Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions
Abstract
1. Introduction
2. Theory and Computations
2.1. Energy-Dependent Photoabsorption Cross-Sections
2.2. Photoabsorption Cascades
2.3. Implementation of Photoabsorption Cross-Sections Within the Jac Toolbox
2.4. Data Structures Useful for Photoabsorption Studies
3. Photoabsorption Cross-Sections for Singly and Multiply Charged Ions
3.1. Photoabsorption of C+ Ions near to Their 1s → 2p Resonances
3.2. Photoabsorption of Xe2+ Ions Due to Excitations from Different Valence Shells
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brandt, W.; Eder, L.; Lundqvist, S. Atomic photoabsorption cross sections. J. Quant. Spectrosc. Radiat. Transf. 1967, 1, 185. [Google Scholar] [CrossRef]
- Olney, T.N.; Cann, N.M.; Cooper, G.; Brion, C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem. Phys. 1997, 223, 59. [Google Scholar] [CrossRef]
- Norrish, R.G.W.; Porter, G. Chemical reactions produced by very high light intensities. Nature 1949, 164, 4172. [Google Scholar] [CrossRef]
- Shikawa, K.; Felderhof, B.U.; Blenski, T.; Cichocki, B. Photoabsorption by an ion immersed in a plasma at any temperature. J. Plasma Phys. 1998, 60, 787. [Google Scholar] [CrossRef]
- Salzmann, D.; Wendin, G. Calculation of the photoabsorption coefficient in a hot and dense aluminum plasma. Phys. Rev. A 1978, 18, 2695. [Google Scholar] [CrossRef]
- Bhatia, A.K. Scattering and its applications to various atomic processes: Elastic scattering, resonances, photoabsorption, Rydberg states, and opacity of the atmosphere of the Sun and stellar objects. Atoms 2020, 8, 78. [Google Scholar] [CrossRef]
- Shulyak, D.; Tsymbal, V.; Ryabchikova, T.; Stütz, C.; Weiss, W.W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 2004, 428, 993. [Google Scholar] [CrossRef]
- Hisaka, A.; Sasakura, Y. Light scattering characteristics of biological tissues in coaxial ultrasound-modulated optical tomography. Jap. J. Appl. Phys. 2009, 48, 067002. [Google Scholar] [CrossRef]
- Nakayama, M.; Masai, K. Properties of photoionized gas in accretion-powered sources. Astron. Astrophys. 2001, 375, 328. [Google Scholar] [CrossRef]
- Gorti, U.; Hollenbach, D. Models of chemistry, thermal balance, and infrared spectra from intermediate-aged disks around G and K stars. Astrophys. J. 2004, 613, 424. [Google Scholar] [CrossRef]
- Matsuzawa, N.N.; Ishitani, A.; Dixon, D.A.; Uda, T. Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region. J. Phys. Chem. A 2001, 105, 4953. [Google Scholar] [CrossRef]
- Tenorio, B.N.C.; Nascimento, M.A.C.; Rocha, A.B. Time-dependent density functional theory description of total photoabsorption cross sections. J. Chem. Phys. 2018, 148, 074104. [Google Scholar] [CrossRef]
- Senashenko, V.S.; Wague, A. Resonance photoabsorption of the helium atom in the vicinity of the (3s3p) 1P resonance. J. Phys. B 1979, 12, L269. [Google Scholar] [CrossRef]
- Perry-Sassmannshausen, A.; Buhr, T.; Borovik, A., Jr.; Martins, M.; Reinwardt, S.; Ricz, S.; Stock, S.O.; Trinter, F.; Müller, A.; Fritzsche, S.; et al. Multiple photodetachment of carbon anions via single and double core-hole creation. Phys. Rev. Lett. 2020, 124, 083203. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.W.; Wang, J.Q.; Li, Y.; An, Y.H.; Fritzsche, S. Relativistic R-matrix calculations for the photoionization of W61+ ions. Phys. Plasma 2024, 31, 043301. [Google Scholar] [CrossRef]
- Stetina, T.F.; Sun, S.; Williams-Young, D.B.; Li, X. Modeling magneto-photoabsorption using time-dependent complex generalized Hartree-Fock. Chem. Photo Chem. 2019, 3, 739. [Google Scholar] [CrossRef]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comp. Phys. Commun. 2019, 240, 1–14. [Google Scholar] [CrossRef]
- Fritzsche, S.; Sahoo, A.K.; Sharma, L.; Wu, Z.W.; Schippers, S. Merits of atomic cascade computations. Eur. Phys. J. D 2024, 78, 75. [Google Scholar] [CrossRef]
- Kramida, A. Cowan code: 50 years of growing impact on atomic physics. Atoms 2019, 7, 64. [Google Scholar] [CrossRef]
- Gu, L.; Raassen, A.J.J.; Mao, J.; de Plaa, J.; Shah, C.; Pinto, C.; Werner, N.; Simionescu, A.; Mernier, F.; Kaastra, J.S. X-ray spectra of the Fe-L complex. Astron. Astrophys. 2019, 627, A51. [Google Scholar] [CrossRef]
- Fritzsche, S. The Ratip program for relativistic calculations of atomic transition, ionization and recombination properties. Comp. Phys. Commun. 2012, 183, 1525. [Google Scholar] [CrossRef]
- Ihra, W. Statistical theory of Fano resonances in atomic and molecular photoabsorption. Phys. Rev. A 2002, 66, 020701. [Google Scholar] [CrossRef][Green Version]
- Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Fritzsche, S.; Limpert, J.; Tünnermann, A. Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances. Phys. Rev. Lett. 2014, 112, 233002. [Google Scholar] [CrossRef]
- Rouvellou, B.; Journel, L.; Bizau, J.M.; Cubaynes, D.; Wuilleumier, F.J.; Richter, M.; Selbmann, K.-H.; Zimmermann, P. Direct double photoionization of atomic sodium. Phys. Rev. A 1994, 50, 4868. [Google Scholar] [CrossRef] [PubMed]
- Starace, A.F. Photoionization of atoms. In Springer Handbook of Atomic, Molecular, and Optical Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 283. [Google Scholar]
- Fritzsche, S.; Palmeri, P.; Schippers, S. Atomic cascade computations. Symmetry 2021, 13, 520. [Google Scholar] [CrossRef]
- Schippers, S.; Borovik, A., Jr.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Müller, A.; Ricz, S.; et al. Stepwise contraction of the nf Rydberg shells in the 3d photoionization of multiply-charged xenon ions. J. Phys. B 2015, 48, 144003. [Google Scholar] [CrossRef]
- Beerwerth, R.; Buhr, T.; Perry-Sassmannshausen, A.; Stock, S.O.; Bari, S.; Holste, K.; Kilcoyne, A.L.D.; Reinwardt, S.; Ricz, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of triply charged iron ions. Astrophys. J. 2019, 887, 189. [Google Scholar] [CrossRef]
- Fritzsche, S.; Maiorova, A.V.; Wu, Z.W. Radiative recombination plasma rate coefficients for multiply charged ions. Atoms 2023, 11, 50. [Google Scholar] [CrossRef]
- Fritzsche, S. Dielectronic recombination strengths and plasma rate coefficients of multiply charged ions. Astron. Astrophys. 2021, 656, A163. [Google Scholar] [CrossRef]
- Donnelly, D.; Bell, K.L.; Hibbert, A. Breit-Pauli R-matrix calculation of the 3p photoabsorption of singly ionized chromium. J. Phys. B 1997, 30, L285. [Google Scholar] [CrossRef]
- Garcia, J.; Mendoza, C.; Bautista, M.A.; Gorczyca, T.W.; Kallman, T.R.; Palmeri, P. K-shell photoabsorption of oxygen ions. Astrophys. J. Suppl. Ser. 2005, 158, 68. [Google Scholar] [CrossRef]
- Delahaye, F.; Ballance, C.P.; Smyth, R.T.; Badnell, N.R. Quantitative comparison of opacities calculated using the R-matrix and distorted-wave methods: Fe XVII. Mon. Not. R. Astron. Soc. 2021, 508, 421. [Google Scholar] [CrossRef]
- Fritzsche, S. Application of symmetry-adapted atomic amplitudes. Atoms 2022, 10, 127. [Google Scholar] [CrossRef]
- Fritzsche, S. JAC: User Guide, Compendium & Theoretical Background. Available online: https://github.com/OpenJAC/JAC.jl (accessed on 10 July 2025).
- Schippers, S.; Beerwerth, R.; Abrok, L.; Bari, S.; Buhr, T.; Martins, M.; Ricz, S.; Viefhaus, J.; Fritzsche, S.; Müller, A. Prominent role of multielectron processes in K-shell double and triple photodetachment of oxygen anions. Phys. Rev. A 2016, 94, 041401. [Google Scholar] [CrossRef]
- Müller, A.; Müller, A.; Martins, M.; Borovik, A., Jr.; Buhr, T.; Perry-Sassmannshausen, A.; Reinwardt, S.; Trinter, F.; Schippers, S.; Fritzsche, S.; et al. Role of L-shell single and double core-hole production and decay in m-fold (1 ≤ m ≤ 6) photoionization of the Ar+ ion. Phys. Rev. A 2021, 104, 033105. [Google Scholar] [CrossRef]
- Schippers, S.; Martins, M.; Beerwerth, R.; Bari, S.; Holste, K.; Schubert, K.; Viefhaus, J.; Savin, D.W.; Fritzsche, S.; Müller, A. Near L-edge single and multiple photoionization of singly charged iron ions. Astrophys. J. 2017, 849, 5. [Google Scholar] [CrossRef]
- Julia 1.10 Documentation. Available online: https://docs.julialang.org/ (accessed on 5 May 2025).
- Bezanson, J.; Chen, J.; Chung, B.; Karpinski, S.; Shah, V.B.; Vitek, J.; Zoubritzky, J. Julia: Dynamism and performance reconciled by design. In Proceedings of the ACM on Programming Languages; Association for Computing Machinery: New York, NY, USA, 2018; Volume 2, p. 120. [Google Scholar]
- Heays, A.N.; Bosman, A.V.; Van Dishoeck, E.F. Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 2017, 602, A105. [Google Scholar] [CrossRef]
- Ehrenfreund, P.; Sephton, M.A. Carbon molecules in space: From astrochemistry to astrobiology. Faraday Discuss. 2006, 133, 277. [Google Scholar] [CrossRef]
- Ziurys, L.M.; Halfen, D.T.; Geppert, W.; Aikawa, Y. Following the interstellar history of carbon: From the interiors of stars to the surfaces of planets. Astrobiology 2016, 16, 997. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Aldcroft, T.L.; Bautz, M.; Cameron, R.A.; Dewey, D.; Drake, J.J.; Grant, C.E.; Marshall, H.L.; Murray, S.S. An overview of the performance of the Chandra x-ray observatory. Exp. Astron. 2003, 16, 1–68. [Google Scholar] [CrossRef]
- Psaradaki, I.; Corrales, L.; Werk, J.; Jensen, A.G.; Costantini, E.; Mehdipour, M.; Cilley, R.; Schulz, N.; Kaastra, J.; García, J.A.; et al. Elemental abundances in the diffuse interstellar medium from joint far-ultraviolet and x-ray spectroscopy: Iron, oxygen, carbon, and sulfur. Astron. J. 2024, 167, 217. [Google Scholar] [CrossRef]
- Müller, A.; Müller, A.; Borovik, A., Jr.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Ricz, S. Near-K-edge single, double, and triple photoionization of C+ ions. Phys. Rev. A 2018, 97, 013409. [Google Scholar] [CrossRef]
- Parpia, F.A.; Johnson, W.R.; Radojevic, V. Application of the relativistic local-density approximation to photoionization of the outer shells of neon, argon, krypton, and xenon. Phys. Rev. A 1984, 29, 3173. [Google Scholar] [CrossRef]
- Kutzner, M.M.; Radojevic, V.; Kelly, H.P. Extended photoionization calculations for xenon. Phys. Rev. A 1989, 40, 5052. [Google Scholar] [CrossRef]
- Connerade, J.P.; Lane, A.M. Interacting resonances in atomic spectroscopy. Rep. Prog. Phys. 1988, 51, 1439. [Google Scholar] [CrossRef]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181. [Google Scholar] [CrossRef]
- Magrakvelidze, M.; Madjet, M.E.A.; Chakraborty, H.S. Attosecond delay of xenon 4d photoionization at the giant resonance and Cooper minimum. Phys. Rev. A 2016, 94, 013429. [Google Scholar] [CrossRef]
- Holste, K.; Dietz, P.; Scharmann, S.; Keil, K.; Henning, T.; Zschätzsch, D.; Reitemeyer, M.; Nauschütt, B.; Kiefer, F.; Kunze, F.; et al. Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Rev. Sci. Instr. 2020, 91, 6. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, C.; Löhle, S.; Fasoulas, S.; Leiter, H.; Fritzsche, S.; Auweter–Kurtz, M. Photon laser-induced fluorescence of neutral xenon in a thin xenon plasma. J. Propuls. Power 2012, 28, 1116. [Google Scholar] [CrossRef]
- Fahy, K.; Dunne, P.; McKinney, L.; O’Sullivan, G.; Sokell, E.; White, J.; Aguilar, A.; Pomeroy, J.M.; Tan, J.N.; Blagojević, B.; et al. UTA versus line emission for EUVL: Studies on xenon emission at the NIST EBIT. J. Phys. D 2004, 37, 3225. [Google Scholar] [CrossRef]
- Mazevet, S.; Abdallah, J. Mixed UTA and detailed line treatment for mid-Z opacity and spectral calculations. J. Phys. B 2006, 39, 3419. [Google Scholar] [CrossRef]
- Andersen, P.; Andersen, T.; Folkmann, F.; Ivanov, V.K.; Kjeldsen, H.; West, J.B. Absolute crosssections for the photoionization of 4d electrons in Xe+ and Xe2+ ions. J. Phys. B 2001, 34, 2009. [Google Scholar] [CrossRef]
- Schippers, S.; Buhr, T.; Borovik, A., Jr.; Holste, K.; Perry-Sassmannshausen, A.; Mertens, K.; Reinwardt, S.; Martins, M.; Klumpp, S.; Schubert, K.; et al. The photon-ion merged-beams experiment PIPE at PETRA III—The first five years. X-Ray Spectrosc. 2020, 49, 11. [Google Scholar] [CrossRef]
- Schippers, S.; Perry-Sassmannshausen, A.; Buhr, T.; Martins, M.; Fritzsche, S.; Müller, A. Multiple photodetachment of atomic anions via single and double core-hole creation. J. Phys. B 2020, 53, 192001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritzsche, S.; Sahoo, A.K.; Sharma, L.; Schippers, S. Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions. Atoms 2025, 13, 77. https://doi.org/10.3390/atoms13090077
Fritzsche S, Sahoo AK, Sharma L, Schippers S. Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions. Atoms. 2025; 13(9):77. https://doi.org/10.3390/atoms13090077
Chicago/Turabian StyleFritzsche, Stephan, Aloka Kumar Sahoo, Lalita Sharma, and Stefan Schippers. 2025. "Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions" Atoms 13, no. 9: 77. https://doi.org/10.3390/atoms13090077
APA StyleFritzsche, S., Sahoo, A. K., Sharma, L., & Schippers, S. (2025). Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions. Atoms, 13(9), 77. https://doi.org/10.3390/atoms13090077