Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism
Abstract
1. Introduction
2. Theory
3. Results
3.1. Total Cross Sections
3.2. q-Charge Dependency
3.3. State-Selective Cross Sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AOCC | Atomic Orbital Close-Coupling |
| BCCIS | Boundary-Corrected Continuum Intermediate State |
| CB1 | Corrected First Born Approximation |
| CDW | Continuum Distorted Wave |
| CDW-EIS | Continuum Distorted Wave - Eikonal Initial State |
| CDW-EFS | Continuum Distorted Wave - Eikonal Final State |
| CTMC | Classical Trajectory Monte Carlo |
| DW | Distorted Wave |
| 4B-CTMC | Four-Body Classical Trajectory Monte Carlo |
| 4B-QCTMC | Four-Body Quasi Classical Trajectory Monte Carlo |
| GSZ | Green–Sellin–Zachor |
| TCS | Total Cross Section |
| TC-BGM | Two-Center Basis Generator Method |
| UDWA | Unitarized Distorted Wave Approximation |
| WP-CCC | Wave-Packet Convergent Close-Coupling |
References
- Bransden, B.H.; McDowell, M.R.C. Charge Exchange and the Theory of Ion-Atom Collisions; Oxford University Press: Oxford, UK, 1992. [Google Scholar] [CrossRef]
- Belkić, D. Quantum Theory of High-Energy Ion-Atom Collisions, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Das, M.; Purkait, M.; Mandal, C.R. Charge-transfer cross sections in collisions of Beq+(q = 1 − 4) and Bq+(q = 1 − 5) with ground-state atomic hydrogen. Phys. Rev. A 1998, 57, 3573–3582. [Google Scholar] [CrossRef]
- Purkait, M.; Das, M.; Mandal, C.R. State-selective electron capture by multicharged ions of carbon, nitrogen, and oxygen from ground-state atomic hydrogen. Phys. Rev. A 1999, 60, 3025–3028. [Google Scholar] [CrossRef]
- Olson, R.E.; Salop, A. Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen. Phys. Rev. A 1977, 16, 531–541. [Google Scholar] [CrossRef]
- Schultz, D.R.; Krstić, P.S.; Reinhold, C.O. Inelastic processes in 1–1000 keV/u collisions of Beq+ (q = 2 − 4) ions with atomic and molecular hydrogen. Phys. Scr. 1996, 1996, 69. [Google Scholar] [CrossRef]
- Das, M.; Purkait, M.; Mandal, C.R. Sub-shell distributions of total electron capture and ionization cross-sections in Bq+ (q = 1 − 4) + H collisions. Eur. Phys. J. D 2000, 8, 13–18. [Google Scholar] [CrossRef]
- Hansen, J.P.; Dubois, A. Cross sections for electron capture in H–Bq+ and He–Bq+ (q = 1, 3, 5) collisions. Phys. Scr. 1996, 1996, 55. [Google Scholar] [CrossRef]
- Cheshire, I.M. Continuum distorted wave approximation; resonant charge transfer by fast protons in atomic hydrogen. Proc. Phys. Soc. 1964, 84, 89. [Google Scholar] [CrossRef]
- Belkić, D.; Gayet, R.; Salin, A. Electron capture in high-energy ion-atom collisions. Phys. Rep. 1979, 56, 279. [Google Scholar] [CrossRef]
- Martínez, A.E.; Deco, G.R.; Rivarola, R.D.; Fainstein, P.D. K-Shell vacancy production in asymmetric collisions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1988, 34, 32–36. [Google Scholar] [CrossRef]
- Busnengo, H.F.; Corchs, S.E.; Martínez, A.E.; Rivarola, R.D. Single electron capture by impact of multicharged ions. Phys. Scr. 1997, 1997, 242. [Google Scholar] [CrossRef]
- Leung, A.C.K.; Kirchner, T. Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen. Atoms 2022, 10, 11. [Google Scholar] [CrossRef]
- Antonio, N.W.; Plowman, C.T.; Abdurakhmanov, I.B.; Kadyrov, A.S. Calculations of the integrated cross sections in dressed carbon-ion collisions with atomic hydrogen. Phys. Rev. A 2024, 109, 012817. [Google Scholar] [CrossRef]
- Hill, C.; Heinola, K.; Dubois, A.; Sisourat, N.; Taoutioui, A.; Agueny, H.; Tőkési, K.; Ziaeian, I.; Illescas, C.; Jorge, A.; et al. Atomic collisional data for neutral beam modeling in fusion plasmas. Nucl. Fusion 2023, 63, 125001. [Google Scholar] [CrossRef]
- Janev, R.K. Atomic and Molecular Processes in Fusion Edge Plasmas, 1st ed.; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Liamsuwan, T.; Nikjoo, H. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keVu−1 –10 MeV−1 in water. Phys. Med. Biol. 2013, 58, 673. [Google Scholar] [CrossRef]
- Monti, J.M.; Rivarola, R.D.; Fainstein, P.D. Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials. J. Phys. B: At. Mol. Opt. Phys. 2011, 44, 195206. [Google Scholar] [CrossRef]
- Quinto, M.A.; Montenegro, P.R.; Monti, J.M.; Fojón, O.A.; Rivarola, R.D. Electron capture by swift ions from molecules of biological interest. J. Phys. At. Mol. Opt. Phys. 2018, 51, 165201. [Google Scholar] [CrossRef]
- Szydlik, P.P.; Green, A.E.S. Independent-particle-model potentials for ions and neutral atoms with Z < 18. Phys. Rev. A 1974, 99, 1885–1894. [Google Scholar] [CrossRef]
- Novikov, N. New Method of the Approximation of Hartree-Fock Wave Functions. Int. J. Math. Comput. Sci. 2015, 1, 55–58. [Google Scholar]
- Gravielle, M.S.; Miraglia, J.E. Some Nordsieck integral of interest in radiation and atomic collision theories. Comput. Phys. Commun. 1992, 69, 53–58. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Schneider, D.; Tanis, J.; Altevogt, H.; Salin, A.; Fainstein, P.D.; Rivarola, R.; Grandin, J.P.; Scheurer, J.N.; Andriamonje, S.; et al. Evidence for Two-Centre Effects in the Electron Emission from 25 MeV/u Mo40+ + He Collisions: Theory and Experiment. Europhys. Lett. 1987, 4, 899. [Google Scholar] [CrossRef]
- Goffe, T.V.; Shah, M.B.; Gilbody, H.B. One-electron capture and loss by fast multiply charged boron and carbon ions in H and H2. J. Phys. B: At. Mol. Phys. 1979, 12, 3763. [Google Scholar] [CrossRef]
- Ryufuku, H.; Watanabe, T. Charge transfer cross sections for collisions of Li3+, Be4+, B5+, and C6+ ions with atomic hydrogen. Phys. Rev. A 1979, 19, 1538–1549. [Google Scholar] [CrossRef]
- Belkić, D.; Saini, S.; Taylor, H.S. Critical test of first-order theories for electron transfer in collisions between multicharged ions and atomic hydrogen: The boundary condition problem. Phys. Rev. A 1987, 36, 1601–1617. [Google Scholar] [CrossRef]
- Toshima, N. Ionization and charge transfer of atomic hydrogen in collision with multiply charged ions. Phys. Rev. A 1994, 50, 3940–3947. [Google Scholar] [CrossRef]
- Schmidt, A.; Horbatsch, M.; Dreizler, R.M. Semiclassical phase space description of ionisation and capture for ions colliding with hydrogen-like targets. J. Phys. At. Mol. Opt. Phys. 1990, 23, 2327S. [Google Scholar] [CrossRef]
- Purkait, M.; Dhara, A.; Sounda, S.; Mandal, C.R. Inelastic processes in the interactions of partially stripped ions of carbon, nitrogen and oxygen with atomic hydrogen at intermediate and high energies. J. Phys. At. Mol. Opt. Phys. 2001, 34, 755. [Google Scholar] [CrossRef]
- Mandal, C.R.; Datta, S.; Mukherjee, S.C. Charge-transfer cross sections by high-velocity, completely stripped boron and carbon ions from atomic hydrogen. Phys. Rev. A 1983, 28, 1144–1146. [Google Scholar] [CrossRef]
- Janev, R.; McDowell, M. Electron removal from H and He atoms in collisions with Cq+, Oq+ ions. Phys. Lett. A 1984, 102, 405–408. [Google Scholar] [CrossRef]
- Al Atawneh, S.J.; Tőkési, K. Target electron removal in C5+ + H collision. Nucl. Fusion 2021, 62, 026009. [Google Scholar] [CrossRef]
- Phaneuf, R.A.; Meyer, F.W.; McKnight, R.H. Single-electron capture by multiply charged ions of carbon, nitrogen, and oxygen in atomic and molecular hydrogen. Phys. Rev. A 1978, 17, 534–545. [Google Scholar] [CrossRef]
- Sant’Anna, M.M.; Melo, W.S.; Santos, A.C.F.; Shah, M.B.; Sigaud, G.M.; Montenegro, E.C. Absolute measurements of electron capture cross sections of C3+ from atomic and molecular hydrogen. J. Phys. At. Mol. Opt. Phys. 2000, 33, 353. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinto, M.A.; Monti, J.M.; Rivarola, R.D. Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism. Atoms 2025, 13, 84. https://doi.org/10.3390/atoms13100084
Quinto MA, Monti JM, Rivarola RD. Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism. Atoms. 2025; 13(10):84. https://doi.org/10.3390/atoms13100084
Chicago/Turabian StyleQuinto, Michele Arcangelo, Juan Manuel Monti, and Roberto Daniel Rivarola. 2025. "Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism" Atoms 13, no. 10: 84. https://doi.org/10.3390/atoms13100084
APA StyleQuinto, M. A., Monti, J. M., & Rivarola, R. D. (2025). Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism. Atoms, 13(10), 84. https://doi.org/10.3390/atoms13100084

