Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations
Abstract
1. Introduction
2. Materials and Methods
2.1. Cross Sections
2.1.1. Ionization
Proton Impact
Neutral Hydrogen Impact
2.1.2. Electronic Excitation
2.1.3. Electron Capture and Electron Loss
2.2. Stopping Power
2.2.1. Electronic Stopping Power
2.2.2. Nuclear Stopping Power
2.3. Range
3. Results and Discussion
3.1. Cross Sections
3.1.1. Ionization
Proton Impact
Neutral Hydrogen Impact
3.1.2. Electronic Excitation
3.1.3. Electron Capture and Electron Loss
3.2. Stopping Power
3.3. Range
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RBE | Relative Biological Effectiveness |
| TPS | Treatment Planning Systems |
| LEM | Local Effect Model |
| mMKM | modified Microdosimetric Kinetic Model |
| NanOx | Nanodosimetry and Oxidative Stress |
| MC | Monte Carlo |
| CDW-EIS | Continuum Distorted Wave—Eikonal Initial State |
| FBA | First Born Approximation |
| CSDA | Continuous Slowing Down Approximation |
| CTMC | Classical-Trajectory Monte Carlo |
Appendix A. Construction of the Equivalent DNA Unit
| Component | Mass Density [g/cm3] | Molar Mass [g/mol] |
|---|---|---|
| Liquid water | 1.00 | 18.00 |
| Adenine | 1.60 | 135.14 |
| Thymine | 1.23 | 126.12 |
| Cytosine | 1.55 | 111.11 |
| Guanine | 2.20 | 151.14 |
| Sugar-phosphate backbone | — | 180.00 |
| Uracil | 1.32 | 112.09 |
| Dry DNA | 1.407 | 662.00 |
| Hydrated DNA | 1.29 | 947.80 |
Appendix B. Binding Energy Tables for DNA/RNA Components
| Molecular Orbital | Adenine | Thymine | Guanine | Cytosine | Uracil | Sugar-Phosphate Backbone |
|---|---|---|---|---|---|---|
| 1 | 8.44 | 9.14 | 8.24 | 8.94 | 9.5 | 10.53 |
| 2 | 9.98 | 10.93 | 11.14 | 10.05 | 10.97 | 10.64 |
| 3 | 10.55 | 11.35 | 11.36 | 10.67 | 11.36 | 10.88 |
| 4 | 11.39 | 12.13 | 11.80 | 11.42 | 12.23 | 11.65 |
| 5 | 11.71 | 13.29 | 11.83 | 13.15 | 13.7 | 11.73 |
| 6 | 12.88 | 14.47 | 12.39 | 14.53 | 14.93 | 11.97 |
| 7 | 13.5 | 14.68 | 13.08 | 15.61 | 15.64 | 12.27 |
| 8 | 15.23 | 14.81 | 15.34 | 16.47 | 15.82 | 12.41 |
| 9 | 16.34 | 15.57 | 16.62 | 16.8 | 16.82 | 12.73 |
| 10 | 16.85 | 15.99 | 16.76 | 17.02 | 17.48 | 12.7 |
| 11 | 17.29 | 16.36 | 16.93 | 18.31 | 17.63 | 13.06 |
| 12 | 17.5 | 17.44 | 17.62 | 19.47 | 18.71 | 13.69 |
| 13 | 18.42 | 17.62 | 18.51 | 20.63 | 20.23 | 14.31 |
| 14 | 18.99 | 18.59 | 18.87 | 20.74 | 21.20 | 14.91 |
| 15 | 20.1 | 20.28 | 19.71 | 23.79 | 23.62 | 15.13 |
| 16 | 21.32 | 20.38 | 20.60 | 24.28 | 24.46 | 15.56 |
| 17 | 22.86 | 23.51 | 20.88 | 28.93 | 28.71 | 15.84 |
| 18 | 23.89 | 24.08 | 22.66 | 31.79 | 32.70 | 16.54 |
| 19 | 24.4 | 25.53 | 23.30 | 34.14 | 34.56 | 17.39 |
| 20 | 28.35 | 29.23 | 24.80 | 35.33 | 37.08 | 17.52 |
| 21 | 31.41 | 32.65 | 25.30 | 37.7 | 37.92 | 17.96 |
| 22 | 32.3 | 34.46 | 28.98 | 302.18 | 293.85 | 18.86 |
| 23 | 33.98 | 37.09 | 32.88 | 304.47 | 296.08 | 20.84 |
| 24 | 35.68 | 37.85 | 34.05 | 305.09 | 297.28 | 21.69 |
| 25 | 37.47 | 293.56 | 34.24 | 305.69 | 298.31 | 21.80 |
| 26 | 303.09 | 294.27 | 37.55 | 417.42 | 407.98 | 24.76 |
| 27 | 304.5 | 296.03 | 38.28 | 418.83 | 408.5 | 27.84 |
| 28 | 304.85 | 297.42 | 39.2 | 419.8 | 536.44 | 28.33 |
| 29 | 304.85 | 298.44 | 311.53 | 550.88 | 536.44 | 33.17 |
| 30 | 305.33 | 408.28 | 313.15 | — | — | 34.67 |
| 31 | 418.63 | 408.68 | 313.79 | — | — | 36.35 |
| 32 | 418.84 | 536.74 | 314.93 | — | — | 36.76 |
| 33 | 419.22 | 536.87 | 315.93 | — | — | 38.18 |
| 34 | 419.27 | — | 431.02 | — | — | 149.58 |
| 35 | 420.79 | — | 431.10 | — | — | 149.61 |
| 36 | — | — | 432.32 | — | — | 149.61 |
| 37 | — | — | 432.91 | — | — | 207.08 |
| 38 | — | — | 432.94 | — | — | 303.73 |
| 39 | — | — | 568.45 | — | — | 304.55 |
| 40 | — | — | — | — | — | 304.90 |
| 41 | — | — | — | — | — | 305.23 |
| 42 | — | — | — | — | — | 305.48 |
| 43 | — | — | — | — | — | 554.24 |
| 44 | — | — | — | — | — | 554.24 |
| 45 | — | — | — | — | — | 555.91 |
| 46 | — | — | — | — | — | 556.77 |
| 47 | — | — | — | — | — | 556.80 |
| 48 | — | — | — | — | — | 2165.16 |
References
- Mohan, R. A review of proton therapy–Current status and future directions. Prec. Rad. Onc. 2022, 6, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Tinganelli, W.; Durante, M. Carbon Ion Radiobiology. Cancers 2020, 12, 3022. [Google Scholar] [CrossRef] [PubMed]
- Schardt, D.; Elsässer, T.; Schulz-Ertner, D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010, 82, 383–425. [Google Scholar] [CrossRef]
- Karger, C.P.; Peschke, P. RBE and related modeling in carbon-ion therapy. Phys. Med. Biol. 2018, 63, 01TR02. [Google Scholar] [CrossRef]
- Scholz, M.; Kellerer, A.M.; Kraft-Weyrather, W.; Kraft, G. Computation of cell survival in heavy ion beams for therapy. Radiat. Environ. Biophys. 1997, 36, 59–66. [Google Scholar] [CrossRef]
- Kase, Y.; Kanai, T.; Matsumoto, Y.; Furusawa, Y.; Okamoto, H.; Asaba, T.; Sakama, M.; Shinoda, H. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat. Res. 2006, 166, 629–638. [Google Scholar] [CrossRef]
- Inaniwa, T.; Furukawa, T.; Kase, Y.; Matsufuji, N.; Toshito, T.; Matsumoto, Y.; Furusawa, Y.; Noda, K. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys. Med. Biol. 2010, 55, 6721–6737. [Google Scholar] [CrossRef]
- Hawkins, R.B. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat. Res. 1994, 140, 366–374. [Google Scholar] [CrossRef]
- Hawkins, R.B. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int. J. Radiat. Biol. 1996, 69, 739–755. [Google Scholar] [CrossRef]
- Cunha, M.; Monini, C.; Testa, E.; Beuve, M. NanOx, a new model to predict cell survival in the context of particle therapy. Phys. Med. Biol. 2017, 62, 4. [Google Scholar] [CrossRef] [PubMed]
- Monini, C.; Cunha, M.; Testa, E.; Beuve, M. Study of the Influence of NanOx Parameters. Cancers 2018, 10, 87. [Google Scholar] [CrossRef]
- Alcocer-Ávila, M.; Monini, C.; Cunha, M.; Testa, É.; Beuve, M. Formalism of the NanOx biophysical model for radiotherapy applications. Front. Phys. 2023, 11, 1011062. [Google Scholar] [CrossRef]
- Kyriakou, I.; Sakata, D.; Tran, H.N.; Perrot, Y.; Shin, W.-G.; Lampe, N.; Zein, S.; Bordage, M.C.; Guatelli, S.; Villagrasa, C.; et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers 2021, 14, 35. [Google Scholar] [CrossRef]
- Khanna, R.; Reinwald, Y.; Hugtenburg, R.; Bertolet, A.; Serjouei, A. Review of the geometrical developments in GEANT4-DNA: From a biological perspective. Rev. Phys. 2025, 13, 100110. [Google Scholar] [CrossRef] [PubMed]
- Arce, P.; Archer, J.W.; Arsini, L. et al. Results of a Geant4 benchmarking study for bio-medical applications, performed with the G4-Med system. Med Phys. 2025, 52, 2707–2761. [Google Scholar] [CrossRef] [PubMed]
- Alcocer-Ávila, M.E.; Quinto, M.A.; Monti, J.M.; Rivarola, R.D.; Champion, C. Proton transport modeling in a realistic biological environment by using TILDA-V. Sci. Rep. 2019, 9, 14030. [Google Scholar] [CrossRef]
- Champion, C.; Quinto, M.A.; Monti, J.M.; Galassi, M.E.; Weck, P.F.; Fojón, O.A.; Hanssen, J.; Rivarola, R.D. Erratum: Water versus DNA: New insights into proton track-structure modelling in radiobiology and radiotherapy. Phys. Med. Biol. 2015, 60, 7805–7828. [Google Scholar] [CrossRef]
- Harakat, N.; Khouaja, A.; Inchaouh, J.; Krim, M.; Bouhssa, M.L.; Fiak, M.; Housni, Z.; Benjelloun, M.; Mouadil, M.; Elabssaoui, Y.; et al. Study of the physical step interaction of the proton with DNA molecules using analytical approach and Monte-Carlo simulation. Jpn. J. Appl. Phys. 2021, 60, 106001. [Google Scholar] [CrossRef]
- LaVerne, J.A.; Pimblott, S.M. Electron energy-loss distributions in solid, dry DNA. Radiat. Res. 1995, 141, 208–215. [Google Scholar] [CrossRef]
- Tan, Z.; Xia, Y.; Zhao, M.; Liu, X. Proton stopping power in a group of bioorganic compounds over the energy range of 0.05–10 MeV. Nuc. Inst. Met. Phys. Res. B 2006, 248, 1–6. [Google Scholar] [CrossRef]
- Plante, I.; Cucinotta, F.A. Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New Jour. Phys. 2008, 10, 125020. [Google Scholar] [CrossRef]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef]
- Dingfelder, M.; Inokuti, M.; Paretzke, H.G. Inelastic-collision cross-section of liquid water for interactions of energetic protons. Rad. Phys. Chem. 2000, 59, 255–275. [Google Scholar] [CrossRef]
- Francis, Z.; El Bitar, Z.; Incerti, S.; Bernal, M.A.; Karamitros, M.; Tran, H.N. Calculation of lineal energies for water and DNA bases using the Rudd model cross sections integrated within the Geant4-DNA processes. J. Appl. Phys. 2017, 122, 014701. [Google Scholar] [CrossRef]
- Mozejko, P.; Sanche, L. Cross section calculations for electron scattering from DNA and RNA bases. Rad. Env. Bio. 2003, 42, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Galassi, M.E.; Champion, C.; Weck, P.F.; Rivarola, R.D.; Fojón, O.; Hanssen, J. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams. Phys. Med. Biol. 2012, 57, 2081–2099. [Google Scholar] [CrossRef] [PubMed]
- Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A. Absolute doubly differential cross sections for ionization of adenine by 1.0-MeV protons. Phys. Rev. A 2011, 84, 052719. [Google Scholar] [CrossRef]
- Wilson, W.E.; Toburen, L.H. Electron emission from proton-hydrocarbon-molecule collisions at 0.3–2.0 MeV. Phys. Rev. A 1975, 11, 1303–1308. [Google Scholar] [CrossRef]
- Tessaro, V.B.; Gervais, B.; Poignant, F.; Beuve, M.; Galassi, M.E. Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in W-values. Phys. Medica 2021, 88, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Bolorizadeh, M.A.; Rudd, M.E. Angular and energy dependence of cross sections for ejection of electrons from water vapor. III. 20–150 keV neutral-hydrogen impact. Phys. Rev. A 1986, 33, 893–896. [Google Scholar] [CrossRef]
- Toburen, L.H. Ionisation and charge-transfer: Basic data for track structure calculations. Radiat. Environ. Biophys. 1998, 37, 221–233. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements. ICRU Report 49. Stopping Power and Ranges for Protons and Alpha Particles; ICRU: Bethesda, MD, USA, 1993. [Google Scholar]
- Miller, J.H. & Green, A.E.S. Proton energy degradation in water vapor. Rad. Res. 1973, 54, 343–363. [Google Scholar]
- Green, A.E.S. & McNeal, R.J. Analytic cross sections for inelastic collisions of protons and hydrogen atoms with atomic and molecular gases. J. Geophys. Res. 1971, 76, 133–144. [Google Scholar]
- Uehara, S.; Toburen, L.; Wilson, W.; Goodhead, D.; Nikjoo, H. Calculations of electronic stopping cross sections for low-energy protons in water. Rad. Phys. Chem. 2000, 59, 1–11. [Google Scholar] [CrossRef]
- Lindsay, B.G.; Sieglaff, D.R.; Smith, K.A.; Stebbings, R.F. Charge transfer of 0.5-, 1.5-, and 5-keV protons with H2O: Absolute differential and integral cross sections. Phys. Rev. A 1997, 55, 3945–3946. [Google Scholar] [CrossRef]
- Dagnac, R.; Blanc, D.; Molina, D. A study on the collision of hydrogen ions H1+, H2+ and H3+ with a water-vapour target. J. Phys. B 1970, 3, 1239–1251. [Google Scholar]
- Toburen, L.H.; Nakai, M.Y.; Langley, R.A. Measurement of high-energy charge-transfer cross sections for incident protons and atomic hydrogen in various gases. Phys. Rev. 1968, 171, 114–122. [Google Scholar] [CrossRef]
- Rudd, M.E.; Kim, Y.-K.; Madison, D.H.; Gallagher, J.W. Electron production in proton collisions with and molecules: Total cross sections. Rev. Mod. Phys. 1985, 57, 965. [Google Scholar] [CrossRef]
- Bates, D.R.; Griffng, G.W. Inelastic collisions between heavy particles I: Excitation and ionisation of hydrogen atoms in fast encounters with protons and with other hydrogen atoms. Proc. Phys. Soc. Lond. Sect. A 1953, 66, 961–971. [Google Scholar] [CrossRef]
- Allison, S.K.; Warshaw, S.D. Passage of heavy particles through matter. Rev. Mod. Phys. 1953, 25, 779–817. [Google Scholar] [CrossRef]
- De Vera, P.; Abril, I.; Garcia-Molina, R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: Application to liquid water and genetic building blocks. Phys. Chem. Chem. Phys. 2021, 23, 5079. [Google Scholar] [CrossRef]
- Rivarola, R.D.; Galassi, M.E.; Fainstein, P.D.; Champion, C. Computation of distorted wave cross sections for high-energy inelastic collisions of heavy ions with water molecules. Adv. Quant. Chem. 2013, 65, 231–267. [Google Scholar]
- Stolterfoht, N.; DuBois, R.D.; Rivarola, R.D. Electron Emission in Heavy Ion-Atom Collisions; Springer Series on Atoms and Plasmas; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Luna, H.; de Barros, A.L.F.; Wyer, J.A.; Scully, S.W.J.; Lecointre, J.; Garcia, P.M.Y.; Sigaud, G.M.; Santos, A.C.F.; Senthil, V.; Shah, M.B.; et al. Water-molecule dissociation by proton and hydrogen impact. Phys. Rev. A 2007, 75, 042711. [Google Scholar] [CrossRef]
- Champion, C.; Lekadir, H.; Galassi, M.E.; Fojón, O.; Rivarola, R.D.; Hanssen, A.J. Theoretical predictions for ionization cross sections of DNA nucleobases impacted by light ions. Phys. Med. Biol. 2010, 55, 6053–6067. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Horbatsch, M.; Kirchner, T. Electron capture and ionization cross-section calculations for proton collisions with methane and the DNA and RNA nucleobases. Eur. Phys. J. D 2019, 73, 249. [Google Scholar] [CrossRef]
- Purkait, K.; Samaddar, S.; Jana, D.; Purkait, M. Ionization and Electron Capture Cross Sections for Single-Electron Removal from Biological Molecules by Swift Ion. Braz. Jour. Phys. 2020, 51, 1–12. [Google Scholar] [CrossRef]
- Champion, C.; Galassi, M.E.; Weck, P.F.; Incerti, S.; Rivarola, R.D.; Fojón, O.; Hanssen, J.; Iriki, Y.; Itoh, A. Proton-induced ionization of isolated uracil molecules: A theory/experiment confrontation. Nucl. Inst. Meth. Phys. Res. B 2013, 314, 66–70. [Google Scholar] [CrossRef]
- Itoh, A.; Iriki, Y.; Imai, M.; Champion, C.; Rivarola, R.D. Cross sections for ionization of uracil by MeV-energy proton impact. Phys. Rev. A 2013, 88, 052711. [Google Scholar] [CrossRef]
- Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Märk, T.D. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range. Phys. Rev. A 2010, 82, 022703. [Google Scholar] [CrossRef]
- Quinto, M.A.; Esponda, N.J.; Larouze, A.; Champion, C.; Rivarola, R.D.; Monti, J.M. Target Ionization and Electron Loss Processes Induced by Neutral and Charged Hydrogen and Helium Projectiles in Water Molecule. In Advances in Atomic Molecular Collisions; Springer Nature: Singapore, 2024; pp. 183–200. [Google Scholar]
- Gobet, F.; Eden, S.; Coupier, B.; Tabet, J.; Farizon, B.; Farizon, M.; Gaillard, M.J.; Ouaskit, S.; Carré, M.; Märk, T.D. Electron-loss and target ionization cross sections for water vapor by 20–150 keV neutral atomic hydrogen impact. Chem. Phys. Lett. 2006, 421, 68–71. [Google Scholar]
- Cobut, V.; Frongillo, Y.; Patau, J.P.; Goulet, T.; Fraser, M.J.; Jay-Gerin, J.P. Monte Carlo simulation of fast electron and proton tracks in liquid water-I. Physical and physicochemical aspects. Radiat. Phys. Chem. 1998, 51, 229–244. [Google Scholar]
- Gobet, F.; Farizon, B.; Farizon, M.; Gaillard, M.J.; Carré, M.; Lezius, M.; Scheier, P.; Märk, T.D. Total, partial, and electron-capture cross sections for ionization of water vapor by 20–150 keV protons. Phys. Rev. Lett. 2001, 86, 3751. [Google Scholar] [CrossRef]
- Bernal, M.A. Evaluation of the mean energy deposit during the impact of charged particles on liquid water. Phys. Med. Biol. 2012, 57, 1745–1757. [Google Scholar] [CrossRef]
- Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B. Atomic Data for Controlled Fusion Research (No. ORNL–5206 (VOL. 1)); Oak Ridge National Lab: Oak Ridge, TN, USA, 1977. [Google Scholar]
- Shimizu, M.; Hayakawa, T.; Kaneda, M.; Tsuchida, H.; Itoh, A. Stopping cross-sections of liquid water for 0.3–2.0 MeV protons. Vacuum 2010, 84, 1002–1004. [Google Scholar] [CrossRef]
- Siiskonen, T.; Kettunen, H.; Peräjärvi, K.; Javanainen, A.; Rossi, M.; Trzaska, W.H.; Turunen, J.; Virtanen, A. Energy loss measurement of protons in liquid water. Phys. Med. Biol. 2011, 56, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.K.; Dunbar, D.N.F.; Wenzel, W.A.; Whaling, W. The stopping cross section of gases for protons, 30–600 kev. Phys. Rev. 1953, 92, 742–748. [Google Scholar] [CrossRef]
- Phillips, J.A. The energy loss of low energy protons in some gases. Phys. Rev. 1953, 90, 532–537. [Google Scholar]
- Mitterschiffthaler, C. & Bauer, P. Stopping cross section of water vapor for hydrogen ions. Nucl. Instrum. Meth. B 1990, 48, 58–60. [Google Scholar]
- Baek, W.Y.; Grosswendt, B.; Willems, G. Ionization ranges of protons in water vapour in the energy range 1–100 keV. Radiat. Prot. Dosim. 2006, 122, 32–35. [Google Scholar] [CrossRef]
- Abril, I.; Garcia-Molina, R.; Denton, C.D.; Kyriakou, I.; Emfietzoglou, D. Energy loss of hydrogen-and helium-ion beams in DNA: Calculations based on a realistic energy-loss function of the target. Radiat. Res. 2011, 175, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Francis, Z.; Incerti, S.; Karamitros, M.; Tran, H.N.; Villagrasa, C. Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nuc. Inst. Meth. Phys. Res. B 2011, 269, 2307–2311. [Google Scholar] [CrossRef]
- Paganetti, H. Proton Beam Therapy; IOP Publishing: Bristol, UK, 2017; pp. 1–23. [Google Scholar]
- Birnie, G.; Rickwood, D.; Hell, A. Buoyant densities and hydration of nucleic acids, proteins and nucleoprotein complexes in metrizamide. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1973, 331, 283–294. [Google Scholar] [CrossRef] [PubMed]











| Molecular Orbital | Ij [eV] | Bj [eV] | Nj | Gj |
|---|---|---|---|---|
| 1a1 | 539.00 | 539.70 | 2 | 1.00 |
| 2a1 | 32.30 | 32.20 | 2 | 0.52 |
| 1b2 | 16.05 | 18.55 | 2 | 1.11 |
| 3a1 | 13.39 | 14.73 | 2 | 1.11 |
| 1b1 | 10.79 | 12.61 | 2 | 0.99 |
| Parameter | Liquid Water | DNA and RNA Components | Inner Orbitals |
|---|---|---|---|
| 1.02 | 1.18 | 1.25 | |
| 82.0 | 14.00 | 0.50 | |
| 0.45 | 0.36 | 1.00 | |
| −0.80 | 0.52 | 1.00 | |
| 0.38 | 3.00 | 3.00 | |
| 1.07 | 0.90 | 1.10 | |
| 14.6 | 4.30 | 1.30 | |
| 0.60 | 1.80 | 1.00 | |
| D2 | 0.04 | 1.40 | 0.00 |
| 0.64 | 0.61 | 0.66 |
| Excited State | W [eV] | a [eV] | J [eV] | ||
|---|---|---|---|---|---|
| 8.17 | 876 | 19,820 | 0.85 | 1 | |
| 10.13 | 2084 | 23,490 | 0.88 | 1 | |
| Ryd A + B | 11.31 | 1373 | 27,770 | 0.88 | 1 |
| Ryd C + D | 12.91 | 692 | 30,830 | 0.78 | 1 |
| Diffuse bands | 14.50 | 900 | 33,080 | 0.78 | 1 |
| a0 | −0.180 |
| b0 | −18.22 |
| c0 | 0.215 |
| d0 | 3.550 |
| a1 | −3.600 |
| b1 | −1.997 |
| x0 | 3.450 |
| x1 | 5.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strubbia Mangiarelli, C.; Tessaro, V.B.; Beuve, M.; Galassi, M.E. Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations. Atoms 2025, 13, 83. https://doi.org/10.3390/atoms13100083
Strubbia Mangiarelli C, Tessaro VB, Beuve M, Galassi ME. Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations. Atoms. 2025; 13(10):83. https://doi.org/10.3390/atoms13100083
Chicago/Turabian StyleStrubbia Mangiarelli, Camila, Verónica B. Tessaro, Michaël Beuve, and Mariel E. Galassi. 2025. "Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations" Atoms 13, no. 10: 83. https://doi.org/10.3390/atoms13100083
APA StyleStrubbia Mangiarelli, C., Tessaro, V. B., Beuve, M., & Galassi, M. E. (2025). Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations. Atoms, 13(10), 83. https://doi.org/10.3390/atoms13100083

