Previous Issue
Volume 13, September
 
 

Atoms, Volume 13, Issue 10 (October 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
541 KB  
Article
Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td)
by Gregory J. Boyle, Dale L. Muccignat, Joshua R. Machacek and Robert P. McEachran
Atoms 2025, 13(10), 82; https://doi.org/10.3390/atoms13100082 - 23 Sep 2025
Abstract
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization [...] Read more.
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization cross sections presented. Here, we obtain our cross sections from a single theoretical relativistic calculation. Since radon is a heavy element, a relativistic treatment is very desirable. The electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.01 to 1000 Td, using a multi-term solution of Boltzmann’s equation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop