Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems
Abstract
1. Introduction
2. Derivation
2.1. Mathematical Foundations
2.2. Radius Perturbation Theory
2.3. Comparison to the Literature
3. Numerical Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Strong-Interaction Shifts: S Versus Non-S States
References
- Baptista, G.; Rathi, S.; Roosa, M.; Senetaire, Q.; Sommerfeldt, J.; Azuma, T.; Becker, D.; Butin, F.; Eizenberg, O.; Fowler, J.; et al. Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED. arXiv 2025, arXiv:2501.08893. [Google Scholar] [CrossRef]
- Adkins, G.S.; Jentschura, U.D. Bound Deuteron–Antideuteron System (Deuteronium): Leading Radiative and Internal–Structure Corrections to Bound-State Energies. arXiv 2025, arXiv:2506.15974v1 [hep-ph]. [Google Scholar]
- Gasser, J.; Lyubovitskij, V.E.; Rusetsky, A. Hadronic atoms in QCD + QED. Phys. Rep. 2008, 456, 167–251. [Google Scholar] [CrossRef]
- Trueman, T.L. Energy level shifts in atomic states of strongly-interacting particles. Nucl. Phys. 1961, 26, 57–67. [Google Scholar] [CrossRef]
- Carbonell, J.; Richard, J.-M.; Wycech, S. On the relation between protonium level shifts and nucleon–antinucleon scattering amplitudes. Z. Phys. A 1992, 343, 325–329. [Google Scholar] [CrossRef]
- Batty, C.J.; Friedman, E.; Gal, A. Unified optical-model approach to low-energy antiproton annihilation on nuclei and to antiprotonic atoms. Nucl. Phys. A 2001, 689, 721–740. [Google Scholar] [CrossRef]
- Klempt, E.; Bradamante, F.; Martin, A.; Richard, J.-M. Antinucleon–nucleon interaction at low energy: Scattering and protonium. Phys. Rep. 2002, 368, 119–316. [Google Scholar] [CrossRef]
- Adeva, B.; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; et al. First measurement of the π+π− atom lifetime. Phys. Lett. B 2005, 619, 50–60. [Google Scholar] [CrossRef]
- DIRAC Collaboration. First observation of long-lived π+π− atoms. arXiv 2015, arXiv:1508.04712. [Google Scholar] [CrossRef]
- Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Cechak, T.; Chiba, M.; et al. Measurement of the πK atom lifetime and the πK scattering length. Phys. Rev. D 2017, 96, 052002. [Google Scholar] [CrossRef]
- Pionic Hydrogen Collaboration at PSI. Available online: http://pihydrogen.web.psi.ch (accessed on 1 September 2025).
- Hauser, P.; Kirch, K.; Simons, L.M.; Borchert, G.; Gotta, D.; Siems, T.; El-Khoury, P.; Indelicato, P.; Augsburger, M.; Chatellard, D.; et al. New precision measurement of the pionic s-wave strong interaction parameters. Phys. Rev. D 1998, 58, 1869(R)–1872(R). [Google Scholar] [CrossRef]
- Beer, G.; Bragadireanu, A.M.; Cargnelli, M.; Curceanu-Petrascu, C.; Egger, J.-P.; Fuhrmann, H.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Itahashi, K.; et al. Measurement of the Kaonic Hydrogen X–Ray Spectrum. Phys. Rev. Lett. 2005, 94, 212302. [Google Scholar] [CrossRef] [PubMed]
- Safronova, M.S.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef]
- Jentschura, U.D. Muonic Bound Systems, Strong–Field Quantum Electrodynamics and Proton Radius. Phys. Rev. A 2015, 92, 012123. [Google Scholar] [CrossRef]
- Deser, S.; Goldberger, M.L.; Baumann, K.; Thirring, W. Energy level displacements in pi-mesonic atoms. Phys. Rev. 1954, 96, 774–776. [Google Scholar] [CrossRef]
- Bethe, H.A.; de Hoffmann, F. Mesons and Fields; Row, Peterson and Co.: Evanston, IL, USA, 1955; Volume 2. [Google Scholar]
- Byers, N. Interactions of low-energy negative pions with nuclei. Phys. Rev. 1957, 107, 843–849. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Adkins, G.S. Quantum Electrodynamics: Atoms, Lasers and Gravity; World Scientific: Singapore, 2022. [Google Scholar]
- Barrett, R.C.; Deloff, A. Strong interaction effects in kaonic deuterium. Phys. Rev. C 1999, 60, 025201. [Google Scholar] [CrossRef]
- Mitroy, J.; Ivallov, I.A. Quantum defect theory for the study of hadronic atoms. J. Phys. G 2001, 27, 1421–1433. [Google Scholar] [CrossRef]
- Deloff, A. Determination of π N scattering lengths from pionic hydrogen and pionic deuterium data. Phys. Rev. C 2001, 64, 065205. [Google Scholar] [CrossRef]
- Yan, Y.; Nualchimplee, C.; Suebka, P.; Kobdaj, C.; Khosonthogkee, K. Accurate evaluation of wave functions of pionium and kaonium. Mod. Phys. Lett. A 2009, 24, 901–906. [Google Scholar] [CrossRef]
- Nualchimplee, C.; Suebka, P.; Yan, Y.; Faessler, A. Accurate evaluation of the 1s wave functions of kaonic hydrogen. Hyp. Int. 2009, 193, 97–102. [Google Scholar] [CrossRef]
- Bobeth, C.; Hiller, G.; van Dyk, D. The benefits of B¯→K¯*l+l− decay at low recoil. J. High Energy Phys. 2010, 1007, 098. [Google Scholar] [CrossRef]
- Richard, J.-M.; Fayard, C. Level rearrangement in exotic-atom-like three-body systems. Phys. Lett. A 2017, 381, 3217–3221. [Google Scholar] [CrossRef]
- Moriya, H.; Horiuchi, W.; Richard, J.-M. Three-body correlations in mesonic-atom-like systems. SciPost Phys. Proc. 2020, 3, 051. [Google Scholar] [CrossRef]
- Batty, C.J. Antiprotonoic-hydrogen atoms. Rep. Prog. Phys. 1989, 52, 1165–1216. [Google Scholar] [CrossRef]
- Richard, J.-M. Antiproton Physics. Front. Phys. 2020, 8, 6. [Google Scholar] [CrossRef]
- Jurisch, A.; Rost, J.-M. Trapping cold atoms by quantum reflection. Phys. Rev. A 2008, 77, 043603. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Lambert, E. Fonction de portée effective et déplacement en énergie des états liés en présence d’un potential coulombien modifié. Helv. Phys. Acta 1969, 42, 667–677. [Google Scholar]
- Greene, C.; Fano, U.; Strinatio, G. General form of the quantum defect theory. Phys. Rev. A 1979, 19, 1485–1509. [Google Scholar] [CrossRef]
- Salomonson, S.; Öster, P. Solution of the pair equation using a finite discrete spectrum. Phys. Rev. A 1989, 40, 5559–5567. [Google Scholar] [CrossRef]
- Available online: https://julialang.org (accessed on 1 September 2025).
- Balbaert, I. Getting Started with Julia Programming; Packt Publishing: Birmingham, UK, 2015. [Google Scholar]
- Pohlhausen, E. Berechnung der Eigenschwingungen statisch-bestimmter Fachwerke. ZAMM—Z. Angew. Math. 1921, 1, 28–42. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Bau, D. Numerical Linear Algebra; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Kong, Q.; Siauw, T.; Bayen, A. Python Programming and Numerical Methods; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- IBM. XL Fortran for Linux, Compiler Reference; IBM Corporation: Armonk, NY, USA, 2012. [Google Scholar]
- Protasov, K.V.; Bonomi, G.; Rizzini, E.L.; Zenoni, A. Antiproton annihilation on light nuclei at very low energies. Eur. Phys. J. A 2000, 7, 429–434. [Google Scholar] [CrossRef]
- Gasser, J.; Lyubovitskij, V.E.; Rusetsky, A. Hadronic Atoms. Annu. Rev. Nucl. Part. Sci. 2009, 59, 169–190. [Google Scholar] [CrossRef]
- Hennebach, M.; Anagnostopoulos, D.F.; Dax, A.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hirtl, A.; Indelicato, P.; Liu, Y.-W.; Manil, B.; et al. Hadronic shift in pionic hydrogen. Eur. Phys. J. A 2014, 50, 190. [Google Scholar] [CrossRef]
- Hirtl, A.; Anagnostopoulos, D.F.; Covita, D.S.; Fuhrmann, H.; Gorke, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Jensen, T.S.; et al. Redetermination of the strong-interaction width in pionic hydrogen. Eur. Phys. J. A 2021, 57, 70. [Google Scholar] [CrossRef]
- Lyubovitskij, V.; Rusetsky, A. Lifetime of (π+π−) atom: Analysis of the role of strong interactions. Phys. Lett. B 1996, 389, 181–186. [Google Scholar] [CrossRef]
- Gall, A.; Gasser, J.; Lyubovitskij, V.E.; Rusetsky, A. On the lifetime of the π+π− atom. Phys. Lett. B 1999, 462, 335–340. [Google Scholar] [CrossRef]
- Gall, A.; Gasser, J.; Lyubovitskij, V.E.; Rusetsky, A. π−p atom in ChPT: Strong energy-level shift. Phys. Lett. B 2000, 494, 9–18. [Google Scholar]
- Kong, X.; Ravndal, F. Relativistic corrections to the pionium lifetime. Phys. Rev. D 2000, 61, 077506. [Google Scholar] [CrossRef]
- Gasser, J.; Lyubovitskij, V.E.; Rusetsky, A.; Gall, A. Decays of π+π− atom. Phys. Rev. D 2001, 64, 016008. [Google Scholar] [CrossRef]
- Lipartia, E.; Lyubovitskij, V.E.; Rusetsky, A. Hadronic potentials from effective field theories. Phys. Lett. B 2002, 533, 285–293. [Google Scholar] [CrossRef]
- Gasser, J.; Ivanov, M.A.; Lipartia, E.; Mojzis, M.; Rusetsky, A. Ground-state energy of pionic hydrogen to one loop. Eur. Phys. J. C 2002, 26, 13–34. [Google Scholar] [CrossRef]
- Meissner, U.-G.; Raha, U.; Rusetsky, A. Spectrum and decays of kaonic hydrogen. Eur. Phys. J. C 2004, 35, 349–357. [Google Scholar] [CrossRef]
- Meissner, U.-G.; Raha, U.; Rusetsky, A. The pion-nucleon scattering lengths from pionic deuterium. Eur. Phys. J. C 2005, 41, 213–232. [Google Scholar] [CrossRef]
- Meissner, U.-G.; Raha, U.; Rusetsky, A. Kaon–nucleon scattering lengths from kaonic deuterium experiments. Eur. Phys. J. C 2006, 47, 473–480. [Google Scholar] [CrossRef]
- Döring, M.; Meissner, U.-G. Kaon–nucleon scattering lengths from kaonic deuterium experiments revisited. Phys. Lett. B 2011, 704, 663–666. [Google Scholar] [CrossRef]
- Dover, C.B.; Richard, J.-M. Elastic, charge exchange, and inelastic p cross sections in the optical model. Phys. Rev. C 1980, 21, 1466–1471. [Google Scholar] [CrossRef]
- Kohno, M.; Weise, W. Proton-antiproton scattering and annihilation into two mesons. Nucl. Phys. A 1986, 454, 429–452. [Google Scholar] [CrossRef]
- Malfliet, R.A.; Tjon, J.A. Solution of the Faddeev Equations for the Triton Problem using Two–Particle Interactions. Nucl. Phys. A 1969, 127, 161–168. [Google Scholar] [CrossRef]
- Payne, G.L.; Friar, J.L.; Gibson, B.F. Configuration space Faddeev continuum calculations. I. n-d scattering length. Phys. Rev. C 1982, 26, 1385–1398. [Google Scholar] [CrossRef]
- Wycech, S.; Green, A.M.; Niskanen, J.A. On the energy levels in antiprotonic deuterium. Phys. Lett. B 1985, 152, 308–312. [Google Scholar] [CrossRef]
- Yan, Y.; Khosonthongkee, K.; Kobdaj, C.; Suebka, P. D atoms in realistic potentials. Phys. Lett. B 2008, 659, 555. [Google Scholar] [CrossRef]
- Lazauskas, R.; Carbonell, J. Antiproton-deuteron hydrogenic states in optical models. Phys. Lett. B 2021, 820, 136573. [Google Scholar] [CrossRef]
- Duerinck, P.-Y.; Lazauskas, R.; Carbonell, J. Corrigendum to “Antiproton-deuteron hydrogenic states in optical models” [Phys. Lett. B 820 (2021) 136573]. Phys. Lett. B 2023, 841, 137936. [Google Scholar] [CrossRef]
- Duerinck, P.-Y.; Lazauskas, R.; Dohet-Eraly, J. Antiproton-deuteron hydrogenic states from a coupled-channel approach. Phys. Rev. C 2023, 108, 054003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adkins, G.S.; Jentschura, U.D. Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems. Atoms 2025, 13, 81. https://doi.org/10.3390/atoms13090081
Adkins GS, Jentschura UD. Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems. Atoms. 2025; 13(9):81. https://doi.org/10.3390/atoms13090081
Chicago/Turabian StyleAdkins, Gregory S., and Ulrich D. Jentschura. 2025. "Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems" Atoms 13, no. 9: 81. https://doi.org/10.3390/atoms13090081
APA StyleAdkins, G. S., & Jentschura, U. D. (2025). Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems. Atoms, 13(9), 81. https://doi.org/10.3390/atoms13090081