Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Types of Polysaccharides
3.1. Fructans
3.2. β-Glucans and Hemicelluloses
3.3. Pectins, Arabinans, Galactans, and Arabinogalactans
4. Potential Effects on Health
4.1. Immunomodulation
4.2. Fibrosis and Hepatoprotection
4.3. Diabetes, Lipid Metabolism, and Glucose Tolerance
5. Other Functional Groups Conjugated to Polysaccharides
5.1. Phosphorylated Polysaccharides
5.2. Polyphenols and Organic Acids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneve, Switzerland, 2019; ISBN 9789241515436. [Google Scholar]
- Saggar, S.; Mir, P.A.; Kumar, N.; Chawla, A.; Uppal, J.; Shilpa, S.; Kaur, A. Traditional and Herbal Medicines: Opportunities and Challenges. Pharmacogn. Res. 2022, 14, 107–114. [Google Scholar] [CrossRef]
- Manzoor, M.; Ahmad, M.; Zafar, M.; Gillani, S.W.; Shaheen, H.; Pieroni, A.; Al-Ghamdi, A.A.; Elshikh, M.S.; Saqib, S.; Makhkamov, T.; et al. The Local Medicinal Plant Knowledge in Kashmir Western Himalaya: A Way to Foster Ecological Transition via Community-Centred Health Seeking Strategies. J. Ethnobiol. Ethnomed. 2023, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Gao, M.; van Duijn, B.; Choi, H.; van Horssen, F.; Wang, M. International Policies and Challenges on the Legalization of Traditional Medicine/Herbal Medicines in the Fight against COVID-19. Pharmacol. Res. 2021, 166, 105472. [Google Scholar] [CrossRef] [PubMed]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Jardim, A.N.O.; Brito, A.P.; van Donkersgoed, G.; Boon, P.E.; Caldas, E.D. Dietary Cumulative Acute Risk Assessment of Organophosphorus, Carbamates and Pyrethroids Insecticides for the Brazilian Population. Food Chem. Toxicol. 2018, 112, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Odongo, E.A.; Mutai, P.C.; Amugune, B.K.; Mungai, N.N.; Akinyi, M.O.; Kimondo, J. Evaluation of the Antibacterial Activity of Selected Kenyan Medicinal Plant Extract Combinations against Clinically Important Bacteria. BMC Complement. Med. Ther. 2023, 23, 100. [Google Scholar] [CrossRef] [PubMed]
- Hasanvandi, S.; Neisi, E.; Meshkat, M.H. Comparative Analysis of Essential Oils from Two Satureja Species; Extraction Methods, Chemical Composition, and Antimicrobial Activities. Biocatal. Agric. Biotechnol. 2023, 50, 102731. [Google Scholar] [CrossRef]
- de Alba, S.L.; García-González, C.; Coronado Ortega, M.A.; Ayala Bautista, J.R.; Alpírez, G.M.; Montes Núñez, D.G.L. Extraction Methods and Applications of Bioactive Compounds from Neem (Azadirachta indica): A Mini-Review. Mini. Rev. Org. Chem. 2023, 20, 644–654. [Google Scholar] [CrossRef]
- Prado, S.B.R.D.; Castro-Alves, V.C.; Ferreira, G.F.; Fabi, J.P. Ingestion of Non-Digestible Carbohydrates from Plant-Source Foods and Decreased Risk of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms of Action. Front. Nutr. 2019, 6, 72. [Google Scholar] [CrossRef]
- Pedrosa, L.D.F.; Fabi, J.P. Dietary Fiber as a Wide Pillar of Colorectal Cancer Prevention and Adjuvant Therapy. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhai, Y.; Wang, X.; Fan, Q.; Dong, X.; Chen, M.; Han, T. Phosphorylation of Polysaccharides: A Review on the Synthesis and Bioactivities. Int. J. Biol. Macromol. 2021, 184, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, I.; Sapountzaki, E.; Rova, U.; Christakopoulos, P. Ferulic Acid From Plant Biomass: A Phytochemical with Promising Antiviral Properties. Front. Nutr. 2022, 8, 777576. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M. Fructan Structure and Metabolism in Overwintering Plants. Plants 2021, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Radosavljević, M.; Belović, M.; Kljakić, A.C.; Torbica, A. Production, Modification and Degradation of Fructans and Fructooligosacharides by Enzymes Originated from Plants. Int. J. Biol. Macromol. 2024, 269, 131668. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Cuenca, A.; Herrera-Vázquez, S.E.; Condezo-Hoyos, L.; Gómez-Ordóñez, E.; Rupérez, P. Inulin Extraction from Common Inulin-Containing Plant Sources. Ind. Crops Prod. 2021, 170, 113726. [Google Scholar] [CrossRef]
- Savych, A.; Bilyk, O.; Vaschuk, V.; Humeniuk, I. Analysis of Inulin and Fructans in Taraxacum officinale L. Roots as the Main Inulin-Containing Component of Antidiabetic Herbal Mixture. Pharmacia 2021, 68, 527–532. [Google Scholar] [CrossRef]
- Fernández-Lainez, C.; Logtenberg, M.J.; Tang, X.; Schols, H.A.; López-Velázquez, G.; de Vos, P. Β(2→1) Chicory and Β(2→1)-Β(2→6) Agave Fructans Protect the Human Intestinal Barrier Function in Vitro in a Stressor-Dependent Fashion. Food Funct. 2022, 13, 6737–6748. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lainez, C.; aan de Stegge, M.; Silva-Lagos, L.A.; López-Velázquez, G.; de Vos, P. Β(2 → 1)-Β(2 → 6) Branched Graminan-Type Fructans and Β(2→1) Linear Fructans Impact Mucus-Related and Endoplasmic Reticulum Stress-Related Genes in Goblet Cells and Attenuate Inflammatory Responses in a Fructan Dependent Fashion. Food Funct. 2023, 14, 1338–1348. [Google Scholar] [CrossRef]
- Singla, A.; Gupta, O.P.; Sagwal, V.; Kumar, A.; Patwa, N.; Mohan, N.; Ankush; Kumar, D.; Vir, O.; Singh, J.; et al. Beta-Glucan as a Soluble Dietary Fiber Source: Origins, Biosynthesis, Extraction, Purification, Structural Characteristics, Bioavailability, Biofunctional Attributes, Industrial Utilization, and Global Trade. Nutrients 2024, 16, 900. [Google Scholar] [CrossRef]
- Su, J.; Zhang, T.; Wang, P.; Liu, F.; Tai, G.; Zhou, Y. The Water Network in Galectin-3 Ligand Binding Site Guides Inhibitor Design. Acta Biochim. Biophys. Sin. 2015, 47, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, L.D.F.; Raz, A.; Fabi, J.P. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zheng, J.; Hu, W.; Zheng, X.; He, Q.; Linhardt, R.J.; Ye, X.; Chen, S. Structure-Activity Relationship of Citrus Segment Membrane RG-I Pectin against Galectin-3: The Galactan Is Not the Only Important Factor. Carbohydr. Polym. 2020, 245, 116526. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Chang, G.; Zhang, L.; Wang, P.; Gao, W.; Li, X. Pectin: Health-Promoting Properties as a Natural Galectin-3 Inhibitor. Glycoconj. J. 2024, 41, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Ropartz, D.; Ralet, M.-C. Pectin: Technological and Physiological Properties; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030534219. [Google Scholar]
- Arambula, A.; Brown, J.R.; Neff, L. Anatomy and Physiology of the Palatine Tonsils, Adenoids, and Lingual Tonsils. World J. Otorhinolaryngol. Head Neck Surg. 2021, 7, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Garlanda, C. Humoral Innate Immunity and Acute-Phase Proteins. N. Engl. J. Med. 2023, 388, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Beukema, M.; Faas, M.M.; de Vos, P. The Effects of Different Dietary Fiber Pectin Structures on the Gastrointestinal Immune Barrier: Impact via Gut Microbiota and Direct Effects on Immune Cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, E.; Farley, T.K.; Belkaid, Y. Control of Immunity by the Microbiota. Annu. Rev. Immunol. 2021, 39, 449–479. [Google Scholar] [CrossRef] [PubMed]
- Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front. Immunol. 2021, 12, 612826. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Wang, Y.; Zhang, C.; Xu, S.; Luo, M.; Yang, S. Caragana Sinica (Buc’hoz) Rehd. (Jin Ji Er) Polysaccharide Regulates the Immune Function and Intestinal Microbiota of Cyclophosphamide (CTX) Induced Immunosuppressed Mice. J. Ethnopharmacol. 2024, 322, 117551. [Google Scholar] [CrossRef]
- Li, P.; Jing, Y.; Qiu, X.; Xiao, H.; Zheng, Y.; Wu, L. Structural Characterization and Immunomodulatory Activity of a Polysaccharide from Dioscotea Opposita. Int. J. Biol. Macromol. 2024, 265, 130734. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Zhang, H.; Li, Y.; Lin, Z.; Xu, J.; Guo, Y. An Antitumor Arabinan from Glehnia littoralis Activates Immunity and Inhibits Angiogenesis. Int. J. Biol. Macromol. 2024, 263, 130242. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Shen, M.; Li, J.; Sun, P.; Zhong, X.; Yang, K. Isolation, Structure Characterization and in Vitro Immune-Enhancing Activity of a Glucan from the Peels of Stem Lettuce (Lactuca sativa). J. Sci. Food Agric. 2024, 104, 2097–2109. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Wu, C.; Zhu, T.; Peng, S.; Xu, S.; Hu, Y.; Liu, Z.; Yang, Y.; Wang, D. Structure of a Pueraria Root Polysaccharide and Its Immunoregulatory Activity on T and B Lymphocytes, Macrophages, and Immunosuppressive Mice. Int. J. Biol. Macromol. 2023, 230, 123386. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L.; Cha, Q.; Sun, Y.; Ye, H.; Zeng, X. Structural Characterization and Immunostimulatory Activity of a Homogeneous Polysaccharide from Sinonovacula constricta. J. Agric. Food Chem. 2015, 63, 7986–7994. [Google Scholar] [CrossRef]
- Cui, F.J.; Jiang, L.H.; Qian, L.S.; Sun, W.J.; Tao, T.L.; Zan, X.Y.; Yang, Y.; Wu, D.; Zhao, X. A Macromolecular α-Glucan from Fruiting Bodies of Volvariella volvacea Activating RAW264. 7 Macrophages through MAPKs Pathway. Carbohydr. Polym. 2020, 230, 115674. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Shao, T.; Meng, Y.; Liu, C.; Zhang, P.; Chen, K. Immunomodulatory Mechanisms of an Acidic Polysaccharide from the Fermented Burdock Residue by Rhizopus Nigricans in RAW264.7 Cells and Cyclophosphamide-Induced Immunosuppressive Mice. Int. J. Biol. Macromol. 2023, 252, 126462. [Google Scholar] [CrossRef]
- Li, Y.; Ren, M.; Yan, H.; Luo, L.; Fang, X.; He, L.; Kang, W.; Wu, M.; Liu, H. Purification, Structural Characterization, and Immunomodulatory Activity of Two Polysaccharides from Portulaca oleracea L. Int. J. Biol. Macromol. 2024, 264, 130508. [Google Scholar] [CrossRef]
- Liao, Q.; He, Y.; Wu, C.; Deng, Z.; Liu, J. Hawthorn Fruit (Crataegus spp.) Polysaccharides Exhibit Immunomodulatory Activity on Macrophages via TLR4/NF-ΚB Signaling Activation. Plant Foods Hum. Nutr. 2024, 79, 367–373. [Google Scholar] [CrossRef]
- Ding, X.; Fan, S. Phytomedicine Purple Sweet Potato Polysaccharide Ameliorates Concanavalin A-Induced Hepatic Injury by Inhibiting Inflammation and Oxidative Stress. Phytomedicine 2024, 129, 155652. [Google Scholar] [CrossRef]
- Dai, X.; Du, Z.; Jin, C.; Tang, B.; Chen, X.; Jing, X.; Shen, Y.; He, F.; Wang, S.; Li, J.; et al. Inulin-like Polysaccharide ABWW May Impede CCl4 Induced Hepatic Stellate Cell Activation through Mediating the FAK/PI3K/AKT Signaling Pathway in Vitro & in Vivo. Carbohydr. Polym. 2024, 326, 121637. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Wei, X.; Xu, Y.; Fang, Q.; Qi, S.; Chen, J.; Wang, C.; Wang, S.; Qin, L.; et al. Structural Characterization of an Inulin Neoseries-Type Fructan from Ophiopogonis Radix and the Therapeutic Effect on Liver Fibrosis in Vivo. Carbohydr. Polym. 2024, 327, 121659. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Huang, M.; Zhang, X.; Hua, Y.; Zhang, X.; Li, X.; Fan, C.; Li, R.; Yang, J. Structural and in Vivo-in Vitro Myocardial Injury Protection Features of Two Novel Polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Int. J. Biol. Macromol. 2024, 264, 130537. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; Alsharif, S.M.; Xiao, J.; Musharraf, S.G.; Zhao, C.; Saeed, A.; Gao, R.; Said, N.S.; Di Minno, A.; Daglia, M.; et al. Arctium lappa (Burdock): Insights from Ethnopharmacology Potential, Chemical Constituents, Clinical Studies, Pharmacological Utility and Nanomedicine. Biomed. Pharmacother. 2023, 158, 114104. [Google Scholar] [CrossRef]
- Lu, N.; Wei, J.; Gong, X.; Tang, X.; Zhang, X.; Xiang, W.; Liu, S.; Luo, C.; Wang, X. Preventive Effect of Arctium lappa Polysaccharides on Acute Lung Injury through Anti-Inflammatory and Antioxidant Activities. Nutrients 2023, 15, 4946. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Yin, G.; Liu, H.; Wei, J.; Yu, X.; Xie, Y.; Zhang, L.; Tang, X.; Jiang, W.; Lu, N. Arctium lappa L. Polysaccharides Enhanced the Therapeutic Effects of Nasal Ectomesenchymal Stem Cells against Liver Fibrosis by Inhibiting the Wnt/β-Catenin Pathway. Int. J. Biol. Macromol. 2024, 261, 129670. [Google Scholar] [CrossRef]
- Jones, A.G.; McDonald, T.J.; Shields, B.M.; Hagopian, W.; Hattersley, A.T. Latent Autoimmune Diabetes of Adults (LADA) Is Likely to Represent a Mixed Population of Autoimmune (Type 1) and Nonautoimmune (Type 2) Diabetes. Diabetes Care 2021, 44, 1243–1251. [Google Scholar] [CrossRef]
- Riddle, M.C.; Cefalu, W.T.; Evans, P.H.; Gerstein, H.C.; Nauck, M.A.; Oh, W.K.; Rothberg, A.E.; Le Roux, C.W.; Rubino, F.; Schauer, P.; et al. Consensus Report: Definition and Interpretation of Remission in Type 2 Diabetes. Diabetes Care 2021, 44, 2438–2444. [Google Scholar] [CrossRef]
- Mao, T.; Huang, F.; Zhu, X.; Wei, D.; Chen, L. Effects of Dietary Fiber on Glycemic Control and Insulin Sensitivity in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Funct. Foods 2021, 82, 104500. [Google Scholar] [CrossRef]
- Guo, L.; Goff, H.D.; Chen, M.; Zhong, F. The Hydration Rate of Konjac Glucomannan after Consumption Affects Its in Vivo Glycemic Response and Appetite Sensation and in Vitro Digestion Characteristics. Food Hydrocoll. 2022, 122, 107102. [Google Scholar] [CrossRef]
- Chang, L.; Goff, H.D.; Ding, C.; Liu, Q.; Zhao, S.; Tao, T.; Lu, R.; Gao, Y.; Wu, H.; Guo, L. Enhanced Hypoglycemic Effects of Konjac Glucomannan Combined with Polygonatum cyrtonema Hua Polysaccharide in Complete Nutritional Liquid Diet Fed Type 2 Diabetes Mice. Int. J. Biol. Macromol. 2024, 266, 131121. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, L.; Zhang, W.; Yu, Q.; Chen, Y.; Xie, J. Extraction and Properties of Cyclocarya paliurus Leaf Polysaccharide and Its Phosphorylated Derivatives. Ind. Crops Prod. 2024, 210, 118205. [Google Scholar] [CrossRef]
- Rozi, P.; Abuduwaili, A.; Ma, S.; Bao, X.; Xu, H.; Zhu, J.; Yadikar, N.; Wang, J.; Yang, X.; Yili, A. Isolations, Characterizations and Bioactivities of Polysaccharides from the Seeds of Three Species Glycyrrhiza. Int. J. Biol. Macromol. 2020, 145, 364–371. [Google Scholar] [CrossRef]
- Ye, J.; Ma, J.; Rozi, P.; Kong, L.; Zhou, J.; Luo, Y.; Yang, H. The Polysaccharides from Seeds of Glycyrrhiza uralensis Ameliorate Metabolic Disorders and Restructure Gut Microbiota in Type 2 Diabetic Mice. Int. J. Biol. Macromol. 2024, 264, 130622. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, N.; Shi, J.; Li, H.; Yue, Y.; Jiao, W.; Wang, N.; Song, Y.; Huo, G.; Li, B. Lactobacillus Acidophilus Alleviates Type 2 Diabetes by Regulating Hepatic Glucose, Lipid Metabolism and Gut Microbiota in Mice. Food Funct. 2019, 10, 5804–5815. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, J.; Wang, Y.; Wang, Z.; Guo, L.; Li, X.; Huang, L. Arctium lappa L. Polysaccharide Can Regulate Lipid Metabolism in Type 2 Diabetic Rats through the SREBP-1/SCD-1 Axis. Carbohydr. Res. 2020, 494, 108055. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.; Ji, X.; Chen, Y.; Zhao, Z.; Gao, Y.; Gu, L.; She, D.; Ri, I.; Wang, W.; Wang, H. Ultrasound-Assisted Enzymatic Extraction of Scutellaria baicalensis Root Polysaccharide and Its Hypoglycemic and Immunomodulatory Activities. Int. J. Biol. Macromol. 2023, 227, 134–145. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, W.; Ma, J.; Li, N.; Wang, J.; Li, J. The Physiochemical Characteristics of Cyclocarya paliurus Polysaccharides and in Vitro Anti-Diabetic Effects of Their Different Fractions. Ind. Crops Prod. 2024, 211, 118188. [Google Scholar] [CrossRef]
- Yang, M.; Tao, L.; Wang, Z.-L.; Li, L.-F.; Zhao, C.-C.; Shi, C.-Y.; Sheng, J.; Tian, Y. Effects of UV/H2O2 Degradation on Moringa oleifera Lam. Leaves Polysaccharides: Composition, in Vitro Fermentation and Prebiotic Properties on Gut Microorganisms. Food Chem. X 2024, 22, 101272. [Google Scholar] [CrossRef]
- Su, W.; Wu, L.; Liang, Q.; Lin, X.; Xu, X.; Yu, S.; Lin, Y.; Zhou, J.; Fu, Y.; Gao, X.; et al. Extraction Optimization, Structural Characterization, and Anti-Hepatoma Activity of Acidic Polysaccharides From Scutellaria barbata D. Don. Front. Pharmacol. 2022, 13, 827782. [Google Scholar] [CrossRef]
- Qian, W.; Cai, X.; Qian, Q.; Wang, D.; Zhang, L. Angelica sinensis Polysaccharide Suppresses Epithelial-Mesenchymal Transition and Pulmonary Fibrosis via a DANCR/AUF-1/FoxO3 Regulatory Axis. Aging Dis. 2020, 11, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, T.; Wang, H.; Cui, Z.; Cheng, F.; Wang, K.P. Structural Characterization and in Vitro Antitumor Activity of an Acidic Polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr. Polym. 2016, 147, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Lin, Y.; Chen, S.; Bao, X.; Fu, S.; Lv, Y.; Zhou, M.; Chen, Y.; Zhu, B.; Qian, C.; et al. Ameliorating Role of Tetrastigma hemsleyanum Polysaccharides in Antibiotic-Induced Intestinal Mucosal Barrier Dysfunction in Mice Based on Microbiome and Metabolome Analyses. Int. J. Biol. Macromol. 2023, 241, 124419. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Bao, X.; Wang, Z.; Tang, Y.; Wu, Q.; Zhu, B.; Zhou, F.; Ding, Z. Antipyretic Effect of Inhaled Tetrastigma hemsleyanum Polysaccharide on Substance and Energy Metabolism in Yeast-Induced Pyrexia Mice via TLR4/NF-Κb Signaling Pathway. J. Ethnopharmacol. 2024, 323, 117732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Lu, Y.; Sun, T.; Sun, L.; Wang, B.; Lu, J.; Li, Z.; Zhu, B.; Huang, S.; Ding, Z. Antitumor Effects of Polysaccharides from Tetrastigma hemsleyanum Diels et Gilg via Regulation of Intestinal Flora and Enhancing Immunomodulatory Effects in Vivo. Front. Immunol. 2022, 13, 1009530. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Qian, C.; Zhou, F.; Guo, J.; Chen, N.; Gao, C.; Jin, B.; Ding, Z. Antipyretic and Antitumor Effects of a Purified Polysaccharide from Aerial Parts of Tetrastigma hemsleyanum. J. Ethnopharmacol. 2020, 253, 112663. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, W.; Shen, Y.; Lin, Z.; Nakajima, A.; Xu, J.; Guo, Y. A Polysaccharide from Inula Japonica Showing in Vivo Antitumor Activity by Interacting with TLR-4, PD-1, and VEGF. Int. J. Biol. Macromol. 2023, 246, 125555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, L.; Chen, L.; Wu, H.; Jia, L.; Zhu, H. Dendrobium Officinale Polysaccharides as a Natural Functional Component for Acetic-Acid-Induced Gastric Ulcers in Rats. Molecules 2024, 29, 880. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Shen, X.; Zhao, J.; Er-bu, A.; Liang, X.; He, C.; Yin, L.; Xu, F.; Li, H.; Tang, H.; et al. Onosma glomeratum Y. L. Liu Polysaccharide Alleviates LPS-Induced Pulmonary Inflammation via NF-ΚB Signal Pathway. Int. J. Biol. Macromol. 2024, 263, 130452. [Google Scholar] [CrossRef]
- Butt, H.S.; Ulriksen, E.S.; Rise, F.; Wangensteen, H.; Duus, J.Ø.; Inngjerdingen, M.; Inngjerdingen, K.T. Structural Elucidation of Novel Pro-Inflammatory Polysaccharides from Daphne mezereum L. Carbohydr. Polym. 2024, 324, 121554. [Google Scholar] [CrossRef]
- Adewale, O.O.; Oyelola, R.F.; Oladele, J.O.; Agbaje, W.B. Assessing the Ability of Polysaccharides Extracted from Date Palm Fruit to Salvage Wistar Rats from Cisplatin-Linked Hepatic Damage. Pharmacol. Res. Mod. Chinese Med. 2024, 11, 100400. [Google Scholar] [CrossRef]
- Jayasree Subhash, A.; Babatunde Bamigbade, G.; al-Ramadi, B.; Kamal-Eldin, A.; Gan, R.Y.; Senaka Ranadheera, C.; Ayyash, M. Characterizing Date Seed Polysaccharides: A Comprehensive Study on Extraction, Biological Activities, Prebiotic Potential, Gut Microbiota Modulation, and Rheology Using Microwave-Assisted Deep Eutectic Solvent. Food Chem. 2024, 444, 138618. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, J.; Liu, Y.; Yu, J.; Ma, Y.; Zhou, L.; Liu, X.; Liu, L.; Li, W.; Niu, X. Bletilla Striata Polysaccharide Attenuated the Progression of Pulmonary Fibrosis by Inhibiting TGF-Β1/Smad Signaling Pathway. J. Ethnopharmacol. 2024, 323, 117680. [Google Scholar] [CrossRef]
- He, X.; Liu, L.; Gu, F.; Huang, R.; Liu, L.; Nian, Y.; Zhang, Y.; Song, C. Exploration of the Anti-Inflammatory, Analgesic, and Wound Healing Activities of Bletilla Striata Polysaccharide. Int. J. Biol. Macromol. 2024, 261, 129874. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Yi, X.; Yang, S.T.; Zhu, H.; Liu, T.Y.; Jia, S.S.; Fan, J.H.; Hu, D.J.; Lv, G.P.; Huang, H. Isolation, Purification, and Structural Characterization of Polysaccharides from Codonopsis pilosula and Its Therapeutic Effects on Non-Alcoholic Fatty Liver Disease in Vitro and in Vivo. Int. J. Biol. Macromol. 2024, 265, 130988. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, R.; Qiu, Y.; Liu, Y.; Chen, L. Characterization of the Chemical Composition of Different Parts of Dolichos Lablab L. and Revelation of Its Anti-Ulcerative Colitis Effects by Modulating the Gut Microbiota and Host Metabolism. J. Ethnopharmacol. 2024, 322, 117629. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Ou, Y.; Lu, S.; Liang, Y.; Zhang, Y.; Li, M.; Li, G.; Ma, H.; Wu, Y.; He, Z.; et al. Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour. Molecules 2024, 29, 1347. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhou, L.; Li, H.; Zhu, H.; Chen, D.; Lu, Y. A Novel Flavonol-Polysaccharide from Tamarix chinensis Alleviates Influenza A Virus-Induced Acute Lung Injury. Evidences for Its Mechanism of Action. Phytomedicine 2024, 125, 155364. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zhou, L.; Huo, J.; Li, H.; Zhu, H.; Chen, D.; Lu, Y. Flavonoid Substituted Polysaccharides from Tamarix chinensis Lour. Alleviate H1N1-Induced Acute Lung Injury via Inhibiting Complement System. J. Ethnopharmacol. 2024, 322, 117651. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Y.; Zhou, L.; Chen, D.; Lu, Y. Two Natural Flavonoid Substituted Polysaccharides from Tamarix chinensis: Structural Characterization and Anticomplement Activities. Molecules 2022, 27, 4532. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Polymeric Compounds of Lingonberry Waste: Characterization of Antioxidant and Hypolipidemic Polysaccharides and Polyphenol-Polysaccharide Conjugates from Vaccinium Vitis-Idaea Press Cake. Foods 2022, 11, 2801. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhong, Z.C.; Liu, Y.; Quan, H.; Lan, X.Z. Structural Characterization of a Low-Molecular Weight Linear O-Acetyl-Glucomannan in Lilium lancifolium from Tibet and Its Protected H2O2-Induced Oxidative Stress in HUVEC Cells. Chem. Biol. Technol. Agric. 2024, 11, 18. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L.; Yang, Q.; Zhang, J.; Wang, W.; Hu, X.; Li, J.; Zheng, G. Smilax China L. Polysaccharide Prevents HFD Induced-NAFLD by Regulating Hepatic Fat Metabolism and Gut Microbiota. Phytomedicine 2024, 127, 155478. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fu, Z.; Yao, M.; Cao, Y.; Zhu, T.; Mao, R.; Huang, M.; Pang, Y.; Meng, X.; Li, L.; et al. Mulberry (Morus alba L.) Leaf Polysaccharide Ameliorates Insulin Resistance- and Adipose Deposition-Associated Gut Microbiota and Lipid Metabolites in High-Fat Diet-Induced Obese Mice. Food Sci. Nutr. 2022, 10, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Zhou, G.; Zhu, A.; Jin, C.; Li, M.; Ding, K. RG-I Pectin-like Polysaccharide from Rosa Chinensis Inhibits Inflammation and Fibrosis Associated to HMGB1/TLR4/NF-ΚB Signaling Pathway to Improve Non-Alcoholic Steatohepatitis. Carbohydr. Polym. 2024, 337, 122139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, M.; Zhao, X.; Qi, Y.; Xu, L.; Yin, L.; Peng, J. Purification and Structural Characterization of Two Polysaccharides with Anti-Inflammatory Activities from Plumbago zeylanica L. Int. J. Biol. Macromol. 2024, 260, 129455. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Pei, S.; Long, H.; Yang, W.; Yao, W.; Li, N.; Wang, J.; Zhao, Y.; Chen, F.; Xie, J.; et al. Potential Inhibitory Effect of Auricularia Auricula Polysaccharide on Advanced Glycation End-Products (AGEs). Int. J. Biol. Macromol. 2024, 262, 129856. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.Y.; Hu, N.; Wang, N.; Wang, H.L. Hepatoprotective Activities of Polysaccharide From the Fruit of Ribes Odoratum Wendl. on High-Fat-Sucrose Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Nat. Prod. Commun. 2020, 15, 1934578X20946935. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The Antioxidant Activity of Polysaccharides: A Structure-Function Relationship Overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhang, J.; Wang, S. Advances in the Chemical Constituents and Chemical Analysis of Ginkgo Biloba Leaf, Extract, and Phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021, 193, 113704. [Google Scholar] [CrossRef]
- Li, J.; Shi, H.; Yu, J.; Lei, Y.; Huang, G.; Huang, H. Extraction and Properties of Ginkgo Biloba Leaf Polysaccharide and Its Phosphorylated Derivative. Ind. Crops Prod. 2022, 189, 115822. [Google Scholar] [CrossRef]
- Xie, L.; Shen, M.; Wen, P.; Hong, Y.; Liu, X.; Xie, J. Preparation, Characterization, Antioxidant Activity and Protective Effect against Cellular Oxidative Stress of Phosphorylated Polysaccharide from Cyclocarya paliurus. Food Chem. Toxicol. 2020, 145, 111754. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, G.; Huang, H. Preparation, Analysis, Antioxidant Activities in Vivo of Phosphorylated Polysaccharide from Momordica Charantia. Carbohydr. Polym. 2021, 252, 117179. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Shi, Y.; Liao, S.; Li, E.; Yang, Q.; Chen, R.; Li, Q. The Interaction between Mulberry Leaf Polyphenols and Polysaccharides during Digestion and Colon Fermentation. LWT 2024, 196, 115830. [Google Scholar] [CrossRef]
- Ji, T.; Wang, J.; Xu, Z.; Cai, H.D.; Su, S.L.; Peng, X.; Ruan, H.S. Combination of Mulberry Leaf Active Components Possessed Synergetic Effect on SD Rats with Diabetic Nephropathy by Mediating Metabolism, Wnt/β-Catenin and TGF-β/Smads Signaling Pathway. J. Ethnopharmacol. 2022, 292, 115026. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Liu, F.; Hu, T.; Shen, W.; Li, E.; Liao, S.; Zou, Y. Mulberry Leaf Polyphenols Attenuated Postprandial Glucose Absorption: Via Inhibition of Disaccharidases Activity and Glucose Transport in Caco-2 Cells. Food Funct. 2020, 11, 1835–1844. [Google Scholar] [CrossRef]
- Liang, J.; Yang, S.; Liu, Y.; Li, H.; Han, M.; Gao, Z. Characterization and Stability Assessment of Polyphenols Bound to Lycium barbarum Polysaccharide: Insights from Gastrointestinal Digestion and Colon Fermentation. Food Res. Int. 2024, 179, 114036. [Google Scholar] [CrossRef]
Cluster | Cluster Color | Main Contributors | Number of Countries inside Cluster | Top Contributing Country (Documents) |
---|---|---|---|---|
1 | Dark red | Poland, Egypt, Czech Republic | 10 | Poland (15) |
2 | Dark green | France, Brazil, Tunisia | 10 | France (42) |
3 | Dark blue | South Korea, Thailand, Vietnam | 9 | South Korea (26) |
4 | Golden yellow | India, Malaysia, Indonesia | 8 | India (54) |
5 | Purple | United Kingdom, Germany, Sweden | 8 | United Kingdom (23) |
6 | Turquoise | Australia, South Africa, United Arab Emirates | 7 | Australia (22) |
7 | Orange | Spain, Argentina, Chile | 6 | Spain (18) |
8 | Copper | China, Canada, Hong Kong | 5 | China (480) |
9 | Pink | Iran, Italy, Turkey | 5 | Iran (35) |
10 | Light red | Pakistan, Russian Federation, Bangladesh | 5 | Pakistan (25) |
11 | Light green | Belgium, Austria | 4 | Belgium (10) |
12 | Light blue | United States, Colombia, Ecuador | 3 | United States (55) |
13 | Light yellow | Saudi Arabia, Palestine | 2 | Saudi Arabia (24) |
Plant | Extraction Method | Polysaccharide Structure | Model | Biologic Effects Observed | References |
---|---|---|---|---|---|
Caragana sinica | Hot water extraction | Arabinogalactan, 5 kDa | In vivo | Immunostimulatory potential of CTX immunosuppressed mice, through TLR4/MyD88/TRAF6 | [32] |
Dioscotea opposite | Hot water extraction with α-amylase | β-galactan backbone with α-glucan branches, 1500 kDa | In vivo | Immunostimulatory effects on CTX immunosuppressed mice, microbiota modulation | [33] |
Glehnia littoralis | Hot water extraction | α-arabinan, 7 kDa | In vitro and in vivo | Antitumor activity on zebrafish, dendritic cell maturation, upregulation of cytokines and phagocytic activity | [34] |
Lactuca sativa | Hot water extraction | α-glucan with O-6 α-Glc terminal residues, 22 kDa | In vitro | Improvement of proliferation and phagocytosis of macrophages, NO and cytokines upregulation | [35] |
Pueraria lobata | Hot water extraction | α-glucan with α-Glcp branches, 14 kDa | In vitro and in vivo | Reversion of CTX induced immunosuppression, stimulation of T, B and macrophage cells activity and proliferation | [36] |
Sinonovacula constricta | Hot water extraction and papain | linear α-1,4-glucan, 15 kDa | In vitro | Macrophage viability increase, phagocytic activity stimulation, NO/TNF-a/IFN-y/IL-1b promotion | [37] |
Portulaca oleracea L. | Hot water extraction | Two polymers, 64 kDa 9% DM homogalacturonan; 21 kDa β-galactan with O-6 substituted α-glucans | In vitro | Immunostimulant of macrophage phagocytosis and cytokine release | [40] |
Crataegus spp. | Hot water extraction | One parent and two fraction polymers; both fractions had similar Ara and Gal, but different Glc and GalA | In vitro | Higher macrophage phagocytic activity and NO release, as well as cytokine production via TLR4 downstream pathways, especially for the polymer with more GalA | [41] |
Dioscorea alata | Hot water extraction | No size described, composed of Glc, GalA, Gal, Ara, Rha and GlcA, in this order of importance | In vivo | Reduced hepatic apoptosis, damage, elevation of AST and ALT, by suppressing TLR4-P2 × 7R/NLRP3 | [42] |
Achyranthes bidentata Bl. | Hot water extraction | β-Fructan with mainly DP4, but with DP from 2 to 12 | In vitro and in vivo | Attenuated liver damage and fibrosis induced by CCl4 on mice, inhibited HSCs migration and proliferation | [43] |
Ophiopogonis radix | Hot water extraction | β-fructan with 2-6-β-fructan side chains, 5.76 kDa | In vivo | Hepatoprotection, attenuation of collagen deposition, inflammation via MAPK and TGF-b/Smad pathways | [44] |
Allium macrostemon Bunge and Allium chinense G. Don | Hot water extraction | Respectively, 25 and 19 kDa, both with major abundance of Fru, and minor amounts of Glc | In vitro and in vivo | Reduced hypoxia/reoxygenation induced apoptosis via Bcl2/Bax pathway, myocardial protection | [45] |
Arctium lappa L. | Hot water extraction | Glucan, 2 kDa, with Gal and Ara as secondary monosaccharides | In vitro and in vivo | Antioxidant enzyme activity enhancement, anti-inflammatory profile; lipid metabolism regulation through SREBP/SCD-1 axis; anti-fibrotic action | [47,48,58] |
Amorphophallus konjac | Hot water extraction | Glucomannan, >1000 kDa | In vivo | Slower glucose diffusion, lower post-prandial glucose levels | [52] |
Cyclocarya paliurus | Ultrasonic and enzymatic | Mw varying from 24 to 100 kDa-, GalA-, Glc-, Gal- and Ara-containing polysaccharides and their phosphorylated derivatives | In vitro | Antibacterial activity, oxidative stress protection on IEC-6, enhanced insulin secretion in pancreatic β-cells | [54,60] |
Glycyrrhiza spp. | Hot water extraction | Mixture of Xyl-, Man-, Glc- and Gal-containing polysaccharides | In vitro and in vivo | Antioxidant properties in vitro; in STZ-induced mice, lower nitrogen and creatinine levels in serum, intestinal barrier enhancing, hyperglycemia and insulin resistance attenuation, and others | [55,56] |
Moringa oleifera Lam. | Hot water extraction with UV/H2O2 follow-up | Between 2 and 3 kDa branched arabinogalactans | In vitro human fermentation | Prebiotic effects: higher beneficial bacteria abundance and promotion of SCFA production | [61] |
Scutellaria barbata D. Don | Hot water extraction | Two polymers, 110 and 140 kDa arabinogalactans with different abundances of Xyl and Glc residues | In vitro and in vivo | Hepatocellular carcinoma G1 phase arrest, apoptosis induction, through p53 and bax/bcl-2 upregulation | [62] |
Angelica sinensis | Hot water extraction | Partially methyl-esterified galactan, 80 kDa, with Araf and Glcp branches, and terminal GlcpA | In vitro and in vivo | Citotoxicity to tumor cells; inhibited fibrogenesis in RLE-6TN cells, suppressed pulmonary fibrosis in mice, regulation of DANCR/AUF-1/FOXO3 axis | [63,64] |
Tetrastigma hemsleyanum | Hot water extraction | Polymer composed of, in order of abundance, GalA, Glc, Man, Ara, Gal, and Rha, 66 kDa | In vitro and in vivo | Anti-tumor and anti-pyretic via TLR4/NF-kB, antibiotic-induced intestinal barrier dysfunction attenuation, | [65,66,67,68] |
Inula japonica | Hot water extraction | α-Araf arabinan with variable glycosidic linkages (5-1/3,5-1/2,3,5-1/2,5-1), and lower amounts of Glcp and Galp, 100 kDa | In vitro and in vivo | Antitumor activity on zebrafish; inhibition of angiogenesis and immune activation via TLR4/PD-1/VEGF | [69] |
Dendrobium officinale | Hot water extraction | Heterogenous glucomannan | In vivo | Attenuation of gastric ulcer through oxidative stress regulation, anti-apoptosis and inflammatory properties | [70] |
Onosma glomeratum Y. L. Liu | Non-hot water extraction | Pectic polysaccharide, with linear homogalacturonan and RG-I domains with arabinogalactan side-chains, 62 kDa | In vitro and in vivo | Anti-inflammatory effects, diminishing effect of LPS-induced pulmonary inflammation through NF-kB pathway | [71] |
Daphne mezereum L. | Hot water extraction | Two polymers, one neutral mixture of arabinan, arabinogalactan and hemicellulose, other acidic pectic polysaccharide (one neutral subfraction was also obtained) | In vitro | IFN-y and TNF-a secretion stimulation on PBMCs, especially for the neutral fractions | [72] |
Phoenix Dactylifera | Hot and cold-water extraction | Arabinogalactan and xyloglucan mixture in one study; 246 kDa with GalA, Glc, Man, Fru, and Gal in another study | In vivo | Reduced toxicity from a single-cisplatin injection on rats identified through liver tissue and biomarkers, oxidative stress and cytokines; antimicrobial and antitumor activity | [73,74] |
Bletilla striata | Hot water extraction | Glucomannan, 50 kDa | In vivo | Lung fibrosis attenuation in mice through inhibition of lung fibroblast activation, proliferation and migration, autophagy stimulation and TGF-B1/Smad pathway suppression; anti-inflammatory and analgesic | [75,76] |
Codonopsis pilosula | Hot water extraction | β-1,2-Fructan with terminal α-Glc residues, 5 kDa | In vitro and In vivo | Increased activity of liver antioxidant enzymes, lower liver index, body weight, body fat index and increased liver function in NAFLD model mice | [77] |
Dolichos lablab L. | Hot water extraction | Ara, Gal, Glc, and GalA polysaccharide with bound flavonoids and phenolics | In vivo | Microbiota modulation, anti-ulcerative and inflammatory properties | [78] |
Stemona tuberosa | Hot water extraction | Six different polysaccharides with varying Mw from 10 to 250 kDa; all of them had Gal, while the root-derived ones had higher Glc and lower GalA contents; both stem polysaccharides had higher GalA | In vitro | Leaf polysaccharides inhibited MUC5AC overexpression, while root polysaccharides had anti-inflammatory properties | [79] |
Tamarix chinensis L. | Hot water extraction | Four different phenolic-substituted polysaccharides with quercetin or myricetin, with α-glucan backbone and arabinan branches | In vitro and in vivo | Anti-oxidant, anti-complement, and anti-inflammatory properties, TLR4/NF-kB inhibition, on H1N1-induced mice | [80,81,82] |
Vaccinium vitis-idaea | Hot water extraction | Two acidic polysaccharides and two neutral arabinogalactan–polyphenol conjugates varying from 108 to 318 kDa | In vitro and in vivo | Liver anti-oxidant enzyme activity enhancement, serum cholesterol- and triglyceride-lowering properties | [83] |
Scutellaria baicalensis | Ultra-sound assisted and enzymatic extraction | Mainly composed of GlcA, GalA, Gal, and Glc, 89.7 kDa | In vitro | Dendritic cell activation, α-amylase and α-glucosidase inhibition | [59] |
Lilium lancifolium | Hot water extraction | O-2-acetyl linear glucomannan, 5.3 kDa | In vitro | Anti-oxidative stress through Nrf2/HO-1 pathway on HUVEC cells | [84] |
Smilax china L. | Enzymatic assisted hot water extraction | Heteropolysaccharides of Ara, Gal, Glc Xyl, and GalA, 134 kDa | In vivo | Reversion of high-fat diet body weight, liver, and adipose tissue weight, upregulation of lipidolysis genes and proteins | [85] |
Morus alba L. | Hot water extraction | Heterogenous polysaccharide with 200–800 kDa mainly composed of Glc, followed by GalA, Gal and Ara | In vivo | Microbiota modulation, reduced adipose tissue, improved insulin resistance, and improved pathological lesion in the colon | [86] |
Rosa chinensis | Hot water extraction | RG-I pectic-like polysaccharide, 85 kDa | In vivo | Reduced inflammation, fibrosis and oxidative stress on nonalcoholic steatohepatitis mice | [87] |
Plumbago zeylanica L. | Hot water extraction | Two low-acetylated RG-I, one with 285 kDa and another with 12 kDa | In vitro | Improved inflammatory damage of LPS+IFN-y induced THP-1 cells through lowering protein levels of CD10, TLR4, and MyD88 | [88] |
Auricularia auricula | Hot water extraction | Polysaccharide composed of Gal, Fru, Ara, Man, Rha and Glc, 140 kDa | In vitro | Mitigation of cell fibrosis and glycosylation through RAGE/TGF-b/NOX4 | [89] |
Ribes odoratum Wendl. | Hot water extraction | One polysaccharide with two peaks, with 8 and 4 kDa | In vivo | Reduced high-fat-diet-associated liver damage and inflammatory markers | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrosa, L.d.F.; Fabi, J.P. Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science. Plants 2024, 13, 1721. https://doi.org/10.3390/plants13131721
Pedrosa LdF, Fabi JP. Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science. Plants. 2024; 13(13):1721. https://doi.org/10.3390/plants13131721
Chicago/Turabian StylePedrosa, Lucas de Freitas, and João Paulo Fabi. 2024. "Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science" Plants 13, no. 13: 1721. https://doi.org/10.3390/plants13131721
APA StylePedrosa, L. d. F., & Fabi, J. P. (2024). Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science. Plants, 13(13), 1721. https://doi.org/10.3390/plants13131721