The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of Staphylococcus Aureus
2.3. Antimicrobial Susceptibility Testing
2.4. The Detection of Antibiotic Resistant Genes
2.5. Biofilm Formation Assays
2.6. Statistical Analyses
3. Result and Discussion
3.1. The Prevalence of Staphylococcus Aureus Separated from Ready-to-Eat Food in Bulk in Sichuan Province, China
3.2. Phenotypic Resistance and the Associated Genes of Staphylococcus Aureus Isolates
3.3. The Biofilm Formation Abilities of Staphylococcus aureus Isolates
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Pei, X.; Yang, D.; Zhang, H.; Chen, Q.; Chui, H.; Qiao, X.; Huang, Y.; Liu, Q. Microbial contamination in bulk ready-to-eat meat products of China in 2016. Food Control. 2018, 91, 113–122. [Google Scholar] [CrossRef]
- Abdolshahi, A.; Naybandi-Atashi, S.; Heydari-Majd, M.; Salehi, B.; Kobarfard, F.; Ayatollahi, S.A.; Ata, A.; Tabanelli, G.; Sharifi-Rad, M.; Montanari, C.; et al. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell. Mol. Biol. 2018, 64, 71. [Google Scholar] [CrossRef]
- Argudin, M.A.; Mendoza, M.C.; Rodicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, F.; Zulqarnain, B.; Zhang, C.S.; Ma, K.; Peng, Z.X.; Yan, S.F.; Hu, Y.J.; Gan, X.; Ping, Y.; et al. Genotypic Characterization of Methicillin-resistant Staphylococcus aureus Isolated from Pigs and Retail Foods in China. Biomed. Environ. Sci. 2017, 30, 570–580. [Google Scholar] [PubMed]
- Kotzekidou, P. Microbiological examination of ready-to-eat foods and ready-to-bake frozen pastries from university canteens. Food Microbiol. 2013, 34, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, S.; Luo, W.; Su, Y.; Luan, Y.; Wang, X. Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006–2013) in Xi’an, China. Foodborne Pathog. Dis. 2015, 12, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.-Y. A Foodborne Outbreak of Staphylococcus aureus Associated with Fried Chicken in Republic of Korea. J. Microbiol. Biotechnol. 2013, 23, 85–87. [Google Scholar] [CrossRef]
- Yan, X.; Wang, B.; Tao, X.; Hu, Q.; Cui, Z.; Zhang, J.; Lin, Y.; You, Y.; Shi, X.; Grundmann, H. Characterization of Staphylococcus aureus strains associated with food poisoning in Shenzhen, China. Appl. Environ. Microbiol. 2012, 78, 6637–6642. [Google Scholar] [CrossRef]
- Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Jarajreh, D.; Aqel, A.; Alzoubi, H.; Al-Zereini, W. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: The first study in Jordan. J. Infect. Dev. Ctries 2017, 11, 350–354. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolivet-Gougeon, A.; Bonnaure-Mallet, M. Biofilms as a mechanism of bacterial resistance. Drug Discov. Today Technol. 2014, 11, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.A.; Kusuma, C.; Mond, J.J.; Kokai-Kun, J.F. Lysostaphin Disrupts Staphylococcus aureus and Staphylococcus epidermidis Biofilms on Artificial Surfaces. Antimicrob. Agents Chemother. 2003, 47, 3407–3414. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tao, X.; Xia, X.; Yang, B.; Xi, M.; Meng, J.; Zhang, J.; Xu, B. Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail raw chicken in China. Food Control. 2013, 29, 103–106. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.E.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Nannini, E.C.; Stryjewski, M.E.; Singh, K.V.; Bourgogne, A.; Rude, T.H.; Corey, G.R.; Fowler, V.G.; Murray, B.E. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: Frequency and possible cause of cefazolin treatment failure. Antimicrob. Agents Chemother. 2009, 53, 3437–3441. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Lansac, N.; Roy, P.H.; Ouellette, M.; Bergeron, M.G.; Ménard, C. Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef]
- Lina, G.; Quaglia, A.; Reverdy, M.-E.; Leclercq, R.; Vandenesch, F.; Etienne, J. Distribution of Genes Encoding Resistance to Macrolides, Lincosamides, and Streptogramins among Staphylococci. Antimicrob. Agents Chemother. 1999, 43, 1062–1066. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Sharma, M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 2010, 139, 41–47. [Google Scholar] [CrossRef]
- Diez-Garcia, M.; Capita, R.; Alonso-Calleja, C. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiol. 2012, 31, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Taguchi, M.; Kawahara, R.; Kanki, M.; Kawatsu, K. Prevalence and Antimicrobial Susceptibility of Bacterial Pathogens in Ready-to-Eat Foods Retailed in Osaka Prefecture, Japan. J. Food Prot. 2018, 81, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Yun, A.-R.; Rhee, M. Prevalence and classification of toxigenic Staphylococcus aureus isolated from refrigerated ready-to-eat foods (sushi, kimbab and California rolls) in Korea. J. Appl. Microbiol. 2011, 111, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. TrAC Trends in Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Cheatham, S.; Thapaliya, D.; Taha, M.; Milliken, K.; Dalman, M.R.; Kadariya, J.; Grenier, D.; Smith, T.C. Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus on environmental surfaces in Ohio nursing homes. Am. J. Infect. Control. 2019. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Tang, Y.; Meng, C.; Ingmer, H.; Jiao, X. Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus in chicken from retail markets in China. Food Control. 2019, 96, 158–164. [Google Scholar] [CrossRef]
- Xing, X.; Li, G.; Zhang, W.; Wang, X.; Xia, X.; Yang, B.; Meng, J. Prevalence, Antimicrobial Susceptibility, and Enterotoxin Gene Detection of Staphylococcus aureus Isolates in Ready-to-Eat Foods in Shaanxi, People’s Republic of China. J. Food Prot. 2014, 77, 331. [Google Scholar] [CrossRef]
- Zehra, A.; Gulzar, M.; Singh, R.; Kaur, S.; Gill, J. Prevalence, multidrug resistance and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in retail meat from Punjab, India. J. Glob. Antimicrob. Resist. 2019, 16, 152–158. [Google Scholar] [CrossRef]
- Thumu, S.C.; Halami, P.M. Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic Acid bacteria of food origin. Indian J. Microbiol. 2012, 52, 530–537. [Google Scholar] [CrossRef]
- Zelazny, A.M.; Ferraro, M.J.; Glennen, A.; Hindler, J.F.; Mann, L.M.; Munro, S.; Murray, P.R.; Reller, L.B.; Tenover, F.C.; Jorgensen, J.H. Selection of strains for quality assessment of the disk induction method for detection of inducible clindamycin resistance in Staphylococci: A CLSI collaborative study. J. Clin. Microbiol. 2005, 43, 2613–2615. [Google Scholar] [CrossRef]
- Kroning, I.S.; Iglesias, M.A.; Sehn, C.P.; Gandra, T.K.V.; Mata, M.M.; Da Silva, W.P. Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance. Food Microbiol. 2016, 58, 105–111. [Google Scholar] [CrossRef]
- Bimanand, L.; Taherikalani, M.; Jalilian, F.A.; Sadeghifard, N.; Ghafourian, S.; Mahdavi, Z.; Mohamadi, S.; Sayehmiri, K.; Hematian, A.; Pakzad, I. Association between biofilm production, adhesion genes and drugs resistance in different SCCmec types of methicillin resistant Staphylococcus aureus strains isolated from several major hospitals of Iran. Iran J. Basic Med. Sci. 2018, 21, 400–403. [Google Scholar]
- Aslantas, O.; Demir, C. Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases. J. Dairy Sci. 2016, 99, 8607–8613. [Google Scholar] [CrossRef]
Antimicrobial Category | Antimicrobial Agent |
---|---|
Penicillins | Penicillin |
Aminoglycosides | Gentamicin |
Ansamycins | Rifampin |
Anti-staphylococcal β-lactams | Oxacillin |
Cefoxitin | |
Fluoroquinolones | Ciprofloxacin |
Levofloxacin | |
Moxifloxacin | |
Folate pathway inhibitors | Trimethoprim/sulphamethoxazole |
Glycopeptides | Vancomycin |
Tigecycline | |
Macrolide | Erythromycin |
Lincosamide | Clindamycin |
Oxazolidinones | Linezolid |
Streptogramins B | Quinupristin/dalfopristin |
Tetracyclines | Tetracycline |
Macrolide-Lincosamide-Streptogramin B | Inducible Clindamycin Resistance |
Antibiotics | Target Gene | Primer Sequence (5’-3’) | Size (bp) | Reference |
---|---|---|---|---|
Penicillin | blaZ | F: CAAAGATGATATAGTTGCTTATTC | 355 | [17] |
R: CATATGTTATTGCTTGCACCAC | ||||
Cefoxitin Oxacillin | mecA | F: AACAGGTGAATTATTAGCACTTGTAAG | 173 | [18] |
R: ATTGCTGTTAATATTTTTTGAGTTGAA | ||||
Inducible clindamycin resistance Erythromycin Clindamycin | ermA | F: GTTCAAGAACAATCAATACAGAG | 421 | [19] |
R: GGATCAGGAAAAGGACATTTTAC | ||||
ermC | F: GCTAATATTG TTTAAATCGT CAATTCC | 572 | ||
R: GGATCAGGAAAAGGACATTTTAC | ||||
Tetracycline | tetL | F: TCGTTAGCGTGCTGTCATTC | 267 | [9] |
R: GTATCCCACCAATGTAGCCG | ||||
tetM | F: GTGGACAAAGGTACAACGAG | 406 | ||
R: CGGTAAAGT TCG TCACACAC | ||||
tetK | F: TCGATAGGAACAGCAGTA | 169 | ||
R: CAGCAGATCCTACTCCTT |
Types of RTEIB | Total No. of Samples | Detection of S. aureus | ||||
---|---|---|---|---|---|---|
No. (%) of Samples | No. S. aureus | No. MDR a | No. XDR b | No. MRSA | ||
Meat product | 1209 | 24 (2.0) | 31 | 10 | 0 | 1 |
Dairy | 200 | 4 (2.0) | 6 | 6 | 0 | 0 |
Fruit and vegetable | 401 | 7 (1.8) | 9 | 3 | 0 | 0 |
Dessert | 350 | 7 (2.0) | 8 | 2 | 0 | 2 |
Total | 2160 | 42 (1.9) | 54 | 21 | 0 | 3 |
Source * | Antimicrobial Resistance Profiles ** | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | E | CM | TE | ICR | CIP | GM | SXT | LEV | MXF | FOX | OX | RD | |
Meat product | 27 | 14 | 11 | 8 | 7 | 4 | 2 | 2 | 3 | 3 | 1 | 1 | 1 |
Dairy | 6 | 6 | 6 | 3 | 2 | 3 | 2 | ||||||
Fruit and vegetable | 8 | 3 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | ||||
Dessert | 8 | 2 | 2 | 3 | 1 | 2 | 2 | ||||||
Total (54 isolates) | 49 | 25 | 22 | 12 | 10 | 7 | 7 | 6 | 4 | 4 | 3 | 3 | 1 |
Penicillin | Erythromycin | Clindamycin | Tetracycline | Inducible Clindamycin Resistance | Biofilm Formation Ability ** | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P | G (blaZ) | P | G (erm) * | P | G (erm) * | P | G (tet) * | P | G (erm) * | ||
Meat product | |||||||||||
MT01 | R *** | + | R | + | R | + | R | + | + | None | |
MT02 | R | + | R | + | R | + | + | R | + | Strong | |
MT03 | R | + | R | + | R | + | + | R | + | Strong | |
MT04 | R | + | R | + | R | + | + | + | Weak | ||
MT05 | R | + | R | + | R | + | R | + | R | + | Weak |
MT06 | R | + | R | + | R | + | + | R | + | None | |
MT07 | R | + | R | + | R | + | + | R | + | Weak | |
MT08 | R | + | R | + | R | + | + | R | + | Weak | |
MT09 | R | + | R | + | R | + | + | + | None | ||
MT10 | + | R | + | R | + | + | R | + | Weak | ||
MT11 | R | + | R | + | + | R | + | + | Weak | ||
MT12 | R | + | + | + | + | None | |||||
MT13 | + | R | + | R | + | + | + | None | |||
MT14 | R | + | + | + | R | + | + | Moderate | |||
MT15 | R | + | + | + | R | + | + | Weak | |||
MT16 | R | + | + | + | R | + | + | Weak | |||
MT17 | R | + | R | + | Weak | ||||||
MT18 | R | + | R | + | + | R | + | + | Weak | ||
MT19 | R | + | R | + | + | + | + | Weak | |||
MT20 | + | + | + | R | + | + | Weak | ||||
MT21 | R | + | + | + | + | + | Weak | ||||
MT22 | R | + | + | + | + | + | None | ||||
MT23 | R | + | + | + | + | + | Weak | ||||
MT24 | R | + | + | + | + | + | None | ||||
MT25 | R | + | + | + | + | + | Weak | ||||
MT26 | R | + | + | + | + | + | None | ||||
MT27 | R | + | + | None | |||||||
MT28 | R | + | + | Weak | |||||||
MT29 | R | + | + | Weak | |||||||
MT30 | R | + | None | ||||||||
MT31 | R | + | + | + | + | + | None | ||||
Dairy | |||||||||||
DY01 | R | + | R | + | R | + | + | + | Weak | ||
DY02 | R | + | R | + | R | + | + | + | Weak | ||
DY03 | R | + | R | + | R | + | + | + | Weak | ||
DY04 | R | + | R | + | R | + | + | R | + | Weak | |
DY05 | R | + | R | + | R | + | + | R | + | Weak | |
DY06 | R | + | R | + | R | + | + | R | + | Weak | |
Fruit and vegetable | |||||||||||
FV01 | R | + | R | + | R | + | + | + | None | ||
FV02 | R | + | R | + | R | + | + | + | None | ||
FV03 | R | + | R | + | R | + | + | + | None | ||
FV04 | R | + | + | + | + | + | None | ||||
FV05 | R | + | + | + | R | + | + | Weak | |||
FV06 | R | + | + | + | + | + | Weak | ||||
FV07 | R | + | + | + | + | + | None | ||||
FV08 | R | + | None | ||||||||
FV09 | + | + | + | + | + | Weak | |||||
Dessert | |||||||||||
CY01 | R | + | R | + | R | + | R | + | + | Weak | |
CY02 | R | + | R | + | R | + | R | + | + | None | |
CY03 | R | + | + | + | R | + | + | None | |||
CY04 | R | + | + | + | + | + | Weak | ||||
CY05 | R | + | + | Weak | |||||||
CY06 | R | + | + | + | + | + | Weak | ||||
CY07 | R | + | + | + | + | + | None | ||||
CY08 | R | + | + | + | + | + | None |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Sun, H.; Yao, K.; Cai, J.; Ren, Y.; Chi, Y. The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods. Biomolecules 2019, 9, 524. https://doi.org/10.3390/biom9100524
Lin Q, Sun H, Yao K, Cai J, Ren Y, Chi Y. The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods. Biomolecules. 2019; 9(10):524. https://doi.org/10.3390/biom9100524
Chicago/Turabian StyleLin, Qi, Honghu Sun, Kai Yao, Jiong Cai, Yao Ren, and Yuanlong Chi. 2019. "The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods" Biomolecules 9, no. 10: 524. https://doi.org/10.3390/biom9100524
APA StyleLin, Q., Sun, H., Yao, K., Cai, J., Ren, Y., & Chi, Y. (2019). The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods. Biomolecules, 9(10), 524. https://doi.org/10.3390/biom9100524