Next Issue
Volume 13, November
Previous Issue
Volume 13, September
 
 

Atoms, Volume 13, Issue 10 (October 2025) – 4 articles

Cover Story (view full-size image): Radiation transport and diagnostics of high-energy-density (HED) density environments, such as fusion devices and stellar interiors, require a complex interface of atomic physics and plasma physics. High-accuracy atomic physics data need to be treated for plasma broadening effects in order to obtain the fundamental quantity: the opacity of matter in HED sources. This paper describes state-of-the-art R-marix calculations for complex atomic systems, as well as plasma broadening of autoionizing resonances in atomic cross sections for physical processes, which then become energy-temperature-density dependent. Results are presented for iron ions and opacity parameters for modeling. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 1196 KB  
Article
The Opacity Project: R-Matrix Calculations for Opacities of High-Energy-Density Astrophysical and Laboratory Plasmas
by Anil K. Pradhan and Sultana N. Nahar
Atoms 2025, 13(10), 85; https://doi.org/10.3390/atoms13100085 - 20 Oct 2025
Viewed by 201
Abstract
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze [...] Read more.
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze environments such as the base of the convective zone (BCZ) of the Sun (2×106 K, Ne=1023/cc), and radiative opacity data collected using the inertial confinement fusion (ICF) devices at the Sandia Z facility (2.11×106 K, Ne=3.16×1022/cc) and the Lawrence Livermore National Laboratory National Ignition Facility. We calculate Rosseland Mean Opacities (RMO) within a range of temperatures and densities and analyze how they vary under different plasma conditions. A significant factor influencing opacity in these environments is line and resonance broadening due to plasma effects. Both radiative and collisional broadening modify line shapes, impacting the absorption and emission profiles that determine the RMO. In this study, we specifically focus on electron collisional and Stark ion microfield broadening effects, which play a dominant role in HED plasmas. We assume a Lorentzian profile factor to model combined broadening and investigate its impact on spectral line shapes, resonance behavior, and overall opacity values. Our results are relevant to astrophysical models, particularly in the context of the solar opacity problem, and provide insights into discrepancies between theoretical calculations and experimental measurements. In addition, we investigate the equation-of-state (EOS) and its impact on opacities. In particular, we examine the “chemical picture” Mihalas–Hummer–Däppen EOS with respect to level populations of excited levels included in the extensive R-matrix calculations. This study should contribute to improving opacity models of HED sources such as stellar interiors and laboratory plasma experiments. Full article
(This article belongs to the Special Issue Electronic, Photonic and Ionic Interactions with Atoms and Molecules)
Show Figures

Figure 1

14 pages, 865 KB  
Article
Single Electron Capture by Dressed Projectiles Within the Distorted Wave Formalism
by Michele Arcangelo Quinto, Juan Manuel Monti and Roberto Daniel Rivarola
Atoms 2025, 13(10), 84; https://doi.org/10.3390/atoms13100084 - 3 Oct 2025
Viewed by 265
Abstract
Single electron capture in collisions involving neutral hydrogen atoms impacted by highly charged dressed projectiles is theoretically investigated using the distorted wave formalism. A series of continuum distorted wave approximations is employed to investigate the electron capture from neutral hydrogen atom impact by [...] Read more.
Single electron capture in collisions involving neutral hydrogen atoms impacted by highly charged dressed projectiles is theoretically investigated using the distorted wave formalism. A series of continuum distorted wave approximations is employed to investigate the electron capture from neutral hydrogen atom impact by boron and carbon projectiles. The projectile potential is described using a two-parameter analytical Green–Sellin–Zachor (GSZ) model potential. The theoretical prediction of total cross sections are compared against other theories and experiments. We looked at a very broad range of collision energies, from 10 keV/u up to 10 MeV/u. In addition, the state-selective cross sections for boron ions are presented. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

28 pages, 3057 KB  
Article
Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations
by Camila Strubbia Mangiarelli, Verónica B. Tessaro, Michaël Beuve and Mariel E. Galassi
Atoms 2025, 13(10), 83; https://doi.org/10.3390/atoms13100083 - 24 Sep 2025
Viewed by 526
Abstract
Proton therapy enables precise dose delivery to tumors while sparing healthy tissues, offering significant advantages over conventional radiotherapy. Accurate prediction of biological doses requires detailed knowledge of radiation interactions with biological targets, especially DNA, a key site of radiation-induced damage. While most biophysical [...] Read more.
Proton therapy enables precise dose delivery to tumors while sparing healthy tissues, offering significant advantages over conventional radiotherapy. Accurate prediction of biological doses requires detailed knowledge of radiation interactions with biological targets, especially DNA, a key site of radiation-induced damage. While most biophysical models (LEM, mMKM, NanOx) rely on water as a surrogate, this simplification neglects the complexity of real biomolecules. In this work, we calculate the stopping power and range of protons in liquid water, dry DNA, and hydrated DNA using semi-empirical cross sections for ionization, electronic excitation, electron capture, and electron loss by protons and neutral hydrogen in the 10 keV–100 MeV energy range. Additionally, ionization cross sections for uracil are computed to explore potential differences between DNA and RNA damage. Our results show excellent agreement with experimental and ab initio data, highlighting significant deviations in stopping power and range between water and DNA. Notably, the stopping power of DNA exceeds that of water at most energies, reducing proton ranges in dry and hydrated DNA by up to 20% and 26%, respectively. These findings provide improved input for Monte Carlo simulations and biophysical models, enhancing RBE predictions and dose accuracy in hadrontherapy. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

12 pages, 541 KB  
Article
Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td)
by Gregory J. Boyle, Dale L. Muccignat, Joshua R. Machacek and Robert P. McEachran
Atoms 2025, 13(10), 82; https://doi.org/10.3390/atoms13100082 - 23 Sep 2025
Viewed by 343
Abstract
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization [...] Read more.
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization cross sections presented. Here, we obtain our cross sections from a single theoretical relativistic calculation. Since radon is a heavy element, a relativistic treatment is very desirable. The electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.01 to 1000 Td, using a multi-term solution of Boltzmann’s equation. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop