; Ali, J.; Badshah, M.T.; Ullah, S.; Rehman, A.U.; Yin, Q.; Jia, Z. Altitudinal Variations in Coniferous Vegetation and Soil Carbon Storage in Kalam Temperate Forest, Pakistan. Plants 2025, 14, 1534. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Review on the characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Xie, Y.J.; Cao, Y.S.; Xie, Y.H. Global-scale latitudinal patterns of twelve mineral elements in leaf litter. Catena 2022, 208, 105743. [Google Scholar] [CrossRef]
- Hou, E.; Wen, D.; Jiang, L.; Luo, X.; Kuang, Y.; Lu, X.; Chen, C.; Allen, K.T.; He, X.; Huang, X.; et al. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecol. Lett. 2021, 24, 1420–1431. [Google Scholar] [CrossRef]
- Chen, X.L.; Taylor, A.R.; Reich, P.B.; Hisano, M.; Chen, H.Y.H.; Chang, S.X. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 2023, 618, 94–101. [Google Scholar] [CrossRef]
- Liu, J.X.; Fang, X.; Tang, X.L.; Wang, W.T.; Zhou, G.Y.; Xu, S.; Huang, W.J.; Wang, G.X.; Yan, J.H.; Ma, K.P.; et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry 2019, 143, 191–205. [Google Scholar] [CrossRef]
- Xie, Y.; Tan, Z.; Xu, X.; Xie, Y.; Xiao, S. Potential hypotheses predicting the patterns of major nutrients in leaves on a global scale. Forests 2025, 16, 80. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Coq, S.; Barantal, S.; Handa, I.T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 2011, 189, 950–965. [Google Scholar] [CrossRef] [PubMed]
- Aerts, R.; van Bodegom, P.M.; Cornelissen, J.H.C. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytol. 2012, 196, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clément, J.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C.; et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91–95. [Google Scholar] [CrossRef]
- Radujković, D.; Verbruggen, E.; Seabloom, E.W.; Bahn, M.; Biederman, L.A.; Borer, E.T.; Boughton, E.H.; Catford, J.A.; Campioli, M.; Donohue, I.; et al. Soil properties as key predictors of global grassland production: Have we overlooked micronutrients? Ecol. Lett. 2021, 24, 2713–2725. [Google Scholar] [CrossRef] [PubMed]
- Joswig, J.S.; Wirth, C.; Schuman, M.C.; Kattge, J.; Reu, B.; Wright, I.J.; Sippel, S.D.; Rüger, N.; Richter, R.; Schaepman, M.E.; et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022, 6, 36–50. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yu, K.L.; Lv, S.Q.; Niklas, K.J.; Mipam, T.D.; Crowther, T.W.; Umaña, M.N.; Zhao, Q.; Huang, H.; Reich, P.B. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Funct. Ecol. 2019, 33, 2081–2094. [Google Scholar] [CrossRef]
- McCormack, M.L.; Adams, T.S.; Smithwich, E.A.H.; Eissenstat, D.M. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 2012, 195, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.K.; Liu, X.Y.; He, N.P.; Pan, X.; Long, S.Y.; Li, W.; Zhang, M.Y.; Cui, L.J. Global patterns in leaf stoichiometry across coastal wetlands. Glob. Ecol. Biogeogr. 2021, 30, 852–869. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 2009, 18, 532–542. [Google Scholar] [CrossRef]
- Zhang, K.R.; Cheng, X.L.; Dang, H.S.; Zhang, Q.F. Biomass: N:K:Ca:Mg:P ratios in forest stands world-wide: Biogeographical variations and environmental controls. Glob. Ecol. Biogeogr. 2020, 29, 11–12. [Google Scholar] [CrossRef]
- Yang, Q.; Yue, K.; Wu, F.; Heděnec, P.; Ni, X.; Wang, D.; Yuan, J.; Yu, J.; Peng, Y. Global patterns and drivers of initial plant litter ash concentration. Sci. Total Environ. 2022, 830, 154702. [Google Scholar] [CrossRef]
- Peng, Y.; Fornara, D.A.; Wu, Q.; Heděnec, P.; Yuan, J.; Yuan, C.; Yue, K.; Wu, F. Global patterns and driving factors of plant litter iron, manganese, zinc, and copper concentrations. Sci. Total Environ. 2023, 857, 159686. [Google Scholar] [CrossRef] [PubMed]
- Gondal, A.H.; Hussain, I.; Ijaz, A.B.; Zafar, A.; CH, B.I.; Zafar, H.; Sohail, M.D.; Niazi, H.; Touseef, M.; Khan, A.A.; et al. Influence of soil Ph and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. 2021, 5, 71–81. [Google Scholar]
- Liu, X.; Wang, Z.; Li, X.M.; Bao, W.K.; Rousk, K. The C: N: P stoichiometry in bryophytes: Relationships with habitat, climate and growth form. Natl. Sci. Rev. 2023, 10, nwad060. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H.; Reich, P.B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2011, 2, 344. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Follstad Shah, J.J.; Kominoski, J.S.; Ardón, M.; Dodds, W.K.; Gessner, M.O.; Griffiths, N.A.; Hawkins, C.P.; Johnson, S.L.; Lecerf, A.; LeRoy, C.J.; et al. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob. Change Biol. 2017, 23, 3064–3075. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.A.; Veen, G.F.; Bonis, A.; Bradford, E.M.; Classen, A.T.; Cornelissen, J.H.C.; Crowther, T.W.; De Long, J.R.; Freschet, G.T.; Kardol, P.; et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 2017, 1, 1836–1845. [Google Scholar] [CrossRef]
- Jackson, R.B.; Banner, J.L.; Jobbágy, E.G.; Pockman, W.T.; Wall, D.H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 2002, 418, 623–626. [Google Scholar] [CrossRef]
- Lin, Y.; Lai, Y.; Tang, S.; Qin, Z.; Liu, J.; Kang, F.; Kuang, Y. Climatic and edaphic variables determine leaf C, N, P stoichiometry of deciduous Quercus species. Plant Soil 2022, 474, 383–394. [Google Scholar] [CrossRef]
- Prieto, I.; Querejeta, J.I. Simulated climate change decreases nutrient resorption from senescing leaves. Glob. Change Biol. 2020, 26, 1795–1807. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Yan, J.; Xie, Y. Potential Hypotheses Predicting Leaf Litter Nitrogen and Phosphorus Patterns at the Global Scale. Plants 2025, 14, 3356. https://doi.org/10.3390/plants14213356
Xie Y, Yan J, Xie Y. Potential Hypotheses Predicting Leaf Litter Nitrogen and Phosphorus Patterns at the Global Scale. Plants. 2025; 14(21):3356. https://doi.org/10.3390/plants14213356
Chicago/Turabian StyleXie, Yajun, Jiacheng Yan, and Yonghong Xie. 2025. "Potential Hypotheses Predicting Leaf Litter Nitrogen and Phosphorus Patterns at the Global Scale" Plants 14, no. 21: 3356. https://doi.org/10.3390/plants14213356
APA StyleXie, Y., Yan, J., & Xie, Y. (2025). Potential Hypotheses Predicting Leaf Litter Nitrogen and Phosphorus Patterns at the Global Scale. Plants, 14(21), 3356. https://doi.org/10.3390/plants14213356

