Uptake of 18F-AV45 in the Putamen Provides Additional Insights into Alzheimer’s Disease beyond the Cortex
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. AV45-PET, MRI, and CSF Acquisition and Analysis
2.3. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. SUVRs in the Putamen and Caudate Nucleus Have Differentiated Association with Cognitive Scores and Age
3.3. Group Categorization
3.4. Clinical and Biological Differences between LowP, MidP, and HighP Groups
3.5. Association of Putamen Amyloid with Cognitive Decline
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Silverberg, N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef]
- Camus, V.; Payoux, P.; Barré, L.; Desgranges, B.; Voisin, T.; Tauber, C.; La Joie, R.; Tafani, M.; Hommet, C.; Chételat, G.; et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Rabinovici, G.; Furst, A.; O’neil, J.; Racine, C.; Mormino, E.; Baker, S.; Chetty, S.; Patel, P.; Pagliaro, T.; Klunk, W. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007, 68, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.M.; Schneider, J.A.; Bedell, B.J.; Beach, T.G.; Bilker, W.B.; Mintun, M.A.; Pontecorvo, M.J.; Hefti, F.; Carpenter, A.P.; Flitter, M.L. Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 2011, 305, 275–283. [Google Scholar] [CrossRef]
- Landau, S.M.; Mintun, M.A.; Joshi, A.D.; Koeppe, R.A.; Petersen, R.C.; Aisen, P.S.; Weiner, M.W.; Jagust, W.J. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 2012, 72, 578–586. [Google Scholar] [CrossRef]
- Klunk, W.E.; Koeppe, R.A.; Price, J.C.; Benzinger, T.L.; Devous, M.D., Sr.; Jagust, W.J.; Johnson, K.A.; Mathis, C.A.; Minhas, D.; Pontecorvo, M.J. The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement. 2015, 11, 1–15.e14. [Google Scholar] [CrossRef]
- Resnick, S.; Sojkova, J.; Zhou, Y.; An, Y.; Ye, W.; Holt, D.; Dannals, R.; Mathis, C.; Klunk, W.; Ferrucci, L. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C] PiB. Neurology 2010, 74, 807–815. [Google Scholar] [CrossRef]
- Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, J.; Yoshimura, M.; Morishima-Kawashima, M.; Funato, H.; Miyakawa, T.; Yamazaki, T.; Ihara, Y. Amyloid β-protein (Aβ) accumulation in the putamen and mammillary body during aging and in Alzheimer disease. J. Neuropathol. Exp. Neurol. 1998, 57, 343–352. [Google Scholar] [CrossRef]
- Hanseeuw, B.J.; Betensky, R.A.; Mormino, E.C.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Jacobs, H.I.; Buckley, R.F.; LaPoint, M.R.; Vannini, P. PET staging of amyloidosis using striatum. Alzheimer’s Dement. 2018, 14, 1281–1292. [Google Scholar] [CrossRef]
- Cho, S.H.; Shin, J.-H.; Jang, H.; Park, S.; Kim, H.J.; Kim, S.E.; Kim, S.J.; Kim, Y.; Lee, J.S.; Na, D.L.; et al. Amyloid involvement in subcortical regions predicts cognitive decline. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Grothe, M.J.; Barthel, H.; Sepulcre, J.; Dyrba, M.; Sabri, O.; Teipel, S.J. In vivo staging of regional amyloid deposition. Neurology 2017, 89, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Di Battista, A.M.; Heinsinger, N.M.; Rebeck, G.W. Alzheimer’s Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Curr. Alzheimer Res. 2016, 13, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Parent, A.; Hazrati, L.-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 1995, 20, 91–127. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Brovelli, A.; Nazarian, B.; Meunier, M.; Boussaoud, D. Differential roles of caudate nucleus and putamen during instrumental learning. NeuroImage 2011, 57, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M. The neuronal mechanism underlying parkinsonism and dyskinesia: Differential roles of the putamen and caudate nucleus. Neurosci. Res. 1991, 12, 31–40. [Google Scholar] [CrossRef]
- Landau, S.M.; Fero, A.; Baker, S.L.; Koeppe, R.; Mintun, M.; Chen, K.; Reiman, E.M.; Jagust, W.J. Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J. Nucl. Med. 2015, 56, 567–574. [Google Scholar] [CrossRef]
- Chen, K.; Roontiva, A.; Thiyyagura, P.; Lee, W.; Liu, X.; Ayutyanont, N.; Protas, H.; Luo, J.L.; Bauer, R.; Reschke, C. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J. Nucl. Med. 2015, 56, 560–566. [Google Scholar] [CrossRef]
- Mattsson, N.; Palmqvist, S.; Stomrud, E.; Vogel, J.; Hansson, O. Staging β-amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 2019, 76, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Raz, N.; Daugherty, A.M.; Bender, A.R.; Dahle, C.L.; Land, S. Volume of the hippocampal subfields in healthy adults: Differential associations with age and a pro-inflammatory genetic variant. Brain Struct. Funct. 2015, 220, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.G.; Gunter, J.L.; Wiste, H.J.; Przybelski, S.A.; Weigand, S.D.; Ward, C.P.; Senjem, M.L.; Vemuri, P.; Murray, M.E.; Dickson, D.W.; et al. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer’s disease severity. Neuroimage Clin. 2016, 11, 802–812. [Google Scholar] [CrossRef]
- Bittner, T.; Zetterberg, H.; Teunissen, C.E.; Ostlund, R.E., Jr.; Militello, M.; Andreasson, U.; Hubeek, I.; Gibson, D.; Chu, D.C.; Eichenlaub, U. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid. Alzheimer’s Dement. 2016, 12, 517–526. [Google Scholar] [CrossRef]
- Blennow, K.; Shaw, L.M.; Stomrud, E.; Mattsson, N.; Toledo, J.B.; Buck, K.; Wahl, S.; Eichenlaub, U.; Lifke, V.; Simon, M.; et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1–42), pTau and tTau CSF immunoassays. Sci. Rep. 2019, 9, 19024. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Ataka, S.; Mizuno, T.; Brooks, W.S.; Wada, Y.; Kondo, M.; Jones, G.; Watanabe, Y.; Mulligan, R.; Nakagawa, M.; et al. High Striatal Amyloid β-Peptide Deposition Across Different Autosomal Alzheimer Disease Mutation Types. Arch. Neurol. 2009, 66, 1537–1544. [Google Scholar] [CrossRef]
- Klunk, W.E.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Lopresti, B.J.; Ziolko, S.K.; Bi, W.; Hoge, J.A.; Cohen, A.D.; Ikonomovic, M.D.; et al. Amyloid Deposition Begins in the Striatum of Presenilin-1 Mutation Carriers from Two Unrelated Pedigrees. J. Neurosci. 2007, 27, 6174–6184. [Google Scholar] [CrossRef]
- Jansen, W.J.; Janssen, O.; Tijms, B.M.; Vos, S.J.B.; Ossenkoppele, R.; Visser, P.J.; Aarsland, D.; Alcolea, D.; Altomare, D.; von Arnim, C.; et al. Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurol. 2022, 79, 228–243. [Google Scholar] [CrossRef]
- Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; et al. Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly. Arch. Neurol. 2008, 65, 1509–1517. [Google Scholar] [CrossRef]
- Ottoy, J.; Verhaeghe, J.; Niemantsverdriet, E.; Wyffels, L.; Somers, C.; De Roeck, E.; Struyfs, H.; Soetewey, F.; Deleye, S.; Van den Bossche, T. Validation of the semiquantitative static SUVR method for 18F-AV45 PET by pharmacokinetic modeling with an arterial input function. J. Nucl. Med. 2017, 58, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 2004, 44, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Hedden, T.; Gabrieli, J.D. Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Konishi, K.; Etchamendy, N.; Roy, S.; Marighetto, A.; Rajah, N.; Bohbot, V.D. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 2013, 23, 1005–1014. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef] [PubMed]
CN | MCI | Dementia | p Value | |
---|---|---|---|---|
Diagnosis | 67 | 334 | 112 | |
Age | 75.9 (6.3) | 74.9 (7.1) | 75.4 (7.5) | 0.43 |
Education (years) | 16.4 (2.6) | 16.0 (2.7) | 15.3 (2.6) | 0.02 |
Female sex, no. (%) | 48 (71.6) | 150 (44.9) | 55 (49.1) | 0.0003 |
MoCA | 25.9 (2.2) | 22.6 (3.1) | 15.6 (4.5) | 8.2 × 10−49 |
ADAS-cog13 | 8.5 (4.5) | 17.8 (7.0) | 34.0 (8.9) | 7.8 × 10−58 |
APOE status, non-ε4/ε4-hetero/ε4-homo * | 32/31/4 | 113/164/52 | 31/59/21 | 0.03 |
Fixed Effect | Beta | SE | t Value | p Value |
---|---|---|---|---|
Age | 0.02 | 0.08 | 0.26 | 0.80 |
Education | −0.65 | 0.20 | −3.18 | 0.0015 |
LowP | 25.49 | 6.95 | 3.67 | 0.0003 |
MidP | 29.87 | 6.88 | 4.34 | 1.5 × 10−5 |
HighP | 31.91 | 6.99 | 4.56 | 5.3 × 10−6 |
LowP × years of follow-up | 1.12 | 0.13 | 8.94 | 8.9 × 10−19 |
MidP × years of follow-up | 1.90 | 0.12 | 15.23 | 1.2 × 10−49 |
HighP × years of follow-up | 2.85 | 0.15 | 18.59 | 2.6 × 10−71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Kinney, J.W.; Cordes, D.; The Alzheimer’s Disease Neuroimaging Initiative. Uptake of 18F-AV45 in the Putamen Provides Additional Insights into Alzheimer’s Disease beyond the Cortex. Biomolecules 2024, 14, 157. https://doi.org/10.3390/biom14020157
Yang Z, Kinney JW, Cordes D, The Alzheimer’s Disease Neuroimaging Initiative. Uptake of 18F-AV45 in the Putamen Provides Additional Insights into Alzheimer’s Disease beyond the Cortex. Biomolecules. 2024; 14(2):157. https://doi.org/10.3390/biom14020157
Chicago/Turabian StyleYang, Zhengshi, Jefferson W. Kinney, Dietmar Cordes, and The Alzheimer’s Disease Neuroimaging Initiative. 2024. "Uptake of 18F-AV45 in the Putamen Provides Additional Insights into Alzheimer’s Disease beyond the Cortex" Biomolecules 14, no. 2: 157. https://doi.org/10.3390/biom14020157
APA StyleYang, Z., Kinney, J. W., Cordes, D., & The Alzheimer’s Disease Neuroimaging Initiative. (2024). Uptake of 18F-AV45 in the Putamen Provides Additional Insights into Alzheimer’s Disease beyond the Cortex. Biomolecules, 14(2), 157. https://doi.org/10.3390/biom14020157