Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing
Abstract
:1. Introduction
2. Results
2.1. Effects of Seed Priming on the Germination Percentage of Non-Coated Seeds
2.2. Effects of Seed Priming on the Germination Percentage of Coated Seeds
2.3. Effect of Seed Priming on MGT, MGR, T50, and MDG
2.4. Effect of Seed Priming on Plant Height and Root Length
3. Discussion
Nutrient Composition in Leaf
4. Materials and Methods
4.1. Seed Preparation and Seed Iron Coating
4.2. Temperature Treatments
4.3. Seed Priming Treatment
4.4. Seed Germination Parameters
4.5. Seedling Height and Root Length
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amin, M.W.; Aryan, S.; Habibi, N.; Kakar, K.; Zahid, T. Elucidation of Photosynthesis and Yield Performance of Rice (Oryza sativa L.) under Drought Stress Conditions. Plant Physiol. Rep. 2022, 27, 143–151. [Google Scholar] [CrossRef]
- Aryan, S.; Gulab, G.; Habibi, N.; Kakar, K.; Sadat, M.I.; Zahid, T.; Rashid, R.A. Phenological and Physiological Responses of Hybrid Rice under Different High-Temperature at Seedling Stage. Bull. Natl. Res. Cent. 2022, 46, 45. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield Physiology of Rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- da Cruz, R.P.; Sperotto, R.A.; Cargnelutti, D.; Adamski, J.M.; de FreitasTerra, T.; Fett, J.P. Avoiding Damage and Achieving Cold Tolerance in Rice Plants. Food Energy Secur. 2013, 2, 96–119. [Google Scholar] [CrossRef]
- El-Refaee, Y.Z.; Gharib, H.S.; Badawy, S.A.; Elrefaey, E.M.; El-Okkiah, S.A.F.; Okla, M.K.; Maridueña-Zavala, M.G.; AbdElgawad, H.; El-Tahan, A.M. Mitigating Cold Stress in Rice: A Study of Genotype Performance and Sowing Time. BMC Plant Biol. 2024, 24, 713. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Huang, L.; Zhao, J.; Li, S.; Lu, J.; Li, X.; Yang, T. Identification of the Effects of Low Temperature on Grain-Setting Rate of Different Types of Late-Season Rice (Oryza sativa L.) during Heading. F. Crop. Res. 2024, 318, 109584. [Google Scholar] [CrossRef]
- Ghadirnezhad, R.; Fallah, A. Temperature Effect on Yield and Yield Components of Different Rice Cultivars in Flowering Stage. Int. J. Agron. 2014, 2014, 846707. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, P.; Kumar, P.; Singh, B.N.; Pandey, D.K.; Kumar, V.; Bose, B. Mitigation of Heat Stress Responses in Crops Using Nitrate Primed Seeds. South Afr. J. Bot. 2021, 140, 25–36. [Google Scholar] [CrossRef]
- Amjadi, Z.; Hamzehzarghani, H.; Rodriguez, V.M.; Huang, Y.-J.; Farahbakhsh, F. Studying Temperature’s Impact on Brassica Napus Resistance to Identify Key Regulatory Mechanisms Using Comparative Metabolomics. Sci. Rep. 2024, 14, 19865. [Google Scholar] [CrossRef]
- MacGregor, D.R.; Kendall, S.L.; Florance, H.; Fedi, F.; Moore, K.; Paszkiewicz, K.; Smirnoff, N.; Penfield, S. Seed Production Temperature Regulation of Primary Dormancy Occurs through Control of Seed Coat Phenylpropanoid Metabolism. New Phytol. 2015, 205, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Meng, J.; Sun, Z.; Su, J.; Luo, X.; Song, J.; Li, P.; Sun, Y.; Yu, C.; Peng, X. Zinc Application after Low Temperature Stress Promoted Rice Tillers Recovery: Aspects of Nutrient Absorption and Plant Hormone Regulation. Plant Sci. 2022, 314, 111104. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Jia, Y.; Wang, W.; Wang, J.; Zou, D.; Wang, J.; Gong, W.; Han, Y.; Dang, Y.; Wang, J.; et al. Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice. Agronomy 2025, 15, 417. [Google Scholar] [CrossRef]
- Sarma, B.; Kashtoh, H.; Lama Tamang, T.; Bhattacharyya, P.N.; Mohanta, Y.K.; Baek, K.-H. Abiotic Stress in Rice: Visiting the Physiological Response and Its Tolerance Mechanisms. Plants 2023, 12, 3948. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, F.; Montebelli, C.; Novembre, A.D.L.C.; Chamma, H.P.; Pinheiro, J.B. Genetic Variation of Germination Cold Tolerance in Japanese Rice Germplasm. Breed. Sci. 2012, 62, 209–215. [Google Scholar] [CrossRef]
- Fujino, K.; Sekiguchi, H.; Sato, T.; Kiuchi, H.; Nonoue, Y.; Takeuchi, Y.; Ando, T.; Lin, S.Y.; Yano, M. Mapping of Quantitative Trait Loci Controlling Low-Temperature Germinability in Rice (Oryza sativa L.). Theor. Appl. Genet. 2004, 108, 794–799. [Google Scholar] [CrossRef]
- Gianinetti, A.; Cohn, M.A. Seed Dormancy in Red Rice. XIII: Interaction of Dry-Afterripening and Hydration Temperature. Seed Sci. Res. 2008, 18, 151–159. [Google Scholar] [CrossRef]
- Ichikawa, M. Shifting Swamp Rice Cultivation with Broadcast Seeding in Insular Southeast Asia: A Survey of Its Distribution and the Natural and Social Factors Influencing Its Use. Southeast Asian Stud. 2003, 41, 239–261. [Google Scholar]
- Daum, T.; Baudron, F.; Birner, R.; Qaim, M.; Grass, I. Addressing Agricultural Labour Issues Is Key to Biodiversity-Smart Farming. Biol. Conserv. 2023, 284, 110165. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Y.; Wang, G.; Liu, B.; Wang, R. The Aging of Farmers and Its Challenges for Labor-Intensive Agriculture in China: A Perspective on Farmland Transfer Plans for Farmers’ Retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar] [CrossRef]
- Lynham, P. From Data to Information. In Digital Agritechnology: Robotics and Systems for Agriculture and Livestock Production; Elsevier: Amsterdam, The Netherlands, 2022; pp. 11–47. ISBN 9780128176344. [Google Scholar]
- Ramli, R.; Kaimudddin, K.; Riadi, M.; Rasyid, B. The Effect of Iron Coating on Stabilizing Rice Direct Seeding onto Puddled Soil on Growth and Production. J. Agric. Appl. Biol. 2022, 3, 108–117. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Shabbir, R.; Ikram, K.; Saqlain Zaheer, M.; Faheem, M.; Haider Ali, H.; Iqbal, J. Seed Coating Technology: An Innovative and Sustainable Approach for Improving Seed Quality and Crop Performance. J. Saudi Soc. Agric. Sci. 2022, 21, 536–545. [Google Scholar] [CrossRef]
- Cordero-Lara, K.I. Temperate Japonica Rice (Oryza sativa L.) Breeding: History, Present and Future Challenges. Chil. J. Agric. Res. 2020, 80, 303–314. [Google Scholar] [CrossRef]
- Dar, M.H.; Bano, D.A.; Waza, S.A.; Zaidi, N.W.; Majid, A.; Shikari, A.B.; Ahangar, M.A.; Hossain, M.; Kumar, A.; Singh, U.S. Abiotic Stress Tolerance-Progress and Pathways of Sustainable Rice Production. Sustainability 2021, 13, 2078. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Kobayashi, A.; Hori, K.; Yamamoto, T.; Yano, M. Koshihikari: A Premium Short-Grain Rice Cultivar—Its Expansion and Breeding in Japan. Rice 2018, 11, 15. [Google Scholar] [CrossRef]
- Nie, L.; Liu, H.; Zhang, L.; Wang, W. Enhancement in Rice Seed Germination via Improved Respiratory Metabolism under Chilling Stress. Food Energy Secur. 2020, 9, e234. [Google Scholar] [CrossRef]
- Doddagoudar, S.R.; Nagaraja, M.; Lakshmikanth, M.; Srininvas, A.G.; Shakuntala, N.M.; Mahanthshivayogayya, K. Improving the Resilience of Rice Seedlings to Low Temperature Stress through Seed Priming. South Afr. J. Bot. 2023, 162, 183–192. [Google Scholar] [CrossRef]
- Fukuda, M.; Imaizumi, T.; Koarai, A. Seed Germination Responses to Temperature and Water Availability in Weedy Rice. Pest Manag. Sci. 2023, 79, 870–880. [Google Scholar] [CrossRef]
- Itayagoshi, S.; Mizusawa, S.; Kawakami, O.; Shibukawa, H.; Takamatsu, T.; Sasaki, M.; Kaneko, K.; Mitsui, T. Suppressive Effects of Low Seed-Soaking Temperatures on Germination of Long-Term-Stored Rice Seeds. Plant Prod. Sci. 2015, 18, 455–463. [Google Scholar] [CrossRef]
- Habibi, N.; Terada, N.; Sanada, A.; Koshio, K. Alleviating Salt Stress in Tomatoes through Seed Priming with Polyethylene Glycol and Sodium Chloride Combination. Stresses 2024, 4, 210–224. [Google Scholar] [CrossRef]
- Habibi, N.; Aryan, S.; Amin, M.W.; Sanada, A.; Terada, N.; Koshio, K. Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants. Plants 2023, 12, 2187. [Google Scholar] [CrossRef]
- Habibi, N.; Fakoor, M.Y.; Faqiri, S.M.; Sharaf, Z.; Hotak, M.S.; Danishyar, N.; Haris, M.M.; Osmani, K.S.; Shinohara, T.; Terada, N.; et al. Enhancing Salinity Tolerance in Tomatoes at the Reproductive Stage by Increasing Pollen Viability. Bionatura 2023, 8, 25. [Google Scholar] [CrossRef]
- Habibi, N.; Tayobong, R.R.P.; Naoki, P.; Atsushi, T.; Kaihei, S. Novel Insights into Seed Priming for Tomato Plants: Restoring Root Vitality in the Face of Salt Stress. Hortic. Environ. Biotechnol. 2024, 66, 361–380. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Pre-Sowing Seed Treatment—A Shotgun Approach to Improve Germination, Plant Growth, and Crop Yield Under Saline and Non-Saline Conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Basra, S.M.A.; Farooq, M.; Wahid, A.; Khan, M.B. Rice Seed Invigoration by Hormonal and Vitamin Priming. Seed Sci. Technol. 2006, 34, 753–758. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.; Wahid, A.; Ahmad, N. Changes in Nutrient-Homeostasis and Reserves Metabolism During Rice Seed Priming: Consequences for Seedling Emergence and Growth. Agric. Sci. China 2010, 9, 191–198. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Review Article Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Kaya, M.D.; Okçu, G.; Atak, M.; Çikili, Y.; Kolsarici, Ö. Seed Treatments to Overcome Salt and Drought Stress during Germination in Sunflower (Helianthus annuus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Dey, S.; Paul, S.; Nag, A.; Banerjee, R.; Gopal, G.; Mukherjee, A.; Kundu, R. Iron-Pulsing, a Novel Seed Invigoration Technique to Enhance Crop Yield in Rice: A Journey from Lab to Field Aiming towards Sustainable Agriculture. Sci. Total Environ. 2021, 769, 144671. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, M. Direct Seeding of Rice Crop in Flooded Paddy Fields Using Iron-Coated Seeds. Jpn. J. Crop Sci. 2012, 81, 148–159. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron Uptake, Translocation, and Regulation in Higher Plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Products, N. Iron Powder “ Kona-Bijin TM ” for Iron Coating Direct Seeded Rice; JFE Steel Corporation: Tokyo, Japan, 2016; Volume 21. [Google Scholar]
- Yamauchi, M. A Review of Iron-Coating Technology to Stabilize Rice Direct Seeding onto Puddled Soil. Agron. J. 2017, 109, 739–750. [Google Scholar] [CrossRef]
- Bing, H.; Xiaohang, W.; Shuai, W.; Vilchez-perozo, A.J. Review the Development Status of Rice Iron-Coated Wet Direct Seeding Technology in Japan el Estado de Desarrollo de la Tecnología de Siembra Directa en Agua Con Semillas de Arroz Recubiertas de Hierro en Japón O Status de Desenvolvimento da Tecnologia de; JCR: Tokyo, Japan, 2025. [Google Scholar]
- Hatfield-Dodds, S.; Nelson, R.; Cook, D.C. Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimes, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; The International Rice Research Institute (IRRI): Los Baños, Philippines, 2007; ISBN 9712201732. [Google Scholar]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef]
- Monajjem, S.; Soltani, E.; Zainali, E.; Esfahani, M.; Ghaderi-Far, F.; Chaleshtori, M.H.; Rezaei, A. Seed Priming Improves Enzymatic and Biochemical Performances of Rice During Seed Germination under Low and High Temperatures. Rice Sci. 2023, 30, 335–347. [Google Scholar] [CrossRef]
- Jatana, B.S.; Grover, S.; Ram, H.; Baath, G.S. Seed Priming: Molecular and Physiological Mechanisms Underlying Biotic and Abiotic Stress Tolerance. Agronomy 2024, 14, 2901. [Google Scholar] [CrossRef]
- Devika, O.S.; Singh, S.; Sarkar, D.; Barnwal, P.; Suman, J.; Rakshit, A. Seed Priming: A Potential Supplement in Integrated Resource Management Under Fragile Intensive Ecosystems. Front. Sustain. Food Syst. 2021, 5, 654001. [Google Scholar] [CrossRef]
- Thakur, M.; Tiwari, S.; Kataria, S.; Anand, A. Recent Advances in Seed Priming Strategies for Enhancing Planting Value of Vegetable Seeds. Sci. Hortic. 2022, 305, 111355. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Mauro, R.P. Seed Coating in Direct Seeded Rice: An Innovative and Sustainable Approach to Enhance Grain Yield and Weed Management under Submerged Conditions. Sustainability 2021, 13, 2190. [Google Scholar] [CrossRef]
- Mei, J.; Wang, W.; Peng, S.; Nie, L. Seed Pelleting with Calcium Peroxide Improves Crop Establishment of Direct-Seeded Rice under Waterlogging Conditions. Sci. Rep. 2017, 7, 4878. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, T.; Leubner-Metzger, G. The Biomechanics of Seed Germination. J. Exp. Bot. 2016, 68, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Biswas, J.K.; Ando, H.; Kakuda, K.; Purwanto, B.H. Effect of Calcium Peroxide Coating, Soil Source, and Genotype on Rice (Oryza sativa L.) Seedling Establishment under Hypoxic Conditions. Soil Sci. Plant Nutr. 2001, 47, 477–488. [Google Scholar] [CrossRef]
- Baker, A.M.; Hatton, W. Calcium Peroxide as a Seed Coating Material for Padi Rice. Plant Soil 1987, 99, 379–386. [Google Scholar] [CrossRef]
- Kende, Z.; Piroska, P.; Szemők, G.E.; Khaeim, H.; Sghaier, A.H.; Gyuricza, C.; Tarnawa, Á. Optimizing Water, Temperature, and Density Conditions for In Vitro Pea (Pisum sativum L.) Germination. Plants 2024, 13, 2776. [Google Scholar] [CrossRef]
- Noblet, A.; Leymarie, J.; Bailly, C. Chilling Temperature Remodels Phospholipidome of Zea Mays Seeds during Imbibition. Sci. Rep. 2017, 7, 8886. [Google Scholar] [CrossRef]
- Cantliffe, D.J.; Fischer, J.M.; Nell, T.A. Mechanism of Seed Priming in Circumventing Thermodormancy in Lettuce. Plant Physiol. 1984, 75, 290–294. [Google Scholar] [CrossRef]
- Hardegree, S. Germination and Emergence of Primed Grass Seeds Under Field and Simulated-Field Temperature Regimes. Ann. Bot. 2000, 85, 379–390. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R. Priming Memory Invokes Seed Stress-Tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Meena, R.P.; Sendhil, R.; Tripathi, S.; Chander, S.; Chhokar, R.; Sharma, R. Hydro-Priming of Seed Improves the Water Use Efficiency, Grain Yield and Net Economic Return of Wheat under Different Moisture Regimes. SAARC J. Agric. 2014, 11, 149–159. [Google Scholar] [CrossRef]
- Habibi, N.; Aryan, S.; Sediqui, N.; Terada, N.; Sanada, A.; Kamata, A.; Koshio, K. Enhancing Salt Tolerance in Tomato Plants Through PEG6000 Seed Priming: Inducing Antioxidant Activity and Mitigating Oxidative Stress. Plants 2025, 14, 1296. [Google Scholar] [CrossRef] [PubMed]
- Aravind, J.; Vimala Devi, S.; Radhamani, J.; Jacob, S.R.; Srinivasan, K. The Germinationmetrics Package: A Brief Introduction; ICAR-National Bureau of Plant Genetic Resources: New Delhi, India, 2020; Volume 46, pp. 1–62. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, N.; Parneel; Terada, N.; Pachakkil, B.; Sanada, A.; Kamata, A.; Koshio, K. Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing. Plants 2025, 14, 1683. https://doi.org/10.3390/plants14111683
Habibi N, Parneel, Terada N, Pachakkil B, Sanada A, Kamata A, Koshio K. Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing. Plants. 2025; 14(11):1683. https://doi.org/10.3390/plants14111683
Chicago/Turabian StyleHabibi, Nasratullah, Parneel, Naoki Terada, Babil Pachakkil, Atsushi Sanada, Atsushi Kamata, and Kaihei Koshio. 2025. "Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing" Plants 14, no. 11: 1683. https://doi.org/10.3390/plants14111683
APA StyleHabibi, N., Parneel, Terada, N., Pachakkil, B., Sanada, A., Kamata, A., & Koshio, K. (2025). Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing. Plants, 14(11), 1683. https://doi.org/10.3390/plants14111683