Small RNA Profiles of Serum-Derived Extracellular Vesicles in the Comorbid Condition of Frailty and Obstructive Pulmonary Disease: An Observational, Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Measurements
2.2.1. Frailty Status
2.2.2. Pulmonary Function Assessment
2.2.3. 6 Min Walk Test (6MWT)
2.2.4. Handgrip Strength (HS)
2.2.5. Lower Limb Strength (LLS)
2.2.6. Body Compositions
2.3. Serum-Derived EV Isolation
2.3.1. Blood Collection and Processing
2.3.2. Size Exclusion Chromatography (SEC) EV Isolation
2.3.3. Nanoparticle Tracking Analysis (NTA) of EVs
2.3.4. Protein Determination in EV Fractions
2.3.5. Western Blot of EV Markers
2.3.6. Transmission Electron Microscopy (TEM)
2.4. RNA Extraction and Next Generation Sequence (NGS)
2.4.1. Total RNA Extraction from EVs
2.4.2. Library Preparation and RNA-Seq
2.4.3. Ingenuity Pathway Analysis (IPA)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Serum EV Characteristics
3.3. Small RNA Characteristics from EVs
3.4. Correlation Between Small RNA and Physical Factors
3.5. Ingenuity Pathway Analysis (IPA)
3.6. Identification of Candidate Small RNAs
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EV | extracellular vesicle |
| miRNA | microRNA |
| piRNA | PIWI-interacting RNA |
| BMI | body mass index |
| SMI | skeletal muscle mass index |
| WBPhA | whole–body phase angle |
| Rt | right |
| Lt | left |
| HS | handgrip strength |
| LLS | lower limb strength |
| Cu | current smoker |
| Ex | ex-smoker |
| Non | non-smoker |
| % | predicted |
| VC | vital capacity |
| FVC | forced vital capacity |
| FEV1 | forced expiratory volume in one second |
| 6MWT | 6 min walk test |
| FC | fold change |
References
- López-Campos, J.L.; Tan, W.; Soriano, J.B. Global burden of COPD. Respirology 2016, 21, 14–23. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Nishimura, M.; Ichinose, M.; Adachi, M.; Nagai, A.; Kuriyama, T.; Takahashi, K.; Nishimura, K.; Ishioka, S.; Aizawa, H.; et al. COPD in Japan: The Nippon COPD Epidemiology study. Respirology 2004, 9, 458–465. [Google Scholar] [CrossRef]
- Matsunaga, K.; Harada, M.; Suizu, J.; Oishi, K.; Asami-Noyama, M.; Hirano, T. Comorbid conditions in chronic obstructive pulmonary disease: Potential therapeutic targets for unmet needs. J. Clin. Med. 2020, 9, 3078. [Google Scholar] [CrossRef]
- Bone, A.E.; Hepgul, N.; Kon, S.; Maddocks, M. Sarcopenia and frailty in chronic respiratory disease. Chronic Respir. Dis. 2017, 14, 85–99. [Google Scholar] [CrossRef]
- Tarazona-Santabalbina, F.J.; Naval, E.; De la Cámara-de las Heras, J.M.; Cunha-Pérez, C.; Viña, J. Is frailty diagnosis important in patients with COPD? A narrative review of the literature. Int. J. Environ. Res. Public Health 2023, 20, 1678. [Google Scholar] [CrossRef]
- Visser, E.; de Jong, K.; van Zutphen, T.; Kerstjens, H.A.M.; ten Brinke, A. Muscle function in moderate to severe asthma: Association with clinical outcomes and inflammatory markers. J. Allergy Clin. Immunol. Pract. 2023, 11, 1439–1447.e3. [Google Scholar] [CrossRef] [PubMed]
- de Blasio, F.; Santaniello, M.G.; de Blasio, F.; Mazzarella, G.; Bianco, A.; Lionetti, L.; Franssen, F.M.E.; Scalfi, L. Raw BIA variables are predictors of muscle strength in patients with chronic obstructive pulmonary disease. Eur. J. Clin. Nutr. 2017, 71, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.; Bui, K.L.; Nyberg, A. Measuring and monitoring skeletal muscle function in COPD: Current perspectives. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Aldhahi, M.I.; Baattaiah, B.A.; Alharbi, M.D.; Alotaibi, M.; Nazer, R.; Albarrati, A. Multifaceted associations between walking performance, physical fitness, extremity function, health status, and depression in individuals with COPD. Ann. Med. 2024, 56, 2338248. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- El Assar, M.; Rodríguez-Sánchez, I.; Álvarez-Bustos, A.; Rodríguez-Mañas, L. Biomarkers of frailty. Mol. Asp. Med. 2024, 97, 101271. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Marini, F.; Landi, F.; Marzetti, E. Circulating inflammatory, mitochondrial dysfunction, and senescence-related markers in older adults with physical frailty and sarcopenia: A BIOSPHERE exploratory study. Int. J. Mol. Sci. 2022, 23, 14006. [Google Scholar] [CrossRef]
- Agostini, S.; Mancuso, R.; Citterio, L.A.; Mihali, G.A.; Arosio, B.; Clerici, M. Evaluation of serum miRNAs expression in frail and robust subjects undergoing multicomponent exercise protocol (VIVIFRAIL). J. Transl. Med. 2023, 21, 67. [Google Scholar] [CrossRef]
- Wortzel, I.; Dror, S.; Kenific, C.M.; Lyden, D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019, 49, 347–360. [Google Scholar] [CrossRef]
- Dixson, A.C.; Dawson, T.R.; Di Vizio, D.; Weaver, A.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 2023, 24, 454–476. [Google Scholar] [CrossRef]
- Tominaga, N.; Kosaka, N.; Ono, M.; Katsuda, T.; Yoshioka, Y.; Tamura, K.; Lötvall, J.; Nakagama, H.; Ochiya, T. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun. 2015, 6, 6716. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009, 10, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Venneri, M.; Passantino, A. MiRNA: What clinicians need to know. Eur. J. Intern. Med. 2023, 113, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Yan, W. The role of extracellular vesicles in skeletal muscle wasting. J. Cachexia Sarcopenia Muscle 2023, 14, 2462–2472. [Google Scholar] [CrossRef]
- Alfonzo, M.C.; Al Saedi, A.; Fulzele, S.; Hamrick, M.W. Extracellular vesicles as communicators of senescence in musculoskeletal aging. JBMR Plus 2022, 6, e10686. [Google Scholar] [CrossRef]
- Satake, S.; Senda, K.; Hong, Y.J.; Miura, H.; Endo, H.; Sakurai, T.; Kondo, I.; Toba, K. Validity of the Kihon Checklist for assessing frailty status. Geriatr. Gerontol. Int. 2016, 16, 709–715. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Kubota, M.; Kobayashi, H.; Quanjer, P.H.; Omori, H.; Tatsumi, K.; Kanazawa, M. Clinical Pulmonary Functions Committee of the Japanese Respiratory Society. Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir. Investig. 2014, 52, 242–250. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Keng, B.M.H.; Gao, F.; Teo, L.L.Y.; Lim, W.S.; Tan, R.S.; Ruan, W.; Ewe, S.H.; Koh, W.P.; Koh, A.S. Associations between skeletal muscle and myocardium in aging: A syndrome of “cardio-sarcopenia”? J. Am. Geriatr. Soc. 2019, 67, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Katoh, M.; Gomi, M.; Arai, S. Validity and reliability of isometric knee extension muscle strength measurements using a belt-stabilized hand-held dynamometer: A comparison with the measurement using an isokinetic dynamometer in a sitting posture. J. Phys. Ther. Sci. 2020, 32, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Papalexopoulou, N.; Dassios, T.G.; Lunt, A.; Bartlett, F.; Perrin, F.; Bossley, C.J.; Wyatt, H.A.; Greenough, A. Nutritional status and pulmonary outcome in children and young people with cystic fibrosis. Respir. Med. 2018, 142, 60–65. [Google Scholar] [CrossRef]
- Ipson, B.R.; Fletcher, M.B.; Espinoza, S.E.; Fisher, A.L. Identifying exosome-derived microRNAs as candidate biomarkers of frailty. J. Frailty Aging 2018, 7, 100–103. [Google Scholar] [CrossRef]
- O’Farrell, H.E.; Bowman, R.V.; Fong, K.M.; Yang, I.A. Plasma extracellular vesicle miRNA profiles distinguish chronic obstructive pulmonary disease exacerbations and disease severity. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 2821–2833. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.; Qiao, J.; Bai, L.; Li, Z.; Sun, W.; Liu, Q.; Yang, S.; Cui, L. Serum exosomal microRNA-1258 may as a novel biomarker for the diagnosis of acute exacerbations of chronic obstructive pulmonary disease. Sci. Rep. 2023, 13, 18332. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ros, J.; Romero-García, N.; Mas-Bargues, C.; Monleón, D.; Gordevicius, J.; Brooke, R.; Dromant, M.; Díaz, A.; Derevyanko, A.; Guío-Carrión, A.; et al. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Sci. Adv. 2022, 8, eabq2226. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrero, D.; Walter, S.; Abugessaisa, I.; Miñambres-Herraiz, R.; Palomares, L.B.; Butcher, L.; Erusalimsky, J.D.; Gar-cia-Garcia, F.J.; Carnicero, J.; Hardman, T.C.; et al. A robust machine learning framework to identify signatures for frailty: A nested case-control study in four aging European cohorts. GeroScience 2021, 43, 1317–1329. [Google Scholar] [CrossRef]
- Mohri, T.; Nakajima, M.; Takagi, S.; Komagata, S.; Yokoi, T. MicroRNA regulates human vitamin D receptor. Int. J. Cancer 2009, 125, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Arora, S.; Khan, S.; Mohsin, M.; Mohan, A.; Manda, K.; Syed, M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021, 90, 108571. [Google Scholar] [CrossRef]
- Li, W.; Zheng, Y. MicroRNAs in extracellular vesicles of Alzheimer’s disease. Cells 2023, 12, 1378. [Google Scholar] [CrossRef]
- Scalavino, V.; Piccinno, E.; Valentini, A.M.; Schena, N.; Armentano, R.; Giannelli, G.; Serino, G. miR-369-3p modulates intestinal inflammatory response via brcc3/nlrp3 inflammasome axis. Cells 2023, 12, 2184. [Google Scholar] [CrossRef]
- Scalavino, V.; Piccinno, E.; Labarile, N.; Armentano, R.; Giannelli, G.; Serino, G. Anti-inflammatory effects of mir-369-3p via pde4b in intestinal inflammatory response. Int. J. Mol. Sci. 2024, 25, 8463. [Google Scholar] [CrossRef]
- Su, Z.; Kang, Y. Protective effect and regulatory mechanism of salidroside on skin inflammation induced by imiquimod in psoriasis mice. J. Pharmacol. Sci. 2024, 154, 192–202. [Google Scholar] [CrossRef]
- Tao, W.; Min, S.; Chen, G.; He, X.; Meng, Y.; Li, L.; Chen, J.; Li, Y. Tetramethylpyrazine ameliorates LPS-induced acute lung injury via the miR-369-3p/DSTN axis. Sci. Rep. 2024, 14, 20006. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Jia, L.; Li, T.; Yang, L.; Zhang, G. MicroRNA 615–3p inhibits the tumor growth and metastasis of NSCLC via inhibiting IGF2. Oncol. Res. 2019, 27, 269–279. [Google Scholar] [CrossRef]
- Chen, D.Y.; Stern, S.A.; Garcia-Osta, A.; Saunier-Rebori, B.; Pollonini, G.; Bambah-Mukku, D.; Blitzer, R.D.; Alberini, C.M. A critical role for IGF-II in memory consolidation and enhancement. Nature 2011, 469, 491–497. [Google Scholar] [CrossRef]
- Alberini, C.M. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci. 2023, 46, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell. Mol. Life Sci. 2024, 81, 379. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.E.; Won, C.W.; Kim, M. Circulating small non-coding RNA profiling for identification of older adults with low muscle strength and physical performance: A preliminary study. Exp. Gerontol. 2024, 197, 112598. [Google Scholar] [CrossRef] [PubMed]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011, 12, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Mokarram, P.; Niknam, M.; Sadeghdoust, M.; Aligolighasemabadi, F.; Siri, M.; Dastghaib, S.; Brim, H.; Ashktorab, H. PIWI interacting RNAs perspectives: A new avenues in future cancer investigations. Bioengineered 2021, 12, 10401–10419. [Google Scholar] [CrossRef]
- Fonseca Cabral, G.; Azevedo Dos Santos Pinheiro, J.; Vidal, A.F.; Santos, S.; Ribeiro-dos-Santos, Â. piRNAs in gastric cancer: A new approach towards translational research. Int. J. Mol. Sci. 2020, 21, 2126. [Google Scholar] [CrossRef]
- Toor, S.M.; Aldous, E.K.; Parray, A.; Akhtar, N.; Al-Sarraj, Y.; Arredouani, A.; Pir, G.J.; Pananchikkal, S.V.; El-Agnaf, O.; Shuaib, A.; et al. Circulating PIWI-interacting RNAs in acute ischemic stroke patients. Non-Coding RNA Res. 2025, 11, 294–302. [Google Scholar] [CrossRef]
- Hirano, T.; Doi, K.; Matsunaga, K.; Takahashi, S.; Donishi, T.; Suga, K.; Oishi, K.; Yasuda, K.; Mimura, Y.; Harada, M.; et al. A novel role of growth differentiation factor (GDF)-15 in overlap with sedentary lifestyle and cognitive risk in COPD. J. Clin. Med. 2020, 9, 2737. [Google Scholar] [CrossRef]
- Rivas, D.A.; Lessard, S.J.; Rice, N.P.; Lustgarten, M.S.; So, K.; Goodyear, L.J.; Parnell, L.D.; Fielding, R.A. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014, 28, 4133–4147. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.-Q.; Ge, P.-C.; Liu, Z.; Jia, H.; Chen, X.; An, F.-H.; Li, L.-H.; Chen, Z.-H.; Mao, H.-W.; Li, Z.-Y.; et al. Interaction between microRNA Expression and Classical Risk Factors in the Risk of Coronary Heart Disease. Sci. Rep. 2015, 5, 14925. [Google Scholar] [CrossRef] [PubMed]
- Sandau, U.S.; Wiedrick, J.T.; McFarland, T.J.; Galasko, D.R.; Fanning, Z.; Quinn, J.F.; Saugstad, J.A. Analysis of the longitudinal stability of human plasma miRNAs and implications for disease biomarkers. Sci. Rep. 2024, 14, 2148. [Google Scholar] [CrossRef] [PubMed]






| Characteristics | All (n = 29) | Frail (n = 11) | Non-Frail (n = 18) | p-Value |
|---|---|---|---|---|
| Age (years) | 72.0 (65.5–77.0) | 75.0 (69.0–82.0) | 70.0 (63.8–73.8) | 0.041 |
| Gender (male/female) | 23/6 | 10/1 | 13/5 | 0.228 |
| BMI (kg/m2) | 22.8 (21.2–25.1) | 22.3 (19.9–24.4) | 23.7 (21.7–25.3) | 0.192 |
| SMI (kg/m2) | 7.0 (6.2–7.5) | 6.4 (5.8–7.6) | 7.1 (6.2–7.5) | 0.302 |
| WBPhA (°) | 4.9 (4.5–5.7) | 4.8 (4.4–5.2) | 5.1 (4.6–5.8) | 0.178 |
| Rt HS (kg) | 28.5 (25.8–36.0) | 28.5 (25.0–31.9) | 29.9 (26.4–41.5) | 0.388 |
| Lt HS (kg) | 29.4 (23.4–35.5) | 29.0 (23.1–33.4) | 30.4 (23.7–37.0) | 0.517 |
| Rt LLS (kg) | 26.3 (16.9–42.9) | 17.5 (12.3–27.7) | 30.4 (23.3–45.8) | 0.015 |
| Lt LLS (kg) | 25.1 (15.1–41.7) | 14.1 (11.7–26.9) | 30.6 (21.3–43.7) | 0.010 |
| Disease (COPD/ACO/Asthma) | 13/4/12 | 7/1/3 | 6/3/9 | 0.282 |
| Smoking history (Cu/Ex/Non) | 4/19/6 | 2/8/1 | 2/11/5 | 0.463 |
| %VC (%) | 104.1 (83.7–111.8) | 94.6 (69.9–106.0) | 108.9 (86.7–117.5) | 0.137 |
| %FEV1 (%) | 83.4 (66.2–101.1) | 77.7 (48.0–91.6) | 94.9 (68.7–106.6) | 0.213 |
| FEV1/FVC (%) | 69.1 (58.6–74.9) | 70.4 (52.6–79.7) | 66.3 (58.3–74.7) | 0.502 |
| 6MWT (m) | 412.0 (358.8–441.3) | 363.5 (310.0–424.0) | 422.0 (399.5–481.0) | 0.029 |
| Lt LLS | Rt LLS | 6MWT | ||||
|---|---|---|---|---|---|---|
| r | p | r | p | r | p | |
| miR-369-3p | −0.5691 | 0.0016 | −0.5875 | 0.0010 | 0.1039 | 0.5987 |
| piR-23136 | −0.5179 | 0.0048 | −0.5791 | 0.0012 | −0.5058 | 0.0060 |
| piR-33114 | 0.5177 | 0.0048 | 0.5578 | 0.0020 | 0.5151 | 0.0050 |
| piR-23197 | −0.4879 | 0.0084 | −0.4631 | 0.0131 | −0.2430 | 0.2127 |
| piR-32865 | 0.4703 | 0.0115 | 0.5088 | 0.0057 | 0.2406 | 0.2175 |
| miR-125b-5p | −0.4597 | 0.0138 | −0.5575 | 0.0021 | −0.2766 | 0.1541 |
| let-7b-5p | 0.4377 | 0.0198 | 0.4253 | 0.0241 | 0.3394 | 0.0772 |
| miR-25-3p | −0.4347 | 0.0208 | −0.3808 | 0.0456 | −0.1455 | 0.4633 |
| miR-152-3p | −0.4307 | 0.0221 | −0.5597 | 0.0020 | −0.3949 | 0.0375 |
| piR-32946 | −0.4000 | 0.0349 | −0.3935 | 0.0383 | −0.0178 | 0.9282 |
| miR-615-3p | −0.3781 | 0.0473 | −0.4009 | 0.0345 | −0.1042 | 0.5976 |
| miR-204-5p | 0.3659 | 0.0555 | 0.4049 | 0.0326 | 0.2458 | 0.2074 |
| let-7e-5p | 0.3227 | 0.0940 | 0.2835 | 0.1438 | 0.2413 | 0.2161 |
| piR-28192 | −0.2932 | 0.1299 | −0.2970 | 0.1248 | −0.1574 | 0.4237 |
| piR-33028 | −0.2368 | 0.2250 | −0.3196 | 0.0974 | −0.2956 | 0.1266 |
| piR-33168 | 0.1450 | 0.4617 | 0.1985 | 0.3112 | 0.1216 | 0.5376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doi, K.; Hirano, T.; Tominaga, N.; Watanabe, K.; Oishi, K.; Fukatsu-Chikumoto, A.; Yamamoto, T.; Ohteru, Y.; Hamada, K.; Murata, Y.; et al. Small RNA Profiles of Serum-Derived Extracellular Vesicles in the Comorbid Condition of Frailty and Obstructive Pulmonary Disease: An Observational, Cross-Sectional Study. Biomolecules 2025, 15, 1663. https://doi.org/10.3390/biom15121663
Doi K, Hirano T, Tominaga N, Watanabe K, Oishi K, Fukatsu-Chikumoto A, Yamamoto T, Ohteru Y, Hamada K, Murata Y, et al. Small RNA Profiles of Serum-Derived Extracellular Vesicles in the Comorbid Condition of Frailty and Obstructive Pulmonary Disease: An Observational, Cross-Sectional Study. Biomolecules. 2025; 15(12):1663. https://doi.org/10.3390/biom15121663
Chicago/Turabian StyleDoi, Keiko, Tsunahiko Hirano, Naoomi Tominaga, Kenji Watanabe, Keiji Oishi, Ayumi Fukatsu-Chikumoto, Tasuku Yamamoto, Yuichi Ohteru, Kazuki Hamada, Yoriyuki Murata, and et al. 2025. "Small RNA Profiles of Serum-Derived Extracellular Vesicles in the Comorbid Condition of Frailty and Obstructive Pulmonary Disease: An Observational, Cross-Sectional Study" Biomolecules 15, no. 12: 1663. https://doi.org/10.3390/biom15121663
APA StyleDoi, K., Hirano, T., Tominaga, N., Watanabe, K., Oishi, K., Fukatsu-Chikumoto, A., Yamamoto, T., Ohteru, Y., Hamada, K., Murata, Y., Asami-Noyama, M., Edakuni, N., Kakugawa, T., Mizukami, Y., & Matsunaga, K. (2025). Small RNA Profiles of Serum-Derived Extracellular Vesicles in the Comorbid Condition of Frailty and Obstructive Pulmonary Disease: An Observational, Cross-Sectional Study. Biomolecules, 15(12), 1663. https://doi.org/10.3390/biom15121663

