Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chimonobambusa sichuanensis CsCRYs Gene Selected Based on Phyllostachys Edulis CRY Sequences
2.2. Structural Domain Analysis of CsCRYs
2.3. Chimonobambusa sichuanensis CsCRYs Gene Family Proteins
2.4. CsCRYs Gene Expression Pattern in Chimonobambusa sichuanensis Under Different Environmental Conditions
3. Results and Analysis
3.1. Sequence Domain of CsCRYs Protein in Chimonobambusa sichuanensis
3.2. Structural Characterization of Chimonobambusa sichuanensis CsCRYs Gene Family
3.3. Genetic Relationship of Chimonobambusa sichuanensis CsCRYs Gene
3.4. Physicochemical Properties and Secondary Structures of Four CsCRYs Family Proteins from Chimonobambusa sichuanensis
3.5. Expression Pattern of Cryptochrome CsCRYs Gene in Chimonobambusa sichuanensis Under Different Environmental Condition
4. Discussion
4.1. Structural Domain Differences Drive the Functional Differentiation of CsCRYs in Chimonobambusa sichuanensis
4.2. Subcellular Localization of CsCRys in Chimonobambusa sichuanensis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.T.; Xia, N.H.; Lin, S.Y.; Ding, Y.L. Spatial distribution characteristics and influencing factors of Chimonobambusa in China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2025, 49, 107–114. [Google Scholar]
- Liu, C.L.; Xiong, X.; Li, T.S.; Duan, Y.H.; Yang, F.; Liu, G.H. The discoloration mechanism of Ch.sichuanensis clumunder colored film covering based on transcriptome analysis. Plant Physiol. J. 2025, 61, 83–96. [Google Scholar]
- Batschauer, A. New insights into the regulation of Arabidopsis cryptochrome 1. New Phytol. 2022, 234, 1109–1111. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.X.; Xu, F.; Zhao, J.C.; Jiang, L.; Yang, G.Q.; Zhang, S.L.; Xu, P.; Wei, X.X.; Cao, X.L.; Liu, Y.; et al. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell 2021, 33, 1961–1979. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.H.; Yang, H.Q. Cryptochrome signaling in plants. Photochem. Photobiol. 2007, 83, 94–101. [Google Scholar] [CrossRef]
- Emery, P.; So, W.V.; Kaneko, M.; Hall, J.C.; Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998, 95, 669–679. [Google Scholar] [CrossRef]
- Lin, C.; Yang, H.; Guo, H.; Mockler, T.; Chen, J.; Cashmore, A.R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA 1998, 95, 2686–2690. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, R.; Klar, T.; Hennecke, U.; Carell, T.; Batschauer, A.; Essen, L.O. Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. USA 2008, 105, 21023–21027. [Google Scholar] [CrossRef]
- Belbin, F.E.; Noordally, Z.B.; Wetherill, S.J.; Atkins, K.A.; Franklin, K.A.; Dodd, A.N. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor. New Phytol. 2017, 213, 727–738. [Google Scholar] [CrossRef]
- Ma, D.; Li, X.; Guo, Y.; Chu, J.; Fang, S.; Yan, C.; Noel, J.P.; Liu, H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. USA 2016, 113, 224–229. [Google Scholar] [CrossRef]
- Chen, Z.Y. Functional Study of PhemiR156-PheSPLand PheCRY in Moso Bamboo. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2022. [Google Scholar]
- Liu, H.T.; Yu, X.H.; Li, K.W.; Klejnot, J.; Yang, H.Y.; Lisiero, D.; Lin, C.T. Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis. Science 2008, 322, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Rredhi, A.; Petersen, J.; Schubert, M.; Westermann, M.; Wagner, V.; Li, W.; Oldemeyer, S.; Kottke, T.; Mittag, M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. New Phytol. 2021, 232, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Kavakli, I.H.; Ozturk, N.; Gul, S. DNA repair by photolyases. Adv. Protein Chem. Struct. Biol. 2019, 115, 1–19. [Google Scholar] [PubMed]
- Banas, A.K.; Leja, K.; Zglobicki, P.; Jedynak, P.; Kowalska, E.; Strzalka, W.; Grzyb, J.; Mysliwa-Kurdziel, B. De-etiolation is Almost Color Blind: The Study of Photosynthesis Awakening under Blue and Red Light. Plant Cell Physiol. 2024, 65, 1993–2017. [Google Scholar] [CrossRef]
- Zuo, Z.C.; Liu, H.T.; Liu, B.; Liu, X.M.; Lin, C.T. Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis. Curr. Biol. 2011, 21, 841–847. [Google Scholar] [CrossRef]
- Li, Y.P.; Shi, Y.T.; Li, M.Z.; Fu, D.Y.; Wu, S.F.; Li, J.G.; Gong, Z.Z.; Liu, H.T.; Yang, S.H. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell 2021, 33, 3555–3573. [Google Scholar] [CrossRef]
- Matsumoto, N.; Hirano, T.; Iwasaki, T.; Yamamoto, N. Functional analysis and intracellular localization of rice cryptochromes. Plant Physiol. 2003, 133, 1494–1503. [Google Scholar] [CrossRef]
- Liu, B.B.; Yang, Z.H.; Gomez, A.; Liu, B.; Lin, C.T.; Oka, Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J. Plant Res. 2016, 129, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Hirose, F.; Inagaki, N.; Hanada, A.; Yamaguchi, S.; Kamiya, Y.; Miyao, A.; Hirochika, H.; Takano, M. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation. Plant Cell Physiol. 2012, 53, 1570–1582. [Google Scholar] [CrossRef]
- He, G.H.; Liu, J.; Dong, H.X.; Sun, J.Q. The Blue-Light Receptor CRY1 Interacts with BZR1 and BIN2 to Modulate the Phosphorylation and Nuclear Function of BZR1 in Repressing BR Signaling in Arabidopsis. Mol. Plant 2019, 12, 689–703. [Google Scholar] [CrossRef]
- Jiang, B.C.; Zhong, Z.H.; Gu, L.F.; Zhang, X.Y.; Wei, J.B.; Ye, C.; Lin, G.F.; Qu, G.P.; Xiang, X.; Wen, C.J.; et al. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. Nat. Plants 2023, 9, 2042–2058. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, A.; Mathes, T.; Lu, Y.H.; Hegemann, P.; Kottke, T. Blue Light Induces Global and Localized Conformational Changes in the Kinase Domain of Full-Length Phototropin. Biochemistry 2010, 49, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.Y.; Xiong, X.; Yang, F.; Zhao, Y.F.; Liu, C.L.; Liu, G.H. Full-length transcriptome sequencing analysis of Chimonobambusa sichuanensis after discoloration of bamboo culm. Jiangsu J. Agric. Sci. 2024, 40, 538–551. [Google Scholar]
Indicators | CsCRY1a | CsCRY1b | CsCRY2 | CsCRY3 |
---|---|---|---|---|
Nucleotide length | 2139 | 2094 | 1476 | 1833 |
Protein length | 712 | 697 | 491 | 610 |
Isoelectric point | 5.44 | 5.46 | 5.08 | 9.30 |
Aliphatic index | 78.64 | 80.04 | 85.58 | 79.46 |
Instability index | 54.36 | 51.53 | 51.19 | 41.41 |
Hydrophilic coefficient | −0.433 | −0.413 | −0.317 | −0.356 |
Relative molecular mass | 80.10 | 79.08 | 54.15 | 68.63 |
α-helix ratio (%) | 36.8 | 39.2 | 34.6 | 37.1 |
Beta-sheet | 4.4 | 4.2 | 8.4 | 6.1 |
Proportion of extended chain (%) | 10.7 | 8.8 | 10.6 | 12.5 |
Subcellular localization | Cytoplasm | Cytoplasm | Nucleus | Chloroplast |
Indicators | CsCRY1a | CsCRY1b | CsCRY2 | CsCRY3 |
---|---|---|---|---|
Clash score | 0.46 | 1.00 | 0.51 | 0.93 |
Ramachandran outliers | 1.00% | 1.87% | 1.60% | 3.62% |
Rotamer outliers | 1.34% | 1.17% | 5.05% | 2.32% |
Cis non-proline | 0.77% | 0.77% | 1.27% | 0.18% |
Sec/SPI | 0 | 0 | 0 | 0 |
C-score | 0.121 | 0.111 | 0.115 | 0.145 |
S-score | 0.149 | 0.163 | 0.171 | 0.388 |
Y-score | 0.124 | 0.121 | 0.114 | 0.153 |
Mean-S | 0.126 | 0.129 | 0.117 | 0.156 |
Mean-D | 0.125 | 0.125 | 0.116 | 0.155 |
The probability that the N-terminus is on the cytoplasmic side | 0.00037 | 0.00020 | 0.00370 | 0.00044 |
Number of transmembrane amino acids | 0.00053 | 0.00076 | 0.01276 | 0.00499 |
Number of amino acids outside the membrane | 712 | 697 | 491 | 610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Liu, C.; Li, T.; Fang, J.; Liu, G. Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis. Plants 2025, 14, 1637. https://doi.org/10.3390/plants14111637
Kong Y, Liu C, Li T, Fang J, Liu G. Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis. Plants. 2025; 14(11):1637. https://doi.org/10.3390/plants14111637
Chicago/Turabian StyleKong, Yining, Changlai Liu, Tianshuai Li, Ji Fang, and Guohua Liu. 2025. "Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis" Plants 14, no. 11: 1637. https://doi.org/10.3390/plants14111637
APA StyleKong, Y., Liu, C., Li, T., Fang, J., & Liu, G. (2025). Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis. Plants, 14(11), 1637. https://doi.org/10.3390/plants14111637