Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties
Abstract
:1. Introduction
2. Results and Analysis
2.1. General Properties of Essential Oil
2.2. Chemical Composition of EO from Leaves of D. granadensis
2.3. Enantioselective GC Analysis of Essential Oil
2.4. Antimicrobial and Antifungal Activity of D. granadensis
2.5. Antioxidant Capacity
2.6. Anticholinesterase Potential
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Postharvest Treatments
4.3. Essential Oil Extraction
4.4. Refraction Index and Density
4.5. Essential Oil Composition
4.5.1. Qualitative Analysis
4.5.2. Quantitative Analysis
4.5.3. Enantioselective Analysis
4.6. Antimicrobial Activity
4.7. Antioxidant Capacity
4.7.1. 2,2-Diphenyl-1-picril Hydrazyl (DPPH) Radical Scavenging Assay
4.7.2. 2,2-Azino-Bis (3-Ethylbenzothiazoline-6-sulfonic Acid) Radical Scavenging Assay
4.8. Anticholinesterase Assay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca, R.M. Flora de Guerrero 33. Winteraceae; Facultad de Ciencias, UNAM: Mexico City, Mexico, 2007. [Google Scholar]
- Marquínez-Casas, X. Anatomy and development of stamens and carpels of Drimys granadensis (Winteraceae). Rev. Biol. Trop. 2014, 62, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Grímsson, F.; Grimm, G.W.; Potts, A.J.; Zetter, R.; Renner, S.S. A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana. J. Biogeogr. 2018, 45, 567–581. [Google Scholar] [CrossRef]
- Muñoz-schick, M.; Moreira-Muñoz, A.; Moreira, S. Origen del nombre de los géneros de plantas vasculares nativas de Chile y su representatividad en Chile y el mundo. Gayana. Bot. 2012, 69, 309–359. [Google Scholar] [CrossRef]
- Lozano, P.; MAE (Ministerio del Ambiente del Ecuador); FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura, IT). Especies Forestales Leñosas Arbóreas y Arbustivas de los Bosques Montanos del Ecuador; Programa ONU-REDD: Quito, Ecuador, 2015. [Google Scholar]
- Cordero, S.; Abello, L.; Gálvez, F. Rizoma: A New Comprehensive Database on Traditional Uses of Chilean Native Plants. Biodivers. Data J. 2022, 10, e80002. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, L.; Navarrete, H.; Muriel, P.; Macía, M.J.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador/Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador, 2008; ISBN 978-9978-77-135-8. [Google Scholar]
- Gaviria, M.; Quijano, C.; Pino, J.; Madriñan, S. Chemical composition and antibacterial activity of the essential oil of Drimys granadensis L.f. leaves from Colombia. Chem. Biodivers. 2011, 8, 532–539. [Google Scholar] [PubMed]
- Cicció, J.F. Aceites esenciales de las hojas y de los frutos verdes de Drimys granadensis (Winteraceae)” [Essential oils of Drimys granadensis (Interaceae) leaves and green fruits]. Rev. Biol. Trop. 1997, 44–45, 29–33. [Google Scholar]
- Malheiros, A.; Filho, V.C.; Schmitt, C.B.; Santos, A.R.S.; Scheidt, C.; Calixto, J.B.; Monache, F.D.; Yunes, R.A. A sesquiterpene drimane with antinociceptive activity from Drimys winteri bark. Phytochemistry 2001, 57, 103–107. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, B.P.D.; de Castro, E.M.; Cardoso, M.D.G.; de Souza, K.F.; Machado, S.M.F.; Pompeu, P.V.; Fontes, M.A.L. Comparison of leaf anatomy and essential oils from Drimys brasiliensis Miers in a montane cloud forest in Itamonte, MG, Brazil. Bot. Stud. 2014, 55, 41. [Google Scholar] [CrossRef]
- Maggioni, R.; Netto, E.R.; Radomski, M.I.; de Oliveira, E.B.; Deschamps, C.; Zuffellato-Ribas, K.C. Extracción del aceite esencial de las hojas y cáscaras de Drimys brasilensis Miers (Cáscara del anta). Rev. Cuba. Plantas Med. 2018, 23. Available online: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/714 (accessed on 22 June 2024).
- Zem, L.M.; Zufellato-Ribas, K.C.; Radomski, M.I.; Koehler, H.S.; Deschamps, C. Drimys brasiliensis essential oil as a source of drimenol. Holos 2016, 2, 68–76. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Cromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2017; Volume 1. [Google Scholar]
- Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.). Kosterm. Plants 2021, 10, 2171. [Google Scholar] [CrossRef]
- Muñoz, D.; Vogel, H.; Razmilic, I. Variación de compuestos químicos en hojas de poblaciones de Drimys spp. (Magnoliophyta: Winteraceae) en Chile. Rev. Chil. Hist. Nat. 2004, 77, 44–50. [Google Scholar]
- Costa, D.P.; Amado-Filho, G.M.; Pereira, R.C.; Paradas, W.C.; Miyataka, H.; Okamoto, Y.; Asakawa, Y. Diversity of secondary metabolites in the liverwort Syzygiella rubricaulis (Nees) Stephani (Jamesoniellaceae, Marchantiophyta) from neotropical high mountains. Chem. Biodivers. 2018, 15, e1800239. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Holl, D. Antimicrobial Natural Product Research: A Review from a South African Perspective for the Years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimircobial activities of African medicinal species and vegetables. Medicinal Spices and Vegetables from Africa. In Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases; Academic Press, Elsevier Co.: Cambridge, MA, USA, 2017; pp. 207–237. ISBN 9780128092866. [Google Scholar] [CrossRef]
- Cuervo, D.; Vanegas, J.; Corza, D.; Corre, F. Evaluación de la capacidad bactericida de extractos vegetales de distinta polaridad de Drimys granadensis. Rev. Peru. Biol. 2019, 26, 135–142. [Google Scholar] [CrossRef]
- Muñoz, O.; Tapia, J.; Nevermann, W.; y San Martín, A. Phytochemistry and biological properties of Drimys winteri JR et G. Forster var chilensis. (DC) A. Bol. Latinoam. Caribe Plantas Med. Aromat. 2021, 20, 443–462. [Google Scholar] [CrossRef]
- Fonseca, M.R.; Schuh, R.S.; Bemvenuti, A.L.; Dorneles, G.G.; Montanha, J.; Roehe, P.M.; Bordignon, S.; Dallegrave, E.; Leal, M.B.; Limberger, R.P. Biological assessment (antiviral and antioxidant) and acute toxicity of essential oils from Drimys angustifolia and D. brasiliensis. Rev. Bras. Farmacogn. 2013, 23, 284–290. [Google Scholar] [CrossRef]
- Barrientos, R.; Romero-Parra, J.; Cifuentes, F.; Palacios, J.; Romero-Jola, N.J.; Paredes, A.; Vargas-Arana, G.; Simirgiotis, M.J. Chemical Fingerprinting, Aorta Endothelium Relaxation Effect, and Enzymatic Inhibition of Canelo (Drimys winteri J. R. Forst. & G. Forst, (D.C) A. Gray, Family Winteraceae) Fruits. Foods 2023, 12, 2580. [Google Scholar] [CrossRef]
- da Silva Barbosa, D.C.; Holanda, V.N.; Dias de Assis, C.R.; de Oliveira Farias, J.C.R.; doNascimento, P.H.; da Silva, W.V.; do Amaral Ferraz Navarro, D.M.; da Silva, M.V.; de Menezes Lima, V.L.; dos Santos Correia, M.T. Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil. Ind. Crops Prod. 2020, 151, 112372. [Google Scholar] [CrossRef]
- Kawamoto, H.; Takeshita, F.; Murata, K. Inhibitory effect of essential oil extracts from Panax ginseng against β-secretasa and cholinesterases. Nat. Prod. Commun. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 2009, 80, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Yamafuji, C. Inhibition of Acetylcholinesterase Activity by Bicyclic Monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. 15th Report on Carcinogens [Internet]; National Toxicology Program: Research Triangle Park, NC, USA, 12 December 2021; Safrole: CAS No. 94-59-7. Available online: https://www.ncbi.nlm.nih.gov/books/NBK590823/ (accessed on 22 June 2024).
- ISO 279:1998; NFT 75-111: Determination de la densité relative à 20 °C—Méthode de référence (Standard: Determination of relative density at 20 °C—Reference method). Association Française de Normalisation: La Plaine Saint Denis, France, 1998.
- ISO 280:1998; NF 75-112: Indice de réfraction à 20 °C—Méthode de référence (Standard: Refractive index at 20 °C—Reference method). Association française de Normalisation: La Plaine Saint Denis, France, 1998.
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-Liquid partition 387 chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activity Profiling of Hedyosmum strigosum Todzia Essential Oil, an Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; CLSI Standard M38; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; ISBN 1-56238-830-4 [Print]/1-56238-831-2 [Electronic]. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-066-9 [Print]/978-1-68440-067-6 [Electronic]. [Google Scholar]
- Ellman, G.; Courtney, D.; Andres, V.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Andrade, J.M.; Pachar, P.; Trujillo, L.; Cartuche, L. Suillin: A Mixed-Type Acetylcholinesterase Inhibitor from Suillus luteus Which Is Used by Saraguros Indigenous, Southern Ecuador. PLoS ONE 2022, 17, e0268292. [Google Scholar] [CrossRef]
No | Compuesto | CRI | LRI | % FID | MF |
---|---|---|---|---|---|
1 | α-Thujene | 925 | 924 | 0.72 | C10H16 |
2 | α-Pinene | 933 | 932 | 1.96 | C10H16 |
3 | Camphene | 950 | 946 | 0.24 | C10H16 |
4 | Sabinene | 974 | 969 | 5.53 | C10H16 |
5 | β-Pinene | 979 | 974 | 2.46 | C10H16 |
6 | Myrcene | 990 | 988 | 0.29 | C10H16 |
7 | α-Phellandrene | 1009 | 1002 | 0.167 | C10 H16 |
8 | α-Terpinene | 1019 | 1014 | 1.34 | C10H16 |
9 | ο-Cymene | 1029 | 1022 | 0.72 | C10H14 |
10 | Limonene | 1031 | 1024 | 0.32 | C10H16 |
11 | β-Phellandrene | 1034 | 1025 | 0.72 | C10H16 |
12 | (Z)-β-Ocimene | 1038 | 1032 | 0.02 | C10H16 |
13 | NI | - | - | - | - |
14 | γ-Terpinene | 1061 | 1054 | 1.97 | C10H16 |
15 | Terpinolene | 1088 | 1086 | 0.58 | C10H16 |
16 | 2,5-Dimethyl styrene | 1097 | 1099 | 0.15 | C10H12 |
17 | Terpinen-4-ol | 1190 | 1174 | 1.10 | C10H18O |
18 | α-Terpineol | 1206 | 1186 | 0.15 | C10H18O |
19 | Safrole | 1302 | 1285 | 2.04 | C10H10O2 |
20 | α-Cubebene | 1347 | 1348 | 1.27 | C15H24 |
21 | Eugenol | 1366 | 1356 | 0.49 | C10H12O2 |
22 | α-Ylangene | 1377 | 1373 | 0.55 | C15H24 |
23 | β-Bourbonene | 1385 | 1387 | 0.59 | C15H24 |
24 | n-Decanoic acid | 1388 | 1382 | 0.40 | C10H20O2 |
25 | β-Elemene | 1391 | 1389 | 1.18 | C15H24 |
26 | (E)-Caryophyllene | 1423 | 1417 | 1.69 | C15H24 |
27 | β-Gurjunene | 1433 | 1431 | 0.47 | C15H24 |
28 | cis-Muurola-3,5-diene | 1449 | 1448 | 0.42 | C15H24 |
29 | trans-Muurola-3,5-diene | 1453 | 1451 | 0.56 | C15H24 |
30 | α-Humulene | 1460 | 1452 | 0.66 | C15H24 |
31 | cis-Cadina-1(6),4-diene | 1466 | 1461 | 0.31 | C15H24 |
32 | trans-Cadina-1(6),4-diene | 1475 | 1475 | 0.83 | C15H24 |
33 | Germacrene D | 1479 | 1480 | 1.64 | C15H24 |
34 | γ-Muurolene | 1486 | 1478 | 10.63 | C15H24 |
35 | β-Selinene | 1495 | 1489 | 1.19 | C15H24 |
36 | trans-Muurola-4(14),5-diene | 1497 | 1493 | 0.88 | C15H24 |
37 | Bicyclogermacrene | 1501 | 1500 | 2.50 | C15H24 |
38 | trans-β-Guaiene | 1503 | 1502 | 0.29 | C15H24 |
39 | δ-Amorphene | 1507 | 1511 | 0.001 | C15H24 |
40 | Germacrene A | 1513 | 1508 | 0.03 | C15H24 |
41 | γ-Cadinene | 1519 | 1513 | 0.68 | C15H24 |
42 | δ-Cadinene | 1523 | 1522 | 4.22 | C15H24 |
43 | cis-Calamenene | 1528 | 1528 | 1.16 | C15H22 |
44 | Myristicin | 1537 | 1517 | 1.08 | C11H12O3 |
45 | α-Cadinene | 1542 | 1537 | 0.33 | C15H24 |
46 | α-Calacorene | 1550 | 1544 | 0.19 | C15H20 |
47 | ND | - | - | 0.25 | - |
48 | (E)-Nerolidol | 1566 | 1561 | 0.76 | C15H26O |
49 | Dodecanoic acid | 1578 | 1565 | 0.87 | C12H24O2 |
50 | ND | - | - | 0.33 | - |
51 | ND | - | - | - | - |
52 | ND | - | - | - | - |
53 | Spathulenol | 1590 | 1577 | 10.13 | C15H26O |
54 | ND | - | - | 1.17 | - |
55 | Globulol | 1597 | 1590 | 1.06 | C15H24O |
56 | Salvial-4(14)-en-1-one | 1605 | 1594 | 1.33 | C15H24O |
57 | ND | - | - | 0.74 | - |
58 | 10-epi-γ-Eudesmol | 1619 | 1622 | 0.95 | C15H26O |
59 | 1,10-di-epi-Cubenol | 1625 | 1618 | 0.69 | C15H26O |
60 | Allo-aromadendrene epoxide | 1629 | 1639 | 1.31 | C15H24O |
61 | ND | - | - | 0.28 | - |
62 | 1-epi-Cubenol | 1639 | 1627 | 1.51 | C15H26O |
63 | Cedr-8(15)-en-9-α-ol | 1646 | 1650 | 0.88 | C15H24O |
64 | epi-α-Cadinol | 1654 | 1638 | 1.88 | C15H26O |
65 | epi-α-Muurolol | 1657 | 1640 | 1.25 | C15H26O |
66 | Cubenol | 1660 | 1645 | 1.51 | C15H26O |
67 | ND | - | - | 0.25 | - |
68 | α-Cadinol | 1669 | 1652 | 3.58 | C15H26O |
69 | Germacra-4(15),5,10(14)-trien-1α-ol | 1674 | 1680 | 1.12 | C15H24O |
70 | ND | - | - | 0.53 | - |
71 | ND | - | - | 0.26 | - |
72 | 5-Cyclodecen-1-ol | 1692 | 1694 | 0.49 | C15H24O |
73 | ND | - | - | 0.40 | - |
74 | Eudesma-4(15),7-dien-1β-ol (impure) | 1706 | 1687 | 2.21 | C15H24O |
75 | ND | - | - | 0.28 | - |
76 | 14-hydroxy-α-Muurolene | 1771 | 1779 | 0.57 | C15H24O |
77 | Drimenol | 1788 | 1766 | 1.92 | C15H26O |
MH | 17.199 | ||||
MO | 4.18 | ||||
SH | 32.27 | ||||
SO | 33.17 | ||||
Others | 1.95 | ||||
Non identified | 4.501 | ||||
Total identified | 93.27 |
Retention Time | Compound | CRI | LRI | Enantiomeric Distribution | Enantiomeric Excess e.e. (%) |
---|---|---|---|---|---|
3.912 | (1S,5R)-(+)-α-pinene | 944 | 935 | 16.49 | 77.02 |
3.949 | (1S,5S)-(–)-α-pinene | 946 | 943 | 93.51 | |
4.347 | (1R,4S)-(–)-camphene | 962 | 960 | 100.00 | 100.00 |
5.194 | (1S,5R)-(+)-β-pinene | 998 | 996 | 0.26 | 99.48 |
5.242 | (1S,5S)-(–)-β-pinene | 1000 | 999 | 99.74 |
Microorganisms | S. rubricaulis Essential oil | Antimicrobial Agent † (Positive Control) |
---|---|---|
Cocci Bacteria | Ampicillin | |
Enterococcus faecalis | 1000 | 0.78 |
Enterococcus faecium | 1000 | <0.39 |
Staphylococcus aureus | 500 | <0.39 |
Rod-shaped Bacteria | Ciprofloxacin | |
Lysteria monocytogenes | 250 | 1.56 |
Escherichia coli (O157:H7) | Non active | 1.56 |
Pseudomonas aeruginosa | Non active | <0.39 |
Salmonella enterica serovar Thypimurium | Non active | <0.39 |
Microaerophile Rod-shaped bacteria | Erythromycin | |
Campylobacter jejuni | 2000 | 15.63 |
Yeasts and sporulated fungi | Amphotericin B | |
Candida albicans | Non active | <0.098 |
Aspergillus niger | 2000 | <0.098 |
Sample | DPPH | ABTS | TEAC |
---|---|---|---|
SC50 (µg/mL—µM *) ± SD | |||
D. granadensis | 4181.74 ± 1.47 | 210.48 ± 1.03 | 325.54 ± 0.02 |
Trolox * | 35.54 ± 1.04 | 29.09 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartuche, L.; Vallejo, C.; Castillo, E.; Cumbicus, N.; Morocho, V. Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties. Plants 2024, 13, 1806. https://doi.org/10.3390/plants13131806
Cartuche L, Vallejo C, Castillo E, Cumbicus N, Morocho V. Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties. Plants. 2024; 13(13):1806. https://doi.org/10.3390/plants13131806
Chicago/Turabian StyleCartuche, Luis, Camila Vallejo, Edison Castillo, Nixon Cumbicus, and Vladimir Morocho. 2024. "Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties" Plants 13, no. 13: 1806. https://doi.org/10.3390/plants13131806
APA StyleCartuche, L., Vallejo, C., Castillo, E., Cumbicus, N., & Morocho, V. (2024). Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties. Plants, 13(13), 1806. https://doi.org/10.3390/plants13131806