Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Species
2.2. Experimental Set-Up
2.3. Statistical Analyses
3. Results
3.1. Interactive Effects of Species Origin Differences, Nutrition, and Direct Allelopathy
3.2. Growth Traits Response to Nutrition and Allelopathy Changes
3.3. Effects of Invasive Plants on Subsequent CIPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adams, C.R.; Hovick, S.M.; Anderson, N.O.; Kettenring, K.M. We Can Better Manage Ecosystems by Connecting Solutions to Constraints: Learning from Wetland Plant Invasions. Front. Environ. Sci. 2021, 9, 715350. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.D.; An, Y.; Song, T.J.; Tong, S.Z.; Wang, X. Effects of Land Use Changes on the Plant Community Characteristics in the Wetlands of the Semi-Arid Regions. Diversity 2022, 14, 1049. [Google Scholar] [CrossRef]
- Chen, D.; van Kleunen, M. Invasional Meltdown Mediated by Plant-Soil Feedbacks May Depend on Community Diversity. New Phytol. 2022, 235, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Bacher, S.; Blackburn, T.M.; Capinha, C.; Dawson, W.; Dullinger, S.; Genovesi, P.; Hulme, P.E.; Kleunen, M.; Kühn, I.; et al. Projecting the Continental Accumulation of Alien Species through to 2050. Glob. Change Biol. 2021, 27, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Anten, N.P.R.; Chen, B.J.W. Detect Thy Family: Mechanisms, Ecology and Agricultural Aspects of Kin Recognition in Plants. Plant Cell Environ. 2021, 44, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.A.J.; Briskie, J.V.; Burke, T.; Hatchwell, B.J. Genetic Analysis Reveals Diverse Kin-Directed Routes to Helping in the Rifleman Acanthisitta Chloris. Mol. Ecol. 2013, 22, 5027–5039. [Google Scholar] [CrossRef]
- Soltis, P.S.; Soltis, D.E. Plant Genomes: Markers of Evolutionary History and Drivers of Evolutionary Change. Plants People Planet 2021, 3, 74–82. [Google Scholar] [CrossRef]
- Darwin, C. The Evolution Debate 1813–1870, 1st ed.; Routledge: London, UK, 2003. [Google Scholar] [CrossRef]
- Daehler, C.C. Darwin’s Naturalization Hypothesis Revisited. Am. Nat. 2001, 158, 324–330. [Google Scholar] [CrossRef]
- Ricciardi, A.; Mottiar, M. Does Darwin’s Naturalization Hypothesis Explain Fish Invasions? Biol. Invasions 2006, 8, 1403–1407. [Google Scholar] [CrossRef]
- Diez, J.M.; Sullivan, J.J.; Hulme, P.E.; Edwards, G.; Duncan, R.P. Darwin’s Naturalization Conundrum: Dissecting Taxonomic Patterns of Species Invasions. Ecol. Lett. 2008, 11, 674–681. [Google Scholar] [CrossRef]
- Li, S.P.; Cadotte, M.W.; Meiners, S.J.; Hua, Z.S.; Shu, H.Y.; Li, J.T.; Shu, W.S. The Effects of Phylogenetic Relatedness on Invasion Success and Impact: Deconstructing Darwin’s Naturalisation Conundrum. Ecol. Lett. 2015, 18, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Gallien, L.; Boulangeat, I.; De Bello, F.; Münkemüller, T.; Roquet, C.; Lavergne, S. Resolving Darwin’s Naturalization Conundrum: A Quest for Evidence. Divers. Distrib. 2010, 16, 461–475. [Google Scholar] [CrossRef]
- Sheppard, C.S.; Carboni, M.; Essl, F.; Seebens, H.; Thuiller, W.; Pysek, P. It Takes One to Know One: Similarity to Resident Alien Species Increases Establishment Success of New Invaders. Divers. Distrib. 2018, 24, 680–691. [Google Scholar] [CrossRef]
- Wei, M.; Wang, S.; Xiao, H.G.; Wu, B.D.; Jiang, K.; Wang, C.Y. Co-Invasion of Daisy Fleabane and Canada Goldenrod Pose Synergistic Impacts on Soil Bacterial Richness. J. Cent. South Univ. 2020, 27, 1790–1801. [Google Scholar] [CrossRef]
- Rejmánek, M.; Richardson, D.M.; Pyšek, P. Plant Invasions and Invasibility of Plant Communities. In Vegetation Ecology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 387–424. ISBN 978-1-118-45259-2. [Google Scholar]
- Gioria, M.; Osborne, B.A. Resource Competition in Plant Invasions: Emerging Patterns and Research Needs. Front. Plant Sci. 2014, 5, 501. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No Saturation in the Accumulation of Alien Species Worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Z.; Cui, H.; Song, H.; Wang, J.; Gao, H.; Chen, S.; Liu, K.; Yang, Z.; Wang, Y.; et al. Direct and Indirect Effects of Dominant Plants on Ecosystem Multifunctionality. Front. Plant Sci. 2023, 14, 1117903. [Google Scholar] [CrossRef] [PubMed]
- Matzek, V. Trait Values, Not Trait Plasticity, Best Explain Invasive Species’ Performance in a Changing Environment. PLoS ONE 2012, 7, e48821. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wei, Z.; Friman, V.-P.; Xu, Y.; Shen, Q.; Kowalchuk, G.A.; Jousset, A. Resource Availability Modulates Biodiversity-Invasion Relationships by Altering Competitive Interactions. Environ. Microbiol. 2017, 19, 2984–2991. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Hardrath, A.; Jin, H.; van Kleunen, M. Increases in Multiple Resources Promote Competitive Ability of Naturalized Non-Native Plants. Commun. Biol. 2022, 5, 1150. [Google Scholar] [CrossRef]
- Adomako, M.O.; Yu, F.-H. Effects of Resource Availability on the Growth, Cd Accumulation, and Photosynthetic Efficiency of Three Hyperaccumulator Plant Species. J. Environ. Manag. 2023, 345, 118762. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Engelbrecht, B.M.; Lusk, C.H.; McDowell, N.G.; Poorter, H. Resource Limitation, Tolerance, and the Future of Ecological Plant Classification. Front. Plant Sci. 2012, 3, 246. [Google Scholar] [CrossRef] [PubMed]
- Funk, J.L. The Physiology of Invasive Plants in Low-Resource Environments. Conserv. Physiol. 2013, 1, cot026. [Google Scholar] [CrossRef]
- Suding, K.N.; LeJeune, K.D.; Seastedt, T.R. Competitive Impacts and Responses of an Invasive Weed: Dependencies on Nitrogen and Phosphorus Availability. Oecologia 2004, 141, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-P.; Feng, Y.-L.; Chen, Y.-J.; Tian, Y.-H. Soil Microbes Alleviate Allelopathy of Invasive Plants. Sci. Bull. 2015, 60, 1083–1091. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Brunel, C.; van Kleunen, M. Soil-Microorganism-Mediated Invasional Meltdown in Plants. Nat. Ecol. Evol. 2020, 4, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, S.; Kivlin, S.N.; Bialic-Murphy, L. Allelopathy Is Pervasive in Invasive Plants. Biol. Invasions 2020, 23, 367–371. [Google Scholar] [CrossRef]
- Fahey, C.; Koyama, A.; Antunes, P.M.; Dunfield, K.; Flory, S.L. Plant Communities Mediate the Interactive Effects of Invasion and Drought on Soil Microbial Communities. ISME J. 2020, 14, 1396–1409. [Google Scholar] [CrossRef] [PubMed]
- Kama, R.; Javed, Q.; Liu, Y.; Li, Z.Y.; Iqbal, B.; Diatta, S.; Sun, J.F. Effect of Soil Type on Native Pterocypsela Laciniata Performance under Single Invasion and Co-Invasion. Life 2022, 12, 1898. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Brunel, C.; Van Kleunen, M. Evidence for Elton’s Diversity–Invasibility Hypothesis from Belowground. Ecology 2020, 101, e03187. [Google Scholar] [CrossRef]
- Lei, Y.B.; Feng, Y.L.; Zheng, Y.L.; Wang, R.F.; Gong, H.D.; Zhang, Y.P. Innate and Evolutionarily Increased Advantages of Invasive Eupatorium Adenophorum over Native E. Japonicum under Ambient and Doubled Atmospheric CO2 Concentrations. Biol. Invasions 2011, 13, 2703–2714. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Wang, C.; Cheng, J.; Qiang, S. A Comparative Study Reveals the Key Biological Traits Causing Bioinvasion Differences among Four Alien Species of Genus Veronica in China. J. Plant Ecol. 2023, 16, rtac068. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Eller, F.; Luo, Y.; Nong, Y.; Xing, L.; Xu, Z.; Li, H.; Lu, H.; Guo, X. Trait Value and Phenotypic Integration Contribute to the Response of Exotic Rhus Typhina to Heterogeneous Nitrogen Deposition: A Comparison with Native Rhus Chinensis. Sci. Total Environ. 2022, 844, 157199. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-L.; Fu, G.-L. Nitrogen Allocation, Partitioning and Use Efficiency in Three Invasive Plant Species in Comparison with Their Native Congeners. Biol. Invasions 2008, 10, 891–902. [Google Scholar] [CrossRef]
- Chi, Y.; Xu, Z.; Zhou, L.; Yang, Q.; Zheng, S.; Li, S.P. Differential Roles of Species Richness versus Species Asynchrony in Regulating Community Stability along a Precipitation Gradient. Ecol. Evol. 2019, 9, 14244–14252. [Google Scholar] [CrossRef] [PubMed]
- Daehler, C.C. Performance Comparisons of Co-Occurring Native and Alien Invasive Plants: Implications for Conservation and Restoration. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 183–211. [Google Scholar] [CrossRef]
- Ma, C.; Li, S.P.; Pu, Z.; Tan, J.; Liu, M.; Zhou, J.; Li, H.; Jiang, L. Different Effects of Invader-Native Phylogenetic Relatedness on Invasion Success and Impact: A Meta-Analysis of Darwin’s Naturalization Hypothesis. Proc. Biol. Sci. 2016, 283, 20160663. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Cheng, H.; Du, D. Which Factor Contributes Most to the Invasion Resistance of Native Plant Communities under the Co-Invasion of Two Invasive Plant Species? Sci. Total Environ. 2022, 813, 152628. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Xiao, C.; Ma, J. A Dataset on Catalogue of Alien Plants in China. Biodivers. Sci. 2022, 30, 22127. [Google Scholar] [CrossRef]
- Dostal, P. Plant Competitive Interactions and Invasiveness: Searching for the Effects of Phylogenetic Relatedness and Origin on Competition Intensity. Am. Nat. 2011, 177, 655–667. [Google Scholar] [CrossRef]
- Poorter, L. Growth Responses of 15 Rain-forest Tree Species to a Light Gradient: The Relative Importance of Morphological and Physiological Traits. Funct. Ecol. 1999, 13, 396–410. [Google Scholar] [CrossRef]
- Goldberg, D.E. Components of Resource Competition in Plant Communities. Perspect. Plant Compet. 1990, 27–49. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Fleetwood, L.M. Competitive Effect and Response in Four Annual Plants. J. Ecol. 1987, 75, 1131–1143. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Rajaniemi, T.; Gurevitch, J.; Stewart-Oaten, A. Empirical Approaches to Quantifying Interaction Intensity: Competition and Facilitation along Productivity Gradients. Ecology 1999, 80, 1118–1131. [Google Scholar] [CrossRef]
- Del Fabbro, C.; Prati, D. The Relative Importance of Immediate Allelopathy and Allelopathic Legacy in Invasive Plant Species. Basic. Appl. Ecol. Basic. Appl. Ecol. 2015, 16, 28–35. [Google Scholar] [CrossRef]
- Bennett, A.W. The Origin of Species by Means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life. Nature 1872, 5, 318–319. [Google Scholar] [CrossRef]
- Khaleel, A.; Nasir, S.; Ismail, N.; Syazni, A. Origin of Invasive Fish Species, Peacock Bass Cichla Species in Lake Telabak Malaysia Revealed by Mitochondrial DNA Barcoding. Egypt. J. Aquat. Biol. Fish. 2020, 24, 311–322. [Google Scholar] [CrossRef]
- Sun, Y.; Müller-Schärer, H.; Maron, J.L.; Schaffner, U. Origin Matters: Diversity Affects the Performance of Alien Invasive Species but Not of Native Species. Am. Nat. 2015, 185, 725–736. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and Allelochemicals of Imperata Cylindrica as an Invasive Plant Species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of Knotweeds as Invasive Plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef]
- Sardans, J.; Bartrons, M.; Margalef, O.; Gargallo-Garriga, A.; Janssens, I.; Ciais, P.; Obersteiner, M.; Sigurdsson, B.; Penuelas, J. Plant Invasion Is Associated with Higher Plant-Soil Nutrient Concentrations in Nutrient Poor-Environments. Glob. Change Biol. 2016, 23, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-L.; Zhang, S.-Y.; Yuan, X.-F.; Sun, K.; Cai, J.-F.; Xue, J.-J.; Zhang, Y.; A, S.-H.; Yang, L.-J.; Cheng, R.; et al. Flat-Leaf Submerged Plants Are More Sensitive to Invasion Intensity and Water Nutrition Levels than Needle-Leaf Ones. Hydrobiologia 2023, 850, 3849–3863. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, H.; Wei, M.; Wang, S.; Wu, B.; Du, D. Plant Height and Leaf Size: Which One Is More Important in Affecting the Successful Invasion of Solidago Canadensis and Conyza Canadensis in Urban Ecosystems? Urban For. Urban Green. 2021, 59, 127033. [Google Scholar] [CrossRef]
- Zheng, Y.-L.; Feng, Y.-L.; Liu, W.-X.; Liao, Z.-Y. Growth, Biomass Allocation, Morphology, and Photosynthesis of Invasive Eupatorium Adenophorum and Its Native Congeners Grown at Four Irradiances. Plant Ecol. 2009, 203, 263–271. [Google Scholar] [CrossRef]
- Martin, A.R. Crops and the Seed Mass-Seed Output Trade-Off in Plants. Int. J. Plant Sci. 2021, 182, 84–90. [Google Scholar] [CrossRef]
- Feng, Y.-L.; Fu, G.-L.; Zheng, Y.-L. Specific Leaf Area Relates to the Differences in Leaf Construction Cost, Photosynthesis, Nitrogen Allocation, and Use Efficiencies between Invasive and Noninvasive Alien Congeners. Planta 2008, 228, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.J.; Liu, H.M.; Wu, Y.; Bing, J.; Zhang, G.F. New Advances in the Regulation of Stem Growth in Vascular Plants. Plant Growth Regul. 2023, 103, 65–80. [Google Scholar] [CrossRef]
- Wall, L.G.; Favelukes, G. Early Recognition in the Rhizobium Meliloti-Alfalfa Symbiosis: Root Exudate Factor Stimulates Root Adsorption of Homologous Rhizobia. J. Bacteriol. 1991, 173, 3492–3499. [Google Scholar] [CrossRef] [PubMed]
- Semchenko, M.; Saar, S.; Lepik, A. Plant Root Exudates Mediate Neighbour Recognition and Trigger Complex Behavioural Changes. New Phytol. 2014, 204, 631–637. [Google Scholar] [CrossRef]
- Bhatt, M.V.; Khandelwal, A.; Dudley, S.A. Kin Recognition, Not Competitive Interactions, Predicts Root Allocation in Young Cakile Edentula Seedling Pairs. New Phytol. 2011, 189, 1135–1142. [Google Scholar] [CrossRef]
- Vivanco, J.; Paschke, M.; Callaway, R. Allelochemical Control of Non-Indigenous Invasive Plant Species Affecting Military Testing and Training Activities. 2010. Available online: https://serdp-estcp.mil/projects/details/65a3b15a-c8db-4476-ae7b-2868bba8c10f/rc-1388-project-overview (accessed on 7 May 2024).
- Zhang, K.-M.; Shen, Y.; Zhou, X.-Q.; Fang, Y.-M.; Liu, Y.; Ma, L.Q. Photosynthetic Electron-Transfer Reactions in the Gametophyte of Pteris Multifida Reveal the Presence of Allelopathic Interference from the Invasive Plant Species Bidens Pilosa. J. Photochem. Photobiol. B Biol. 2016, 158, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, Z.; Kong, C. Allelobiosis in the Interference of Allelopathic Wheat with Weeds. Pest Manag. Sci. 2016, 72, 2146–2153. [Google Scholar] [CrossRef] [PubMed]
- Hardy, N.B.; Peterson, D.A.; Ross, L.; Rosenheim, J.A. Does a Plant-Eating Insect’s Diet Govern the Evolution of Insecticide Resistance? Comparative Tests of the Pre-Adaptation Hypothesis. Evol. Appl. 2018, 11, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Ge, Y.; Wang, X.; Gao, S.; Chen, T.; Yu, F. Darwin’s Naturalization Conundrum Reconciled by Changes of Species Interactions. Ecology 2023, 104, e3850. [Google Scholar] [CrossRef] [PubMed]
- Berahim, Z.; Omar, M.H.; Zakaria, N.-I.; Ismail, M.R.; Rosle, R.; Roslin, N.A.; Che’Ya, N.N. Silicon Improves Yield Performance by Enhancement in Physiological Responses, Crop Imagery, and Leaf and Culm Sheath Morphology in New Rice Line, PadiU Putra. BioMed Res. Int. 2021, 2021, 6679787. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.-Y.; Yang, Q.; Li, S.-P.; Fristoe, T.S.; Cadotte, M.W.; Essl, F.; Kreft, H.; Pergl, J.; Pyšek, P.; Weigelt, P.; et al. A Latitudinal Gradient in Darwin’s Naturalization Conundrum at the Global Scale for Flowering Plants. Nat. Commun. 2023, 14, 6244. [Google Scholar] [CrossRef]
- Valen, L.V. A New Evolutionary Law (1973). In Foundations of Macroecology: Classic Papers with Commentaries; University of Chicago Press: Chicago, IL, USA, 2003. [Google Scholar] [CrossRef]
- Kong, C.-H.; Zhang, S.-Z.; Li, Y.; Xia, Z.-C.; Yang, X.; Meiners, S.J.; Wang, P. Plant Neighbor Detection and Allelochemical Response Are Driven by Root-Secreted Signaling Chemicals. Nat. Commun. 2018, 9, 3867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Shao, M.; Guan, P.; Yu, M.; Geng, L.; Gao, Y.; Meng, L.; Qu, B. Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins. Plants 2024, 13, 1807. https://doi.org/10.3390/plants13131807
Guo Y, Shao M, Guan P, Yu M, Geng L, Gao Y, Meng L, Qu B. Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins. Plants. 2024; 13(13):1807. https://doi.org/10.3390/plants13131807
Chicago/Turabian StyleGuo, Yujun, Meini Shao, Ping Guan, Mengyang Yu, Lin Geng, Ying Gao, Lin Meng, and Bo Qu. 2024. "Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins" Plants 13, no. 13: 1807. https://doi.org/10.3390/plants13131807
APA StyleGuo, Y., Shao, M., Guan, P., Yu, M., Geng, L., Gao, Y., Meng, L., & Qu, B. (2024). Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins. Plants, 13(13), 1807. https://doi.org/10.3390/plants13131807