GePIF4 Increases the Multi-Flower/Capsule-Bearing Traits and Gastrodin Biosynthesis in Gastrodia elata
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Flowering and Capsule Quality of G. elata
2.2. Transcriptome Sequencing, Functional Annotation, DEGs in GO, and KEGG Enrichment Analysis
2.3. Protein–Protein Interaction Network (PPI) Analysis and Screening for Related Core DEGs
2.4. GePIF4 Actively Responds to Red Light Signals and Has Transcriptional Activation Function
2.5. GePIF4 Regulates the Formation of VPC Formation in G. elata
2.6. Transient Expression of GePIF4 Significantly Promotes the Gastrodin Biosynthesis
2.7. GePIF4 Directly Binding to GeRAX2 and GeC4H1 Gene Promoter
3. Discussion
3.1. The Physiological Data of G. elata from Flowering to Fruiting Lay the Foundation for Transcriptome Analysis to Reveal the Multi-Fruit Transcriptional Regulatory Network
3.2. PIF4 Has Multiple Biological Functions and Has the Potential to Regulate Flowering, Fruiting, and Seed Quantity in G. elata
3.3. GePIF4 Can Promote Gastrodin Accumulation and Multi-Flower/Capsule Formation in G. elata, Providing Target Genes for Breeding
3.4. Functional Analysis of GePIF4 Transgenic Lines for Subsequent Research
4. Materials and Methods
4.1. Plant Materials and Treatment
4.2. RNA Sequencing Assembly and Analysis
4.3. qRT-PCR Analysis
4.4. Subcellular Localization
4.5. Self-Activation Verification of GePIF4
4.6. Generation of Transgenic G. elata
4.7. Transient Expression of pHB-PIF4-YFP Agrobacterium in Immature Tuber
4.8. HPLC Determination of Gastrodin and Its Derivatives in G. elata
4.9. Dual-LUC Assays
4.10. Y1H Assays
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lu, C.; Qu, S.; Zhong, Z.; Luo, H.; Lei, S.S.; Zhong, H.J.; Su, H.; Wang, Y.; Chong, C.M. The effects of bioactive components from the rhizome of Gastrodia elata blume (Tianma) on the characteristics of Parkinson’s disease. Front. Pharmacol. 2022, 13, 963327. [Google Scholar] [CrossRef]
- Gong, M.; Lai, F.; Chen, J.; Li, X.; Chen, Y.; He, Y. Traditional uses, phytochemistry, pharmacology, applications, and quality control of Gastrodia elata Blume: A comprehensive review. J. Ethnopharmacol. 2024, 319, 117128. [Google Scholar] [CrossRef]
- Yu, E.; Liu, Q.; Gao, Y.; Li, Y.; Zang, P.; Zhao, Y.; He, Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification, and evaluation of Mycena. Front. Microbiol. 2023, 14, 1220670. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Wu, K.M.; Chiang, T.Y.; Huang, C.Y.; Chou, C.H.; Li, S.J.; Chiang, Y.C. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genom. 2016, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, J.; Zhang, W.; Huang, Y.; Zhao, Y.; Juneidi, S.; Dekebo, A.; Wang, M.; Shi, L.; Hu, X. The gastrodin biosynthetic pathway in Pholidota chinensis Lindl. revealed by transcriptome and metabolome profiling. Front. Plant Sci. 2022, 13, 1024239. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Li, Z.; Zang, P.; Zhao, Y.; Liu, Q. Discovery of seed germinating fungi (Mycetinis scorodonius) from Gastrodia elata Bl. f. glauca S. chow in Changbai Mountain and examination of their germination ability. Sci. Rep. 2024, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Lucyshyn, D.; Jaeger, K.E.; Alos, E.; Alvey, E.; Harberd, N.P.; Wigge, P.A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 2012, 484, 242–245. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Liu, Y.; Liu, H. Flowering responses to light and temperature. Sci. China Life Sci. 2016, 59, 403–408. [Google Scholar] [CrossRef]
- Jenkitkonchai, J.; Marriott, P.; Yang, W.; Sriden, N.; Jung, J.; Wigge, P.A.; Charoensawan, V. Exploring PIF4’s contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. Plant Direct 2021, 5, e339. [Google Scholar] [CrossRef]
- Nohales, M.A.; Liu, W.; Duffy, T.; Nozue, K.; Sawa, M.; Pruneda-Paz, J.L.; Maloof, J.N.; Jacobsen, S.E.; Kay, S.A. Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Dev. Cell 2019, 49, 840–851. [Google Scholar] [CrossRef]
- Jung, J.; Barbosa, A.D.; Hutin, S.; Kumita, J.R.; Gao, M.; Derwort, D.; Silva, C.S.; Lai, X.; Pierre, E.; Geng, F.; et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 2020, 585, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Collani, S.; Neumann, M.; Yant, L.; Schmid, M. FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. Plant Physiol. 2019, 180, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, I. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 2010, 61, 2247–2254. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, Y.; Dong, X.; Wei, J.; Xu, C.; Mi, W.; Xu, M.; Fang, X.; Cao, X.; Zheng, G.; et al. Germinating seed can sense low temperature for the floral transition and vernalization of winter rapeseed (Brassica rapa). Plant Sci. 2021, 307, 110900. [Google Scholar] [CrossRef]
- Andres, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Gao, X.; He, P.; Xiao, G. Origin, evolution, and molecular function of DELLA proteins in plants. Crop J. 2022, 10, 287–299. [Google Scholar] [CrossRef]
- Koppolu, R.; Chen, S.; Schnurbusch, T. Evolution of inflorescence branch modifications in cereal crops. Curr. Opin. Plant Biol. 2022, 65, 102168. [Google Scholar] [CrossRef] [PubMed]
- Caballo, C.; Berbel, A.; Ortega, R.; Gil, J.; Millan, T.; Rubio, J.; Madueno, F. The SINGLE FLOWER (SFL) gene encodes a MYB transcription factor that regulates the number of flowers produced by the inflorescence of chickpea. New Phytol. 2022, 234, 827–836. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Bai, J.; Sun, S.; Song, J.; Li, R.; Cui, X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. Plant Cell 2023, 35, 2062–2078. [Google Scholar] [CrossRef]
- Sun, S.; Wang, X.; Liu, Z.; Bai, J.; Song, J.; Li, R.; Cui, X. Tomato APETALA2 family member SlTOE1 regulates inflorescence branching by repressing SISTER OF TM3. Plant Physiol. 2023, 192, 293–306. [Google Scholar] [CrossRef]
- Ramya, K.T.; Ratnakumar, P.; Mohanrao, M.D.; Ranganatha, A.R.G. Development and genetic analysis of conspicuous purple coloured corolla lip flower with multicapsules genotype in sesame (Sesamum indicum L.). J. Genet. 2021, 100, 82. [Google Scholar] [CrossRef]
- Wei, X.; Liu, K.; Zhang, Y.; Feng, Q.; Wang, L.; Zhao, Y.; Li, D.; Zhao, Q.; Zhu, X.; Zhu, X.; et al. Genetic discovery for oil production and quality in sesame. Nat. Commun. 2015, 6, 8609. [Google Scholar] [CrossRef]
- Zhou, R.; Dossa, K.; Li, D.; Yu, J.; You, J.; Wei, X.; Zhang, X. Genome-Wide Association Studies of 39 Seed Yield-Related Traits in Sesame (Sesamum indicum L.). Int. J. Mol. Sci. 2018, 19, 2794. [Google Scholar] [CrossRef] [PubMed]
- Tsuchisaka, A.; Theologis, A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc. Natl. Acad. Sci. USA 2004, 101, 2275–2280. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Q.; Wu, G.; Zhang, L.; Xu, X.; Hu, X.; Gong, Z.; Chen, Y.; Li, Z.; Li, H.; et al. SlMYB72 affects pollen development by regulating autophagy in tomato. Hortic. Res. 2023, 10, uhac286. [Google Scholar] [CrossRef]
- Hu, D.; Li, M.; Zhao, F.; Huang, X. The vacuolar molybdate transporter OsMOT1; 2 controls molybdenum remobilization in Rice. Front. Plant Sci. 2022, 13, 863816. [Google Scholar] [CrossRef]
- Aizaz, M.; Ahmad, W.; Asaf, S.; Khan, I.; Saad Jan, S.; Salim Alamri, S.; Bilal, S.; Jan, R.; Kim, K.; Al-Harrasi, A. Characterization of the seed biopriming, plant growth-promoting and salinity-ameliorating potential of halophilic fungi isolated from hypersaline habitats. Int. J. Mol. Sci. 2023, 24, 4904. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jin, X.; Liu, J.; Zhao, X.; Zhou, J.; Wang, X.; Wang, D.; Lai, C.; Xu, W.; Huang, J.; et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 2018, 9, 1615. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Li, H. Discrimination between wild-grown and cultivated Gastrodia elata by near-infrared spectroscopy and chemometrics. Vib. Spectrosc. 2021, 113, 103203. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, L.; Chen, Y.; Xiao, N.; Zhang, D.; Zhang, M.; Wang, W.; Zhang, C.; Zhang, A.; Li, H.; et al. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell 2022, 34, 4293–4312. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, W.; Dai, Y.; Xiao, N.; Zhang, C.; Li, H.; Lu, Y.; Wu, M.; Tao, X.; Deng, D.; et al. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol. Biol. 2015, 87, 413–428. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Zhang, M.; Jiang, W.; Liang, E.; Zhang, D.; Zhang, C.; Xiao, N.; Chen, J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol. Biol. 2018, 97, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Liu, H.; Zhao, X.; Liu, S.; Zhang, J.; Guo, S.; Wang, B.; Zhao, L.; Jin, Y.; Guo, Y.; et al. Functional characterization of maize phytochrome-interacting factor 3 (ZmPIF3) in enhancing salt tolerance in Arabidopsis. Sci. Rep. 2024, 14, 19955. [Google Scholar] [CrossRef]
- Franklin, K.A.; Lee, S.H.; Patel, D.; Kumar, S.V.; Spartz, A.K.; Gu, C.; Ye, S.; Yu, P.; Breen, G.; Cohen, J.D.; et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA 2011, 108, 20231–20235. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Sai, X.; Chao-Zhi, W.; Yan-Long, L.; Xian-Long, Z.; Ling, A.M. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton. Acta Agron. Sin. 2020, 46, 1368–1379. Available online: https://zwxb.chinacrops.org/EN/10.3724/SP.J.1006.2020.94188 (accessed on 6 May 2022).
- Liu, Q.; Wu, Z.; Qi, X.; Fang, H.; Yu, X.; Li, L.; Chen, Z.; Wu, J.; Gao, Y.; Kai, G.; et al. TmCOP1-TmHY5 module-mediated blue light signal promotes chicoric acid biosynthesis in Taraxacum mongolicum. Plant Biotechnol. J. 2025, 23, 839–856. [Google Scholar] [CrossRef]
- Deluc, L.; Barrieu, F.; Marchive, C.; Lauvergeat, V.; Decendit, A.; Richard, T.; Carde, J.; Mérillon, J.; Hamdi, S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 2006, 140, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Donaldson, L.; Kim, H.; Phillips, L.; Flint, H.; Steward, D.; Torr, K.; Koch, G.; Schmitt, U.; Ralph, J. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol. 2009, 149, 370–383. [Google Scholar] [CrossRef]
- Diao, R.; Zhao, M.; Liu, Y.; Zhang, Z.; Zhong, B. The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module. J. Integr. Plant Biol. 2023, 65, 2631–2644. [Google Scholar] [CrossRef]
- Luo, X.; Dai, Y.; Xian, B.; Xu, J.; Zhang, R.; Rehmani, M.S.; Zheng, C.; Zhao, X.; Mao, K.; Ren, X.; et al. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling. J. Integr. Plant Biol. 2024, 66, 909–927. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wu, Z.; Gao, Y.; Zang, P.; Yang, X.; Zhao, Y.; Liu, Q. GePIF4 Increases the Multi-Flower/Capsule-Bearing Traits and Gastrodin Biosynthesis in Gastrodia elata. Plants 2025, 14, 1684. https://doi.org/10.3390/plants14111684
Xu Y, Wu Z, Gao Y, Zang P, Yang X, Zhao Y, Liu Q. GePIF4 Increases the Multi-Flower/Capsule-Bearing Traits and Gastrodin Biosynthesis in Gastrodia elata. Plants. 2025; 14(11):1684. https://doi.org/10.3390/plants14111684
Chicago/Turabian StyleXu, Yue, Zhiqing Wu, Yugang Gao, Pu Zang, Xinyu Yang, Yan Zhao, and Qun Liu. 2025. "GePIF4 Increases the Multi-Flower/Capsule-Bearing Traits and Gastrodin Biosynthesis in Gastrodia elata" Plants 14, no. 11: 1684. https://doi.org/10.3390/plants14111684
APA StyleXu, Y., Wu, Z., Gao, Y., Zang, P., Yang, X., Zhao, Y., & Liu, Q. (2025). GePIF4 Increases the Multi-Flower/Capsule-Bearing Traits and Gastrodin Biosynthesis in Gastrodia elata. Plants, 14(11), 1684. https://doi.org/10.3390/plants14111684