Open AccessEditor’s ChoiceArticle
State-Selective Differential Cross Sections for Single-Electron Capture in Slow He+–He Collisions
by
Shucheng Cui, Kaizhao Lin, Dadi Xing, Ling Liu, Dongmei Zhao, Dalong Guo, Yong Gao, Shaofeng Zhang, Yong Wu, Chenzhong Dong, Xiaolong Zhu and Xinwen Ma
Viewed by 963
Abstract
A combined experimental and theoretical study is carried out on the single-electron capture process in He
+–He collisions at energies ranging from 0.5 keV/u to 5 keV/u. Using cold target recoil ion momentum spectroscopy, we obtain state-selective cross sections and angular differential
[...] Read more.
A combined experimental and theoretical study is carried out on the single-electron capture process in He
+–He collisions at energies ranging from 0.5 keV/u to 5 keV/u. Using cold target recoil ion momentum spectroscopy, we obtain state-selective cross sections and angular differential cross sections. Within the entire studied energy range, the dominant channel is the electron captured into the ground-state, and the relative contribution of the dominant channel shows a decreasing trend with increasing energy. The angular differential cross sections of ground-state capture exhibit obvious oscillatory structures. To understand the oscillatory structures of the differential cross sections, we also performed theoretical calculations using the two-center atomic orbital close-coupling method, which well reproduced the oscillatory structures. The results indicate that these structures are strongly correlated to the oscillatory structures of the impact parameter dependence of electron probability.
Full article
►▼
Show Figures