Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications
Abstract
1. Introduction
2. Results and Discussion
2.1. Proximate Analysis and Mineral Composition
2.2. Total Polyphenol Content and In Vitro Antioxidant Activity
2.3. HPLC-MS-DAD Characterization
| Peak | Compound | tR (min) | Formula | [M − H]− (m/z) | MS/MS Ions * | Error (ppm) | [M + H]+ (m/z) | MS/MS Ions | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Dihydroxybenzoic acid hexoside | 3.5 | C13H16O9 | 315.0716 | 153.02, 109.03 | −1.904 | - | - | [25] |
| 2 | trans-Caffeic acid 4-sulfate | 3.9 | C9H8O7S | 258.9911 | 179.03, 135.04, 96.96, 79.96 | −2.703 | - | - | [26] |
| 3 | trans-Caffeic acid 3-sulfate | 4.1 | C9H8O7S | 258.9911 | 179.03, 135.04, 96.96 | −2.703 | - | - | [26] |
| 4 | 3-(N-sulfonylindolyl)-d-lactic acid | 4.8 | C11H11NO6S | 284.0227 | 266.01, 222.02, 204.06, 142.07, 96.96, 79.96 | −2.465 | - | - | [32] |
| 5 | p-Coumaroylisocitric acid | 9.3 | C15H14O9 | 337.0558 | 191.01, 173.01, 155.00, 111.01 | −2.077 | - | - | [31] |
| 6 | Isorhamnetin pentasaccharide | 10.2 | C43H56O28 | 1019.2866 ([M + Cl]− 1055.2634) | 887.24, 314.04, 315.05, 299.02 | −1.864 | 1021.2996 | 449.11, 317.06 | [33] |
| 7 | Feruloylisocitric acid I | 10.4 | C16H16O10 | 367.0661 | 191.02, 173.01, 155.00, 111.01 | −2.724 | - | - | [31] |
| 8 | Atriplexoside B or Isorhamnetin tetrasaccharide I | 10.5 | C38H48O24 | 887.2452 ([M + Cl]− 923.2219) | 755.20, 315.05, 314.04, 299.02 | −1.2398 | 889.2576 | 449.11, 317.06 | [6,7] |
| 9 | Feruloylisocitric acid II | 10.8 | C16H16O10 | 367.0661 | 191.02, 173.01, 155.00, 111.01 | −2.724 | - | - | [31] |
| 10 | Atriplexoside B or Isorhamnetin tetrasaccharide II | 11.4 | C38H48O24 | 887.2452 ([M + Cl]− 923.2219) | 755.20, 315.05, 299.02 | −1.2398 | 889.2576 | 449.11, 317.06 | [6,7] |
| 11 | Syringetin trisaccharide I | 12.0 | C34H42O21 | 785.2132 ([M + Cl]− 821.1885) | 653.17, 345.06, 315.05, 300.03 | −1.7830 | 787.2265 | 479.11, 347.07, 317.06 | [34] |
| 12 | Atriplexoside A or Isorhamnetin trisaccharide | 12.1 | C33H40O20 | 755.2028 ([M + Cl]− 791.1796) | 315.05, 314.04, 300.03, 299.02, 271.02 | −1.589 | 757.2159 | 317.06 | [6,8] |
| 13 | Syringetin trisaccharide II | 12.6 | C34H42O21 | 785.2132 ([M + Cl]− 821.1882) | 345.06, 330.04, 315.05 | −1.7830 | 787.2265 | 347.07, 317.05 | [34] |
2.4. In Vitro Digestion
2.5. Ames Test
3. Materials and Methods
3.1. Plant Material
3.2. Proximate Analysis
3.3. Mineral Composition Determination
3.4. Ultrasound-Assisted Extraction (UAE) and Decoction
3.5. Total Phenolic Content (TPC) and Antioxidant In Vitro Test
3.6. UPLC-DAD-MS and Isolation of Pure Compounds
3.7. NMR Characterization
3.8. In Vitro Digestion
3.9. Ames Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roubi, M.; Dalli, M.; Azizi, S.; Gseyra, N. Atriplex halimus: Phytochemical Insights, Traditional Applications, and Pharmacological Promises. Chem. Biodivers. 2024, 22, e202402171. [Google Scholar] [CrossRef]
- United States Department of the Army. The Complete Guide to Edible Wild Plants; Skyhorse Publishing: New York, NY, USA, 2009; p. 92. [Google Scholar]
- Walker, D.J.; Lutts, S.; Sánchez-García, M.; Correal, E. Atriplex halimus L.: Its biology and uses. J. Arid Environ. 2014, 100–101, 111–121. [Google Scholar] [CrossRef]
- Volpato, G.; Emhamed, A.A.; Lamin Saleh, S.M.; Broglia, A.; Di Lello, S. Chapter 12 Procurement of Traditional Remedies and Transmission of Medicinal Knowledge among Sahrawi People Displaced in Southwestern Algerian Refugee Camp. In Traveling Cultures and Plants: The Ethnobiology and Ethnopharmacy of Human Migrations; Pieroni, A., Vandebroek, I., Eds.; Berghahn Books: New York, NY, USA; Oxford, UK, 2007; pp. 245–269. [Google Scholar] [CrossRef]
- Sahrawi Ministry of Public Health. Plan Estratégico de Salud 2022–2026; Refugees Camps, Sahrawi Ministry of Public Health: Tindouf, Algeria, 2021. [Google Scholar]
- Kabbash, A.; Shoeib, N. Chemical and biological investigation of some secondary metabolites in Atriplex halimus growing in Egypt. Nat. Prod. Commun. 2012, 7, 1465–1468. [Google Scholar] [CrossRef]
- Clauser, M.; Dall’Acqua, S.; Loi, M.C.; Innocenti, G. Phytochemical investigation on Atriplex halimus L. from Sardinia. Nat. Prod. Res. 2013, 27, 1940–1944. [Google Scholar] [CrossRef]
- Vitiello, M.; Vidotto, F.; Camangi, F.; Donadio, G.; Nocera, R.; De Tommasi, N.; Braca, A.; De Leo, M. Antioxidant flavonol glycosides from the aerial parts of Atriplex halimus L. Phytochemistry 2025, 238, 114559. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Foletti, M.E.; Chiozzini, C.; Maresca, I.; Maietti, A.; Abdi Bellau, L.M.; Sacchetti, G.; Tacchini, M.; Guerrini, A. Chemical characterization and safety assessment of Atriplex halimus L. (Amaranthaceae): Implications for health among Sahrawi refugees. In Proceedings of the 119° Congresso Della Società Botanica Italiana—X International Plant Science Conference (IPSC), Teramo, Italy, 11–13 September 2024. [Google Scholar]
- El-Amier, Y.A.; El-Zayat, M.M.; Abdelkadir, Y.G.; Sultan, M.S.; El-Hayyanya, L.Y. Evaluation of proximate and mineral composition of wild Atriplex species growing in coastal Mediterranean, Egypt. Species 2023, 24, e32s1518. [Google Scholar] [CrossRef]
- Meradi, S.; Aouachria, M.; Chekkal, F.E. Nutritional Value and Chemical Composition of Artemisia herba alba Asso, Atriplex halimus and Salsola vermiculata in Algeria Steppe Rangelands. Asian J. Dairy Food Res. 2025. [Google Scholar] [CrossRef]
- Alotibi, M.M.; AL-Huqail, A.A.; Ghoneim, A.M.; Eissa, M.A. Seasonal Variations in Yield and Biochemical Composition of the Mediterranean Saltbush (Atriplex halimus L.) Under Saline Agriculture in Semi-Arid Regions. J. Soil Sci. Plant Nutr. 2023, 23, 3834–3844. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Patel, M.K.; Pandey, S.; Brahmbhatt, H.R.; Mishra, A.; Jha, B. Lipid content and fatty acid profile of selected halophytic plants reveal a promising source of renewable energy. Biomass Bioenergy 2019, 124, 25–32. [Google Scholar] [CrossRef]
- Van Niekerk, W.A.; Sparks, C.F.; Rethma, N.F.G.; Coertze, R.J. Mineral composition of certain Atriplex species and Cassia sturtii. S. Afr. J. Anim. Sci. 2004, 34, 105–107. [Google Scholar]
- Chatterjee, R.; Yeh, H.C.; Edelman, D.; Brancati, F. Potassium and risk of Type 2 diabetes. Expert Rev. Endocrinol. Metab. 2011, 6, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Balk, E.M.; Brendel, M.; Ip, S.; Lau, J.; Lee, J.; Lichtenstein, A.; Patel, K.; Raman, G.; Tatsioni, A.; et al. Vitamin D and calcium: A systematic review of health outcomes. Evid. Rep. Technol. Assess. 2009, 183, 1–420. [Google Scholar]
- Bouaziz, S.; Amri, M.; Taibi, N.; Zeghir-Bouteldja, R.; Benkhaled, A.; Mezioug, D.; Touil-Boukoffa, C. Protoscolicidal activity of Atriplex halimus leaves extract against Echinococcus granulosus protoscoleces. Exp. Parasitol. 2021, 229, 108155. [Google Scholar] [CrossRef]
- Ennoury, A.; Roussi, Z.; Nhhala, N.; Zouaoui, Z.; Kabach, I.; Krid, A.; Kchikich, A.; Nhiri, M. Atriplex halimus water extract: A biochemical composition that enhanced the faba bean plants growth. Physiol. Mol. Biol. Plants 2023, 29, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Roubi, M.; Elbouzidi, A.; Dalli, M.; Azizi, S.; Aherkou, M.; Taibi, M.; El Guerrouj, B.; Addi, M.; Gseyra, N. Phytochemical, Antioxidant, and Anticancer Assessments of Atriplex halimus Extracts: In Silico and in Vitro Studies. Sci. Afr. 2023, 22, e01959. [Google Scholar] [CrossRef]
- He, G.; Hou, X.; Han, M.; Qiu, S.; Li, Y.; Qin, S.; Chen, X. Discrimination and polyphenol compositions of green teas with seasonal variations based on UPLC-QTOF/MS combined with chemometrics. J. Food Compos. Anal. 2022, 105, 104267. [Google Scholar] [CrossRef]
- Abdi Bellau, M.L.; Chiurato, M.A.; Maietti, A.; Fantin, G.; Tedeschi, P.; Marchetti, N.; Tacchini, M.; Sacchetti, G.; Guerrini, A. Nutrients and Main Secondary Metabolites Characterizing Extracts and Essential Oil from Fruits of Ammodaucus leucotrichus Coss. & Dur. (Western Sahara). Molecules 2022, 27, 5013. [Google Scholar] [CrossRef]
- Tacchini, M.; Echeverria Guevara, M.P.; Grandini, A.; Maresca, I.; Radice, M.; Angiolella, L.; Guerrini, A. Ocimum campechianum Mill. From Amazonian Ecuador: Chemical Composition and Biological Activities of Extracts and Their Main Constituents (Eugenol and Rosmarinic Acid). Molecules 2021, 26, 84. [Google Scholar] [CrossRef]
- Menicagli, V.; Ruffini Castiglione, M.; Cioni, E.; Spanò, C.; Balestri, E.; De Leo, M.; Bottega, S.; Sorce, C.; Lardicci, C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. J. Hazard. Mater. 2024, 476, 135188. [Google Scholar] [CrossRef]
- Supikova, K.; Kosinova, A.; Vavrusa, M.; Koplikova, L.; François, A.; Pospisil, J.; Zatloukal, M.; Wever, R.; Hartog, A.; Gruz, J. Sulfated Phenolic Acids in Plants. Planta 2022, 255, 124. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, T.; Ohsawa, K. Metabolism of rosmarinic acid in rats. J. Nat. Prod. 1998, 61, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Fumeaux, R.; Menozzi-Smarrito, C.; Stalmach, A.; Munari, C.; Kraehenbuehl, K.; Steiling, H.; Crozier, A.; Williamson, G.; Barron, D. First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org. Biomol. Chem. 2010, 8, 5199–5211. [Google Scholar] [CrossRef]
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting Mass Spectrometric Fragmentation Differences and Similarities Between Hydroxycinnamoyl-quinic Acids and Hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef]
- Cioni, E.; Migone, C.; Ascrizzi, R.; Muscatello, B.; De Leo, M.; Piras, A.M.; Zambito, Y.; Flamini, G.; Pistelli, L. Comparing Metabolomic and Essential Oil Fingerprints of Citrus australasica F. Muell (Finger Lime) Varieties and Their In Vitro Antioxidant Activity. Antioxidants 2022, 11, 2047. [Google Scholar] [CrossRef]
- Elshorbagy, A.M.; Fayed, M.A.A.; Sallam, A.; Badria, F.A. Metabolic Profiling, GC-MS, LC-ESI-MS/MS Analysis, Phenolics Isolation and Biological Evaluation of the Aerial Parts Extracts of Felicia abyssinica L. Chem. Biodivers. 2024, 21, e202301347. [Google Scholar] [CrossRef] [PubMed]
- Nzowa, L.K.; Teponno, R.B.; Tapondjou, L.A.; Verotta, L.; Liao, Z.; Graham, D.; Zink, M.C.; Barboni, L. Two New Tryptophan Derivatives from The Seed Kernels of Entada rheedei: Effects on Cell Viability and HIV Infectivity. Fitoterapia 2013, 87, 37–42. [Google Scholar] [CrossRef]
- Prescott, T.A.K.; Kite, G.C.; Porter, E.A.; Veitch, N.C. Highly glycosylated flavonols with an O-linked branched pentasaccharide from Iberis saxatilis (Brassicaceae). Phytochemistry 2013, 88, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lyubchyk, S.; Shapovalova, O.; Lygina, O.; Oliveira, M.C.; Appazov, N.; Lyubchyk, A.; Charmier, A.J.; Lyubchik, S.; Pombeiro, A.J.L. Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus edulis Processing. Sci. Rep. 2019, 9, 18171. [Google Scholar] [CrossRef]
- D’Antuono, I.; Garbetta, A.; Linsalata, V.; Minervini, F.; Cardinali, A. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): In Vitro bio-accessibility, intestinal uptake and bioavailability. Food Funct. 2015, 6, 1268–1277. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity assay. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Levy, D.D.; Zeiger, E.; Escobar, P.A.; Hakura, A.; Van Der Leede, B.M.; Kato, M.; Moore, M.M.; Sugiyama, K. Recommended Criteria for the Evaluation of Bacterial Mutagenicity Data (Ames Test). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 848, 403074. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Chapter 14 Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology: Oxidants and Antioxidants Part A; Packer, A., Ed.; Academic Press: New York, NY, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Guerrini, A.; Tacchini, M.; Chiocchio, I.; Grandini, A.; Radice, M.; Maresca, I.; Paganetto, G.; Sacchetti, G. A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae). Antibiotics 2023, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of Citrus peel extract. J. Agric. Food Chem. 2007, 55, 330–335. [Google Scholar] [CrossRef] [PubMed]

| Proximate Analysis | A. halimus Leaves Content |
|---|---|
| Humidity (g/100 g) | 6.14 ± 0.16 |
| Proteins (g/100 g) | 11.20 ± 0.49 |
| Lipids (g/100 g) | 1.80 ± 0.05 |
| Total ash (g/100 g) | 36.20 ± 0.47 |
| Total fiber (g/100 g) | 44.41 ± 0.11 |
| Insoluble fiber (g/100 g) | 41.16 ± 0.14 |
| Soluble fiber (g/100 g) | 3.25 ± 0.03 |
| Fatty Acid | A. halimus Leaves % |
|---|---|
| C12:0 (lauric) | 2.6 ± 0.6 |
| C14:0 (myristic) | 6.1 ± 1.8 |
| C16:0 (palmitic) | 46.9 ± 8.5 |
| C18:0 (stearic) | 1.7 ± 1.5 |
| C18:1n9c (oleic) | 2.1 ± 0.7 |
| C18:2n6c (linoleic) | 23.7 ± 3.5 |
| C18:3n3 (α-linolenic) | 16.8 ± 3.4 |
| Total SFA | 57.3 ± 7.7 |
| Total MUFA | 2.1 ± 0.7 |
| Total PUFA | 40.6 ± 7.0 |
| Minerals | A. halimus Leaves Content |
|---|---|
| Macro-elements | |
| Na (g/100 g) | 9.09 ± 0.06 |
| Mg (g/100 g) | 1.16 ± 0.04 |
| K (g/100 g) | 1.56 ± 0.01 |
| Ca (g/100 g) | 1.16 ± 0.04 |
| Microelements | |
| Fe (mg/100 g) | 142.0 ± 2.41 |
| Zn (mg/100 g) | 2.40 ± 0.16 |
| Cu (mg/100 g) | 0.46 ± 0.06 |
| Mn (mg/100 g) | 11.07 ± 0.23 |
| Samples | TPC (mg GAE/g DW) | DPPH IC50 (µg/mL) | DPPH (µmol TE/g DW) | FRAP (µmol TE/g DW) |
|---|---|---|---|---|
| Hydroalcoholic extract | 30.12 ± 1.01 | 827 ± 24 | 22.71 ± 1.68 | 60.54 ± 0.54 |
| Decoction | 27.36 ± 0.82 | 1798 ± 80 | 7.07 ± 0.37 | 64.84 ± 4.08 |
| Trolox | 4.37 ± 0.31 |
| Salivary Phase (%) | Gastric Phase (%) | Intestinal Phase (%) | |
|---|---|---|---|
| Total bioaccessibility | 64.89 ± 0.54 | 69.13 ± 1.04 | 71.52 ± 0.46 |
| Crude drug decoction (mg GAE/100 g CD) | Final solid residue decoction (mg GAE/100 g CD) | ||
| Total phenolic content | 633 ± 40 | 85 ± 6 | |
| Extracts | Concentration (mg/plate) | TA98 (CFU/Plate) | TA1535 (CFU/Plate) | ||
|---|---|---|---|---|---|
| Without S9 | With S9 | Without S9 | With S9 | ||
| UAE | 0 (DMSO) | 23.00 ± 1.41 | 37.33 ± 0.71 | 18.00 ± 1.41 | 16.33 ± 2.12 |
| 0.5 | 31.67 ± 3.06 | 38.33 ± 5.51 | 10.67 ± 0.58 | 11.67 ± 3.21 | |
| 2.5 | 18.67 ± 2.08 | 30.33 ± 5.13 | 10.67 ± 1.53 | 10.33 ± 3.06 | |
| 5 | 30.33 ± 2.89 | 35.00 ± 3.00 | 16.00 ± 1.73 | 13.00 ± 6.56 | |
| Decoction | 0 (DMSO) | 21.00 ± 0.00 | 29.00 ± 4.24 | 18.00 ± 1.41 | 16.67 ± 2.12 |
| 0.5 | 21.33 ± 1.53 | 25.33 ± 4.16 | 10.67 ± 0.58 | 11.67 ± 3.21 | |
| 2.5 | 29.00 ± 1.00 | 32.00 ± 3.61 | 10.67 ± 1.53 | 10.33 ± 3.06 | |
| 5 | 29.00 ± 1.00 | 34.67 ± 1.53 | 16.00 ± 1.73 | 13.00 ± 6.56 | |
| Experimental range * | 12–32 | 18–38 | 7–19 | 8–18 | |
| Literature range ** | 20–50 | 20–50 | 5–20 | 5–20 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foletti, M.E.; Tacchini, M.; Sacchetti, G.; Maietti, A.; Abdi Bellau, M.L.; De Leo, M.; Guerrini, A. Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications. Plants 2025, 14, 3350. https://doi.org/10.3390/plants14213350
Foletti ME, Tacchini M, Sacchetti G, Maietti A, Abdi Bellau ML, De Leo M, Guerrini A. Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications. Plants. 2025; 14(21):3350. https://doi.org/10.3390/plants14213350
Chicago/Turabian StyleFoletti, Maria Eleonora, Massimo Tacchini, Gianni Sacchetti, Annalisa Maietti, Mohamed Lamin Abdi Bellau, Marinella De Leo, and Alessandra Guerrini. 2025. "Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications" Plants 14, no. 21: 3350. https://doi.org/10.3390/plants14213350
APA StyleFoletti, M. E., Tacchini, M., Sacchetti, G., Maietti, A., Abdi Bellau, M. L., De Leo, M., & Guerrini, A. (2025). Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications. Plants, 14(21), 3350. https://doi.org/10.3390/plants14213350

