LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L.
Abstract
1. Introduction
2. Results
2.1. Photosynthetic Pigments (Chlorophyll a, Chlorophyll b, Total Chlorophyll, and Carotenoids)
2.2. Non-Enzymatic Antioxidants and Lipid Peroxidation
2.2.1. α-Tocopherol and Plastochromanol-8
2.2.2. Lipid Peroxidation
2.3. Enzymatic Antioxidant Activity
2.4. Polyphenolic Profile and Antioxidant Activity
2.4.1. Polyphenolic Profile
2.4.2. Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Plant MaterialIn Vitro Growth and LED Light Treatment
4.2. Photosynthetic Pigment Extraction and Quantification
4.3. Non-Enzymatic Antioxidant and Lipid Peroxidation Analysis
4.3.1. α-Tocopherol and Plastochromanol-8 Extraction
4.3.2. Lipid Peroxidation Assay
4.4. Enzymatic Antioxidant Activity Analysis
4.4.1. Superoxide Dismutase Activity Assay
4.4.2. Catalase Activity Assay
4.5. Polyphenolic Profile and Antioxidant Activity Analysis
4.6. Antioxidant Capacity Testing
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SOD | Superoxide dismutase |
CAT | Catalase |
LED | Light-emitting diode |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
Chl T | Total chlorophylls |
Car | Carotenoids |
α-T | α-Tocopherol |
PC-8 | Plastochromanol-8 |
MDA | Malondialdehyde |
FRAP | Ferric Reducing Antioxidant Power |
DPPH | 2,2′-diphenyl-1-picrylhydrazyl |
References
- Tardío, J.; Pardo de Santayana, M.; Morales, R. Ethnobotanical Review of Wild Edible Plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Ke, X.; Yao, J.; Jiang, Z.; Gu, X.; Xu, P. Recover and Surpass: The Mechanisms of Plants Transition upon Rehydration from Drought. Plant Stress 2025, 15, 100782. [Google Scholar] [CrossRef]
- Emami Bistgani, Z.; Barker, A.V.; Hashemi, M. Physiology of Medicinal and Aromatic Plants under Drought Stress. Crop J. 2024, 12, 330–339. [Google Scholar] [CrossRef]
- Arshadi-Bidgoli, M.; Mahdi Mortazavian, S.M.; Khavali, H.; Ranjbar, M.; Izadi-Darbandi, A. Synthetic Cultivar Development in Cumin: Enhancing Yield and Drought Tolerance. J. Appl. Res. Med. Aromat. Plants 2024, 42, 100563. [Google Scholar] [CrossRef]
- Li, Z.G.; Gong, M. Mechanical Stimulation-Induced Cross-Adaptation in Plants: An Overview. J. Plant Biol. 2011, 54, 358–364. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Ciriello, M.; Rouphael, Y.; Giordano, M. The Role of Organic Extracts and Inorganic Compounds as Alleviators of Drought Stress in Plants. Horticulturae 2025, 11, 91. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. Improvement in Drought Tolerance of Lemon Balm, Melissa officinalis L. under the Pre-Treatment of LED Lighting. Plant Physiol. Biochem. 2019, 139, 548–557. [Google Scholar] [CrossRef]
- Cáceres-Cevallos, G.J.; Quílez, M.; Albacete-Moreno, A.A.; Jordán, M.J. Does High-Intensity Light Pre-Treatment Improve Drought Response in Thymus zygis ssp. gracilis? Plant Stress 2024, 11, 100373. [Google Scholar] [CrossRef]
- Seyedi, F.S.; Nafchi, M.G.; Reezi, S. Effects of Light Spectra on Morphological Characteristics, Primary and Specialized Metabolites of Thymus vulgaris L. Heliyon 2024, 10, e23032. [Google Scholar] [CrossRef]
- Cáceres-Cevallos, G.J.; Jordán, M.J. Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review. Stresses 2024, 4, 627–640. [Google Scholar] [CrossRef]
- Carranza-Ramírez, J.E.; Borda, A.M.; Moreno-Fonseca, L.P. LED Light Modifies Plant Architecture, Physiological Parameters and Cannabinoid Content in Three Varieties of Cannabis sativa L. S. Afr. J. Bot. 2025, 176, 231–240. [Google Scholar] [CrossRef]
- Sena, S.; Kumari, S.; Kumar, V.; Husen, A. Light Emitting Diode (LED) Lights for the Improvement of Plant Performance and Production: A Comprehensive Review. Curr. Res. Biotechnol. 2024, 7, 100184. [Google Scholar] [CrossRef]
- Park, J.; Seo, J.W.; Ham, D.Y.; Choi, H.J.; Kim, M.J.; Na, J.K.; Kim, S.K.; Seong, E.S. Antioxidant Activity and Phenolic Compounds of Rosemary Under Artificial LED Lights. Agronomy 2025, 15, 636. [Google Scholar] [CrossRef]
- Jokic, L.; Pappert, I.; Khanh, T.Q.; Kaldenhoff, R. Effect of Light Intensity and Light Spectrum of LED Light Sources on Photosynthesis and Secondary Metabolite Synthesis in Ocimum Basilicum. Plants 2025, 14, 1334. [Google Scholar] [CrossRef]
- Ganguly, D.R.; Crisp, P.A.; Eichten, S.R.; Pogson, B.J. Maintenance of Pre-Existing DNA Methylation States through Recurring Excess-Light Stress. Plant Cell Environ. 2018, 41, 1657–1672. [Google Scholar] [CrossRef]
- Sytar, O.; Zivcak, M.; Brestic, M.; Toutounchi, P.M.; Allakhverdiev, S.I. Plasticity of the Photosynthetic Energy Conversion and Accumulation of Metabolites in Plants in Response to Light Quality. In Photosynthesis: Molecular Approaches to Solar Energy Conversion; Springer International Publishing: Cham, Switzerland, 2021; pp. 533–563. [Google Scholar]
- Wang, Q.; Lin, C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant Biol. 2020, 71, 103–129. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Gawęda-Walerych, K.; Ejsmont, W.; Owczarek-Januszkiewicz, A.; Olszewska, M.; Grąbkowska, R.; Krzemińska, M. Polyphenol Production and Gene Expression in Sage Shoot Cultures Exposed to Light-Emitting Diodes. J. Photochem. Photobiol. B Biol. 2025, 264, 113106. [Google Scholar] [CrossRef]
- Menicucci, F.; Marino, G.; Sillo, F.; Carli, A.; dos Dantos Nascimento, L.B.; Detti, C.; Centritto, M.; Brunetti, C.; Balestrini, R.M. Blue and Red LEDs Modulate Polyphenol Production in Precoce and Tardiva Cultivars of Cichorium intybus L. Front. Plant Sci. 2025, 16, 1529804. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Priya Doss, C.G.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The Role of Photosynthesis Related Pigments in Light Harvesting, Photoprotection and Enhancement of Photosynthetic Yield in Planta. Photosynth. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef]
- Talebzadeh, F.; Valeo, C. Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. IOP Conf. Ser. Earth Environ. Sci. 2022, 1006, 012007. [Google Scholar] [CrossRef]
- Kushwaha, A.; Das, A.; Dave, R.; Bhattacharya, B.K. A Non-Destructive Estimation of Chlorophyll-a and -b over Different Crops Using Airborne Imaging Spectroscopy Observations. Adv. Sp. Res. 2024, 73, 1290–1303. [Google Scholar] [CrossRef]
- Tanaka, R.; Tanaka, A. Chlorophyll Cycle Regulates the Construction and Destruction of the Light-Harvesting Complexes. Biochim. Biophys. Acta—Bioenerg. 2011, 1807, 968–976. [Google Scholar] [CrossRef]
- Nguyen, T.N.P.; Sung, J. Light Spectral-Ranged Specific Metabolisms of Plant Pigments. Metabolites 2025, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of Light-emitting Diodes on Phenylpropanoid Biosynthetic Gene Expression and Phenylpropanoid Accumulation in Agastache Rugosa. Appl. Biol. Chem. 2020, 63, 25. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Wei, W.; Shen, Q.; Ji, P.; Yang, Y.; et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Ying, Z.; Fu, S.; Yang, Y. Signaling and Scavenging: Unraveling the Complex Network of Antioxidant Enzyme Regulation in Plant Cold Adaptation. Plant Stress 2025, 16, 100833. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Elansary, H.O.; El-Shanhorey, N.A.; Abdel-Hamid, A.M.E.; Ali, H.M.; Elsheikh, M.S. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front. Physiol. 2017, 8, 716. [Google Scholar] [CrossRef]
- Falk, J.; Munné-Bosch, S. Tocochromanol Functions in Plants: Antioxidation and Beyond. J. Exp. Bot. 2010, 61, 1549–1566. [Google Scholar] [CrossRef]
- Mène-Saffrané, L.; Jones, A.D.; DellaPenna, D. Plastochromanol-8 and Tocopherols Are Essential Lipid-Soluble Antioxidants during Seed Desiccation and Quiescence in Arabidopsis. Plant Biol. 2010, 107, 17815–17820. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality. Plants 2023, 12, 2026. [Google Scholar] [CrossRef]
- Daryanavard, H.; Postiglione, A.E.; Mühlemann, J.K.; Muday, G.K. Flavonols Modulate Plant Development, Signaling, and Stress Responses. Curr. Opin. Plant Biol. 2023, 72, 102350. [Google Scholar] [CrossRef] [PubMed]
- Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights Promote Growth and Flavonoid Accumulation of Anoectochilus roxburghii and Are Linked to the Enhanced Expression of Several Related Genes. Plants 2020, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Samuoliene, G.; Brazaityte, A.; Viršile, A.; Jankauskiene, J.; Sakalauskiene, S.; Duchovskis, P. Red Light-Dose or Wavelength-Dependent Photoresponse of Antioxidants in Herb Microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Hnatuszko-Konka, K.; Lebelt, L.; Grzegorczyk-Karolak, I. The Protective Function and Modification of Secondary Metabolite Accumulation in Response to Light Stress in Dracocephalum Forrestii Shoots. Int. J. Mol. Sci. 2021, 22, 7965. [Google Scholar] [CrossRef]
- Fayezizadeh, M.R.; Ansari, N.A.; Sourestani, M.M.; Fujita, M.; Hasanuzzaman, M. Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights. Plants 2024, 13, 1394. [Google Scholar] [CrossRef]
- Rai, N.; Kumari, S.; Singh, S.; Saha, P.; Pandey, A.; Pandey-Rai, S. Modulation of Morpho-Physiological Attributes and in Situ Analysis of Secondary Metabolites Using Raman Spectroscopy in Response to Red and Blue Light Exposure in Artemisia Annua. Environ. Exp. Bot. 2024, 217, 105563. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, A.; Sedlářová, M.; Ksas, B.; Havaux, M.; Pospíšil, P. Interplay between Antioxidants in Response to Photooxidative Stress in Arabidopsis. Free Radic. Biol. Med. 2020, 160, 894–907. [Google Scholar] [CrossRef]
- Szekely-Varga, Z.; González-Orenga, S.; Cantor, M.; Jucan, D.; Boscaiu, M.; Vicente, O. Effects of Drought and Salinity on Two Commercial Varieties of Lavandula Angustifolia Mill. Plants 2020, 9, 637. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In Handbook of Food Analytical Chemistry; Willy: Hoboken, NJ, USA, 2005; Volume 2, pp. 171–178. [Google Scholar] [CrossRef]
- Quílez, M.; Ferreres, F.; López-Miranda, S.; Salazar, E.; Jordán, M.J. Seed Oil from Mediterranean Aromatic and Medicinal Plants of the Lamiaceae Family as a Source of Bioactive Components with Nutritional. Antioxidants 2020, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Gruszka, J.; Kruk, J. RP-LC for Determination of Plastochromanol, Tocotrienols and Tocopherols in Plant Oils. Chromatographia 2007, 66, 909–913. [Google Scholar] [CrossRef]
- Cáceres-Cevallos, G.J.; Albacete-Moreno, A.A.; Ferreres, F.; Gil-Izquierdo, A.; Jordán, M.J. Evaluation of the Physiological Parameters in Lavandula Latifolia Medik. under Water Deficit for Preselection of Elite Drought-Resistant Plants. Ind. Crop. Prod. 2023, 199, 116742. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, X.; Xue, M.; Zhang, X.; Li, Q. Antioxidant Enzyme Responses Induced by Whiteflies in Tobacco Plants in Defense against Aphids: Catalase May Play a Dominant Role. PLoS ONE 2016, 11, e0165454. [Google Scholar] [CrossRef]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Effect of the Phenological Stage on the Chemical Composition, and Antimicrobial and Antioxidant Properties of Rosmarinus Officinalis L Essential Oil and Its Polyphenolic Extract. Ind. Crops Prod. 2013, 48, 144–152. [Google Scholar] [CrossRef]
- Szabó, K.; Radácsi, P.; Rajhárt, P.; Ladányi, M.; Németh, É. Stress-Induced Changes of Growth, Yield and Bioactive Compounds in Lemon Balm Cultivars. Plant Physiol. Biochem. 2017, 119, 170–177. [Google Scholar] [CrossRef]
- Farhat, M.B.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordán, M.J. Antioxidant Potential of Salvia officinalis L. Residues as Affected by the Harvesting Time. Ind. Crops Prod. 2014, 54, 78–85. [Google Scholar] [CrossRef]
Mean Squares | |||||||||
---|---|---|---|---|---|---|---|---|---|
Source of Variation | df | Chl a | Chl b | Chl T | Car | Chl a/b | α-T | PC-8 | MDA |
Chemotype under light treatment (linalool or eucalyptol) | 1 | 32.13 *** | 3.70 * | 81.18 *** | 4.20 *** | 0.001 | 28968 *** | 3558 * | 4.2 *** |
Light treatment type (six different spectra) | 5 | 3.28 | 1.41 * | 11.47 * | 0.45 * | 0.184 *** | 5104 ** | 3452 *** | 0.34 |
Chemotype x light treatment (A×B) | 5 | 3.03 | 2.32 *** | 8.74 | 0.32 | 0.111 * | 1622 | 311.9 | 0.22 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Chemotype | Pigment | C | C+B | C+R | R+B | B | R |
Thymus mastichina (linalool) | Chl a | 8.3 ± 0.4 c | 5.8 ± 0.2 a | 7.5 ± 0.4 b | 8.1 ± 0.3 c | 6.0 ± 0.4 a | 8.1 ± 0.5 bc |
Chl b | 5.4 ± 0.4 c | 2.6 ± 0.2 a | 3.7 ± 0.2 b | 3.6 ± 0.3 b | 2.7 ± 0.3 a | 3.4 ± 0.4 b | |
Car | 1.5 ± 0.1 b | 1.3 ± 0.1 a | 1.6 ± 0.1 b | 1.9 ± 0.1 c | 1.4 ± 0.1 a | 2.0 ± 0.1 c | |
Chl T | 13.4 ± 0.6 c | 8.2 ± 0.4 a | 11.1 ± 0.6 b | 11.5 ± 0.2 b | 8.5 ± 0.8 a | 11.6 ± 0.8 b | |
Chl a/b | 1.7 ± 0.04 a | 2.2 ± 0.1 b | 2.0 ± 0.02 b | 2.3 ± 0.2 c | 2.2 ± 0.1 c | 2.3 ± 0.1 c | |
Thymus mastichina (eucalyptol) | Chl a | 9.9 ± 0.2 c | 9.0 ± 0.3 b | 8.1 ± 0.2 a | 8.2 ± 0.2 a | 9.2 ± 0.1 b | 9.7 ± 0.3 c |
Chl b | 4.1 ± 0.1 bc | 4.6 ± 0.1 e | 4.3 ± 0.2 cd | 3.7 ± 0.1 a | 4.0 ± 0.1 b | 4.4 ± 0.2 de | |
Car | 2.3 ± 0.1 c | 1.9 ± 0.1 b | 1.7 ± 0.1 a | 2.0 ± 0.1 b | 2.3 ± 0.2 c | 2.7 ± 0.1 d | |
Chl T | 14.4 ± 0.3 d | 13.4 ± 0.4 bc | 12.8 ± 0.7 ab | 12.1 ± 0.5 a | 13.2 ± 0.1 b | 14.1 ± 0.5 d | |
Chl a/b | 2.2 ± 0.1 cd | 1.9 ± 0.01 ab | 1.8 ± 0.2 a | 2.0 ± 0.2 bc | 2.3 ± 0.1 cd | 2.2 ± 0.03 d |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Chemotypes | Enzymes | C | C+B | C+R | R+B | B | R |
Thymus mastichina (linalool) | SOD | 161.3 ± 19.3 a | 247.3 ± 17.2 b | 164.8 ± 28.3 a | 169.2 ± 26.7 a | 152.1 ± 20.6 a | 162.2 ± 31.0 a |
CAT | 351.6 ± 26.9 a | 372.4 ± 9.8 ab | 402.5 ± 17.4 b | 530.1 ± 29.2 d | 452.3 ± 26.6 c | 496.6 ± 20.4 d | |
SOD/CAT | 0.5 ± 0.03 b | 0.7 ± 0.04 c | 0.4 ± 0.07 ab | 0.3 ± 0.04 a | 0.3 ± 0.05 a | 0.3 ± 0.07 a | |
Thymus mastichina (eucalyptol) | SOD | 147.7 ± 18.3 a | 134.6 ± 19.2 a | 220.8 ± 22.0 b | 145.3 ± 24.7 a | 303.1 ± 23.4 c | 325.3 ± 16.6 c |
CAT | 452.6 ± 26.8 a | 458.9 ± 27.3 a | 540.2 ± 20.7 b | 659.9 ± 20.0 c | 645.5 ± 20.2 c | 637.3 ± 26.4 c | |
SOD/CAT | 0.3 ± 0.03 b | 0.3 ± 0.06 ab | 0.4 ± 0.04 c | 0.2 ± 0.03 a | 0.5 ± 0.03 cd | 0.5 ± 0.04 d |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Phenolic Compound | Chemotype | C | C+B | C+R | R+B | B | R |
Salvianic acid | Linalool | 0.06 ± 0.005 b | 0.07 ± 0.008 c | 0.06 ± 0.008 bc | 0.06 ± 0.006 b | 0.06 ± 0.006 bc | 0.04 ± 0.004 a |
Eucalyptol | 0.07 ± 0.002 a | 0.08 ± 0.005 a | 0.07 ± 0.005 a | 0.09 ± 0.008 b | 0.14 ± 0.009 c | 0.10 ± 0.004 b | |
Neochlorogenic acid | Linalool | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.09 ± 0.01 c | 0.03 ± 0.01 a | 0.07 ± 0.01 b |
Eucalyptol | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 ab | 0.06 ± 0.01 c | 0.05 ± 0.01 b | 0.05 ± 0.01 b | |
4-O-caffeoyl-quinic acid | Linalool | 0.3 ± 0.04 b | 0.3 ± 0.04 b | 0.3 ± 0.03 b | 0.4 ± 0.03 c | 0.2 ± 0.01 a | 0.3 ± 0.01 b |
Eucalyptol | 0.2 ± 0.04 a | 0.2 ± 0.03 a | 0.2 ± 0.02 a | 0.4 ± 0.04 b | 0.3 ± 0.03 a | 0.2 ± 0.01 a | |
Caffeic acid | Linalool | 0.3 ± 0.04 c | 0.4 ± 0.02 c | 0.3 ± 0.01 b | 0.2 ± 0.01 a | 0.2 ± 0.03 b | 0.2 ± 0.02 b |
Eucalyptol | 0.2 ± 0.02 ab | 0.2 ± 0.02 bc | 0.2 ± 0.01 ab | 0.2 ± 0.01 c | 0.2 ± 0.01 b | 0.2 ± 0.01 a | |
4-O-feruloylquinic acid | Linalool | 0.3 ± 0.02 b | 0.4 ± 0.03 c | 0.3 ± 0.04 ab | 0.3 ± 0.03 bc | 0.3 ± 0.03 ab | 0.3 ± 0.02 a |
Eucalyptol | 0.2 ± 0.03 b | 0.2 ± 0.02 a | 0.2 ± 0.01 a | 0.3 ± 0.02 b | 0.3 ± 0.02 b | 0.2 ± 0.02 b | |
6-OH-luteolin-7-hexoside | Linalool | 0.3 ± 0.04 b | 0.3 ± 0.04 b | 0.4 ± 0.03 b | 0.5 ± 0.03 c | 0.2 ± 0.02 a | 0.3 ± 0.03 a |
Eucalyptol | 1.2 ± 0.09 b | 2.1 ± 0.13 d | 2.0 ± 0.10 d | 1.7 ± 0.15 c | 0.9 ± 0.06 a | 1.1 ± 0.13 ab | |
Luteolin-7-dihexoside | Linalool | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Eucalyptol | 0.1 ± 0.02 ab | 0.2 ± 0.02 d | 0.2 ± 0.01 cd | 0.2 ± 0.02 bc | 0.1 ± 0.01 a | 0.1 ± 0.01 a | |
6-OH-chrysoeriol-7-hexoside | Linalool | 0.04 ± 0.01 a | 0.06 ± 0.01 bc | 0.06 ± 0.01 c | 0.06 ± 0.01 bc | 0.06 ± 0.01 c | 0.05 ± 0.01 ab |
Eucalyptol | 0.1 ± 0.02 a | 0.1 ± 0.01 c | 0.1 ± 0.00 c | 0.1 ± 0.01 c | 0.1 ± 0.01 b | 0.1 ± 0.01 a | |
6-OH-apigenin-7-hexoside | Linalool | 0.7 ± 0.02 a | 0.7 ± 0.09 a | 0.7 ± 0.11 a | 1.2 ± 0.10 b | n.d. | 0.8 ± 0.08 a |
Eucalyptol | 2.0 ± 0.09 ab | 3.2 ± 0.29 d | 3.3 ± 0.20 d | 2.6 ± 0.11 c | 1.7 ± 0.10 a | 2.2 ± 0.14 b | |
Rosmarinic-3-O-glucoside | Linalool | 0.2 ± 0.03 a | 0.3 ± 0.02 b | 0.2 ± 0.04 a | 0.4 ± 0.02 c | n.d. | 0.3 ± 0.02 b |
Eucalyptol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
6-OH-luteolin-7-pentoside | Linalool | 0.3 ± 0.02 a | 0.4 ± 0.09 b | 0.4 ± 0.03 b | 1.0 ± 0.09 d | 0.5 ± 0.04 b | 0.6 ± 0.05 c |
Eucalyptol | 0.4 ± 0.00 b | 0.7 ± 0.04 d | 0.7 ± 0.03 d | 0.8 ± 0.03 e | 0.5 ± 0.03 c | 0.4 ± 0.03 a | |
Apigenin-7-O-neohesperidoside | Linalool | 0.1 ± 0.01 | 0.1 ± 0.03 | 0.1 ± 0.03 | n.d. | n.d. | 0.1 ± 0.01 |
Eucalyptol | 0.1 ± 0.01 a | 0.1 ± 0.01 a | 0.2 ± 0.04 b | 0.1 ± 0.01 a | 0.1 ± 0.02 a | 0.1 ± 0.02 a | |
Apigenin-7-glucoside | Linalool | 0.4 ± 0.03 b | n.d. | 0.7 ± 0.10 d | n.d. | 0.5 ± 0.03 c | 0.3 ± 0.04 a |
Eucalyptol | 0.3 ± 0.03 a | 0.5 ± 0.05 b | 0.8 ± 0.06 c | 0.6 ± 0.08 b | n.d. | 0.3 ± 0.09 a | |
Rosmarinic acid | Linalool | 10.6 ± 1.8 a | 13.9 ± 1.7 b | 12.4 ± 1.9 ab | 33.5 ± 2.3 d | 12.3 ± 2.1 ab | 22.3 ± 2.0 c |
Eucalyptol | 11.7 ± 1.1 a | 12.9 ± 1.9 a | 12.8 ± 1.5 a | 20.9 ± 2.3 c | 12.9 ± 1.6 a | 15.8 ± 1.0 b | |
Lithospermic acid | Linalool | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Eucalyptol | 2.4 ± 0.17 a | 2.8 ± 0.20 b | 2.8 ± 0.12 b | 3.1 ± 0.14 c | 3.6 ± 0.10 d | 2.9 ± 0.10 bc | |
Salvianolic acid E | Linalool | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Eucalyptol | 2.1 ± 0.18 a | 2.4 ± 0.16 ab | 2.7 ± 0.11 c | 3.3 ± 0.08 d | 2.2 ± 0.13 ab | 2.4 ± 0.17 b | |
Salvianolic acid B | Linalool | 0.7 ± 0.02 b | 0.7 ± 0.05 b | 0.7 ± 0.02 b | 1.1 ± 0.04 d | 0.6 ± 0.02 a | 0.8 ± 0.02 c |
Eucalyptol | 0.8 ± 0.06 a | 1.0 ± 0.05 b | 1.1 ± 0.07 b | 1.0 ± 0.09 b | 1.0 ± 0.06 b | 1.0 ± 0.06 b | |
Eriodyctiol | Linalool | 0.2 ± 0.01 d | 0.2 ± 0.03 cd | 0.1 ± 0.01 b | 0.2 ± 0.01 bc | 0.1 ± 0.02 bc | 0.1 ± 0.02 a |
Eucalyptol | 0.2 ± 0.03 b | 0.4 ± 0.03 d | 0.3 ± 0.02 c | 0.2 ± 0.02 b | 0.2 ± 0.03 a | 0.2 ± 0.02 b | |
Naringenin | Linalool | 0.8 ± 0.04 e | 0.7 ± 0.03 d | 0.6 ± 0.04 c | 0.3 ± 0.04 a | 0.5 ± 0.03 b | 0.4 ± 0.02 b |
Eucalyptol | 0.3 ± 0.02 d | 0.3 ± 0.01 bc | 0.2 ± 0.02 a | 0.2 ± 0.04 a | 0.3 ± 0.03 cd | 0.3 ± 0.03 b | |
Pinocembrin | Linalool | 0.3 ± 0.02 b | 0.3 ± 0.02 b | 0.2 ± 0.01 ab | 0.2 ± 0.02 ab | 0.2 ± 0.02 ab | 0.2 ± 0.01 a |
Eucalyptol | 0.2 ± 0.02 b | 0.2 ± 0.01 b | 0.2 ± 0.02 a | 0.2 ± 0.01 ab | 0.2 ± 0.02 c | 0.2 ± 0.02 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cáceres-Cevallos, G.J.; Bayo-Canha, A.; Quílez, M.; Jordán, M.J. LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L. Plants 2025, 14, 2930. https://doi.org/10.3390/plants14182930
Cáceres-Cevallos GJ, Bayo-Canha A, Quílez M, Jordán MJ. LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L. Plants. 2025; 14(18):2930. https://doi.org/10.3390/plants14182930
Chicago/Turabian StyleCáceres-Cevallos, Gustavo J., Almudena Bayo-Canha, María Quílez, and María J. Jordán. 2025. "LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L." Plants 14, no. 18: 2930. https://doi.org/10.3390/plants14182930
APA StyleCáceres-Cevallos, G. J., Bayo-Canha, A., Quílez, M., & Jordán, M. J. (2025). LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L. Plants, 14(18), 2930. https://doi.org/10.3390/plants14182930