Radio Supernovae
Abstract
1. Introduction
2. SN-CSM Interaction
2.1. CSM Structure
2.2. SN Ejecta Profile
3. Radio Emission from SNe
4. Observing SNe at Radio Wavelengths
4.1. Core-Collapse SNe
4.2. Thermonuclear SNe (Type Ia Explosions)
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SN | Supernova |
| SLSN | Superluminous Supernova |
| GRB | Gamma-Ray Burst |
| RT | Rayleigh–Taylor |
| CSM | Circumstellar medium |
| WD | White dwarf |
| SD | Single degenerate |
| DD | Double degenerate |
| SED | Spectral energy distribution |
| VLBI | Very-Large-Baseline Interferometry |
| VLBA | Very-Long-Baseline Array |
| VLA | Very Large Array |
| VLASS | Very Large Array Sky Survey |
| VAST | Variable and Slow Transients |
| ASKAP | Australian Square Kilometre Array Pathfinder |
| ALMA | Atacama Large Millimeter/submillimeter Array |
| uGMRT | upgraded Giant Meterwave Radio telescope |
| LOFAR | LOw-Frequency ARray |
| ATCA | Australia Telescope Compact Array |
| SKA | Square Kilometre Array |
References
- Smith, N.; Arnett, W.D. Preparing for an Explosion: Hydrodynamic Instabilities and Turbulence in Presupernovae. Astrophys. J. 2014, 785, 82. [Google Scholar] [CrossRef]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. Annu. Rev. Astron. Astrophys. 2014, 52, 487–528. [Google Scholar] [CrossRef]
- Hoyle, F.; Fowler, W.A. Nucleosynthesis in Supernovae. Astrophys. J. 1960, 132, 565. [Google Scholar] [CrossRef]
- Whelan, J.; Iben, I., Jr. Binaries and Supernovae of Type I. Astrophys. J. 1973, 186, 1007–1014. [Google Scholar] [CrossRef]
- Iben, I., Jr.; Tutukov, A.V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 1984, 54, 335–372. [Google Scholar] [CrossRef]
- Webbink, R.F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 1984, 277, 355–360. [Google Scholar] [CrossRef]
- Kool, E.C.; Johansson, J.; Sollerman, J.; Moldón, J.; Moriya, T.J.; Mattila, S.; Schulze, S.; Chomiuk, L.; Pérez-Torres, M.; Harris, C.; et al. A radio-detected type Ia supernova with helium-rich circum-stellar material. Nature 2023, 617, 477–482. [Google Scholar] [CrossRef]
- Bietenholz, M.F.; Bartel, N.; Argo, M.; Dua, R.; Ryder, S.; Soderberg, A. The Radio Luminosity-risetime Function of Core-collapse Supernovae. Astrophys. J. 2021, 908, 75. [Google Scholar] [CrossRef]
- Weiler, K.W.; Panagia, N.; Montes, M.J.; Sramek, R.A. Radio Emission from Supernovae and Gamma-Ray Bursters. Annu. Rev. Astron. Astrophys. 2002, 40, 387–438. [Google Scholar] [CrossRef]
- Chomiuk, L.; Soderberg, A.M.; Chevalier, R.A.; Bruzewski, S.; Foley, R.J.; Parrent, J.; Strader, J.; Badenes, C.; Fransson, C.; Kamble, A.; et al. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array. Astrophys. J. 2016, 821, 119. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Frail, D.A.; Wieringa, M.H.; Ekers, R.D.; Sadler, E.M.; Wark, R.M.; Higdon, J.L.; Phinney, E.S.; Bloom, J.S. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 1998, 395, 663–669. [Google Scholar] [CrossRef]
- Turtle, A.J.; Campbell-Wilson, D.; Bunton, J.D.; Jauncey, D.L.; Kesteven, M.J.; Manchester, R.N.; Norris, R.P.; Storey, M.C.; Reynolds, J.E. A prompt radio burst from supernova 1987A in the Large Magellanic Cloud. Nature 1987, 327, 38–40. [Google Scholar] [CrossRef]
- Margutti, R.; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S.E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B.A.; Bietenholz, M.; et al. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C. Astrophys. J. 2017, 835, 140. [Google Scholar] [CrossRef]
- Bietenholz, M.F.; Kamble, A.; Margutti, R.; Milisavljevic, D.; Soderberg, A. SN 2014C: VLBI images of a supernova interacting with a circumstellar shell. Mon. Not. R. Astron. Soc. 2018, 475, 1756–1764. [Google Scholar] [CrossRef]
- Weiler, K.W.; Williams, C.L.; Panagia, N.; Stockdale, C.J.; Kelley, M.T.; Sramek, R.A.; Van Dyk, S.D.; Marcaide, J.M. Long-Term Radio Monitoring of SN 1993J. Astrophys. J. 2007, 671, 1959. [Google Scholar] [CrossRef]
- Kundu, E.; Lundqvist, P.; Sorokina, E.; Pérez-Torres, M.A.; Blinnikov, S.; O’Connor, E.; Ergon, M.; Chandra, P.; Das, B. Evolution of the Progenitors of SNe 1993J and 2011dh Revealed through Late-time Radio and X-Ray Studies. Astrophys. J. 2019, 875, 17. [Google Scholar] [CrossRef]
- Thompson, A.R.; Clark, B.G.; Wade, C.M.; Napier, P.J. The Very Large Array. Astrophys. J. Suppl. Ser. 1980, 44, 151. [Google Scholar] [CrossRef]
- Napier, P.J.; Ekers, R.D. The Very Large Array: Design and performance of a modern synthesis radio telescope. Proc. IEEE 1983, 71, 1295. [Google Scholar] [CrossRef]
- Perley, R.A.; Chandler, C.J.; Butler, B.J.; Wrobel, J.M. The Expanded Very Large Array: A New Telescope for New Science. Astrophys. J. Lett. 2011, 739, L1. [Google Scholar] [CrossRef]
- Murphy, T.; Kaplan, D.L.; Stewart, A.J.; O’Brien, A.; Lenc, E.; Pintaldi, S.; Pritchard, J.; Dobie, D.; Fox, A.; Leung, J.K.; et al. The ASKAP Variables and Slow Transients (VAST) Pilot Survey. Publ. Astron. Soc. Aust. 2021, 38, e054. [Google Scholar] [CrossRef]
- Hotan, A.W.; Bunton, J.D.; Chippendale, A.P.; Whiting, M.; Tuthill, J.; Moss, V.A.; McConnell, D.; Amy, S.W.; Huynh, M.T.; Allison, J.R.; et al. Australian square kilometre array pathfinder: I. system description. Publ. Astron. Soc. Aust. 2021, 38, e009. [Google Scholar] [CrossRef]
- Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Dyk, S.D.; Stockdale, C.J.; Williams, C.L. Radio emission from supernovae. Mem. Della Soc. Astron. Ital. 2010, 81, 374. [Google Scholar]
- Chevalier, R.A. The hydrodynamics of type II supernovae. Astrophys. J. 1976, 207, 872–887. [Google Scholar] [CrossRef]
- Lundqvist, P.; Fransson, C. Circumstellar absorption of UV and radio emission from supernovae. Astron. Astrophys. 1988, 192, 221–233. [Google Scholar]
- Blondin, J.M.; Ellison, D.C. Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration. Astrophys. J. 2001, 560, 244–253. [Google Scholar] [CrossRef]
- Chevalier, R.A. The radio and X-ray emission from type II supernovae. Astrophys. J. 1982, 259, 302–310. [Google Scholar] [CrossRef]
- Kundu, E. Radio Emission from Supernovae. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2019. [Google Scholar]
- Bykov, A.M.; Brandenburg, A.; Malkov, M.A.; Osipov, S.M. Microphysics of Cosmic Ray Driven Plasma Instabilities. Space Sci. Rev. 2013, 178, 201–232. [Google Scholar] [CrossRef]
- Caprioli, D.; Spitkovsky, A. Simulations of Ion Acceleration at Non–relativistic Shocks. I. Acceleration Efficiency. Astrophys. J. 2014, 783, 91. [Google Scholar] [CrossRef]
- Caprioli, D.; Spitkovsky, A. Simulations of Ion Acceleration at Non–relativistic Shocks. II. Magnetic Field Amplification. Astrophys. J. 2014, 794, 46. [Google Scholar] [CrossRef]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-Interscience: New York, NY, USA, 1979. [Google Scholar]
- Nugis, T.; Lamers, H.J.G.L.M. Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron. Astrophys. 2000, 360, 227. [Google Scholar]
- van Loon, J.T.; Cioni, M.R.L.; Zijlstra, A.A.; Loup, C. An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron. Astrophys. 2005, 438, 273. [Google Scholar] [CrossRef]
- Mokiem, M.R.; de Koter, A.; Evans, C.J.; Puls, J.; Smartt, S.J.; Crowther, P.A.; Herrero, A.; Langer, N.; Lennon, D.J.; Najarro, F.; et al. The VLT-FLAMES survey of massive stars: Wind properties and evolution of hot massive stars in the Large Magellanic Cloud. Astron. Astrophys. 2007, 465, 1003–1019. [Google Scholar] [CrossRef]
- Cappa, C.; Goss, W.M.; van der Hucht, K.A. A Very Large Array 3.6 Centimeter Continuum Survey of Galactic Wolf-Rayet Stars. Astron. J. 2004, 127, 2885. [Google Scholar] [CrossRef]
- Crowther, P.A. Physical Properties of Wolf-Rayet Stars. Ann. Rev. Astron. Astrophys. 2007, 45, 177. [Google Scholar] [CrossRef]
- Matzner, C.D.; McKee, C.F. The Expulsion of Stellar Envelopes in Core-Collapse Supernovae. Astrophys. J. 1999, 510, 379. [Google Scholar] [CrossRef]
- Kundu, E.; Lundqvist, P.; P’erez-Torres, M.A.; Herrero-Illana, R.; Alberdi, A. Constraining Magnetic Field Amplification in SN Shocks Using Radio Observations of SNe 2011fe and 2014J. Astrophys. J. 2017, 842, 17. [Google Scholar] [CrossRef]
- Chevalier, R.A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 1982, 258, 790. [Google Scholar] [CrossRef]
- Bell, A.R. The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Ellison, D.C.; Reynolds, S.P. Electron Acceleration in a Nonlinear Shock Model with Applications to Supernova Remnants. Astrophys. J. 1991, 382, 242. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Circumstellar Emission from Type Ib and Ic Supernovae. Astrophys. J. 2006, 651, 381–391. [Google Scholar] [CrossRef]
- Chevalier, R.A. Synchrotron Self-Absorption in Radio Supernovae. Astrophys. J. 1998, 499, 810. [Google Scholar] [CrossRef]
- Fransson, C.; Lundqvist, P.; Chevalier, R.A. Circumstellar Interaction in SN 1993J. Astrophys. J. 1996, 461, 993. [Google Scholar] [CrossRef]
- Björnsson, C.-I.; Lundqvist, P. Heating from Free-Free Absorption and the Mass-loss Rate of the Progenitor Stars to Supernovae. Astrophys. J. 2014, 787, 143. [Google Scholar] [CrossRef]
- Tucker, W. Radiation Processes in Astrophysics; MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef]
- Ruiz-Carmona, R.; Sfaradi, I.; Horesh, A. Type IIP supernova SN2016X in radio frequencies. Astron. Astrophys. 2022, 666, A82. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Smith, N.; Filippenko, A.V.; Blanchard, K.B.; Blanchard, P.K.; Casper, C.F.E.; Cenko, S.B.; Clubb, K.I.; Cohen, D.P.; Fuller, K.L.; et al. The unprecedented 2012 outburst of SN 2009ip: A luminous blue variable star becomes a true supernova. Mon. Not. R. Astron. Soc. 2013, 430, 1801. [Google Scholar] [CrossRef]
- Prieto, J.L.; Brimacombe, J.; Drake, A.J.; Howerton, S. The 2012 Rise of the Remarkable Type IIn SN 2009ip. Astrophys. J. Lett. 2013, 763, L27. [Google Scholar] [CrossRef]
- Margutti, R.; Milisavljevic, D.; Soderberg, A.M.; Chornock, R.; Zauderer, B.A.; Murase, K.; Guidorzi, C.; Sanders, N.E.; Kuin, P.; Fransson, C.; et al. A Panchromatic View of the Restless SN 2009ip Reveals the Explosive Ejection of a Massive Star Envelope. Astrophys. J. 2014, 780, 21. [Google Scholar] [CrossRef]
- Smith, N.; Andrews, J.E.; Filippenko, A.V.; Fox, O.D.; Mauerhan, J.C.; Van Dyk, S.D. SN 2009ip after a decade: The luminous blue variable progenitor is now gone. Mon. Not. R. Astron. Soc. 2022, 515, 71–81. [Google Scholar] [CrossRef]
- Pooley, D.; Lewin, W.H.G.; Fox, D.W.; Miller, J.M.; Lacey, C.K.; Van Dyk, S.D.; Weiler, K.W.; Sramek, R.A.; Filippenko, A.V.; Leonard, D.C.; et al. X-Ray, Optical, and Radio Observations of the Type II Supernovae 1999em and 1998S. Astrophys. J. 2002, 572, 932. [Google Scholar] [CrossRef]
- Smith, I.A.; Ryder, S.D.; Böttcher, M.; Tingay, S.J.; Liang, E.P.; Pakull, M.; Stacy, A. Multiwavelength Monitoring of the Unusual Ultraluminous Supernova SN 1978K in NGC 1313 and the Search for an Associated Gamma-Ray Burst. Astrophys. J. 2007, 669, 1130. [Google Scholar] [CrossRef]
- Stritzinger, M.; Taddia, F.; Fransson, C.; Fox, O.D.; Morrell, N.; Phillips, M.M.; Sollerman, J.; Anderson, J.P.; Boldt, L.; Brown, P.J.; et al. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd. Astrophys. J. 2012, 756, 173. [Google Scholar] [CrossRef]
- Chandra, P.; Stockdale, C.J.; Chevalier, R.A.; Van Dyk, S.D.; Ray, A.; Kelley, M.T.; Weiler, K.W.; Panagia, N.; Sramek, R.A. Eleven Years of Radio Monitoring of the type IIn Supernova SN 1995N. Astrophys. J. 2009, 690, 1839. [Google Scholar] [CrossRef]
- Chandra, P.; Chevalier, R.A.; Chugai, N.; Fransson, C.; Irwin, C.M.; Soderberg, A.M.; Chakraborti, S.; Immler, S. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova. Astrophys. J. 2012, 755, 110. [Google Scholar] [CrossRef]
- Pooley, D.; Immler, S.; Filippenko, A.V. Chandra Observation of SN 2005kd: Very Luminous and Hard X-ray Emission. Astron. Telegr. 2007, 1023, 1. [Google Scholar]
- Chandra, P.; Soderberg, A. Radio detection of SN 2005kd. Astron. Telegr. 2007, 1182, 1. [Google Scholar]
- Zampieri, L.; Mucciarelli, P.; Pastorello, A.; Turatto, M.; Cappellaro, E.; Benetti, S. Simultaneous XMM-Newton and ESO VLT observations of supernova 1995N: Probing the wind-ejecta interaction. Mon. Not. R. Astron. Soc. 2005, 364, 1419. [Google Scholar] [CrossRef]
- Houck, J.C.; Bregman, J.N.; Chevalier, R.A.; Tomisaka, K. Recent X-Ray Observations of SN 1986J with ASCA and ROSAT. Astrophys. J. 1998, 493, 431. [Google Scholar] [CrossRef]
- Chevalier, R.A. Circumstellar interaction and a pulsar nebula in the supernova 1986j. Nature 1987, 329, 611. [Google Scholar] [CrossRef]
- van Dyk, S.D.; Weiler, K.W.; Sramek, R.A.; Panagia, N. SN 1988Z: The Most Distant Radio Supernova. Astrophys. J. Lett. 1993, 419, L69. [Google Scholar] [CrossRef]
- Fabian, A.C.; Terlevich, R. X-ray detection of Supernova 1988Z with the ROSAT High Resolution Imager. Mon. Not. R. Astron. Soc. 1996, 280, L5. [Google Scholar] [CrossRef]
- Palliyaguru, N.T.; Corsi, A.; Frail, D.A.; Vinkó, J.; Wheeler, J.C.; Gal-Yam, A.; Cenko, S.B.; Kulkarni, S.R.; Kasliwal, M.M. The Double-peaked Radio Light Curve of Supernova PTF11qcj. Astrophys. J. 2019, 872, 201. [Google Scholar] [CrossRef]
- Palliyaguru, N.T.; Corsi, A.; Pérez-Torres, M.; Varenius, E.; Van Eerten, H. VLBI Observations of Supernova PTF11qcj: Direct Constraints on the Size of the Radio Ejecta. Astrophys. J. 2021, 910, 16. [Google Scholar] [CrossRef]
- Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D.J.; Raymond, J.C.; Eldridge, J.J.; Fong, W.; Bietenholz, M.; Challis, P.; Chornock, R.; et al. Metamorphosis of SN 2014C: Delayed Interaction between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell. Astrophys. J. 2015, 815, 120. [Google Scholar] [CrossRef]
- Bietenholz, M.F.; Bartel, N.; Kamble, A.; Margutti, R.; Matthews, D.J.; Milisavljevic, D. SN 2014C: VLBI image shows a shell structure and decelerated expansion. Mon. Not. R. Astron. Soc. 2021, 502, 1694. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Kulkarni, S.R.; Berger, E.; Chevalier, R.A.; Frail, D.A.; Fox, D.B.; Walker, R.C. The Radio and X-Ray-Luminous Type Ibc Supernova 2003L. Astrophys. J. 2005, 621, 908–920. [Google Scholar] [CrossRef]
- Smith, N.; Li, W.; Filippenko, A.V.; Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 2011, 412, 1522. [Google Scholar] [CrossRef]
- Schaller, G.; Schaerer, D.; Meynet, G.; Maeder, A. New Grids of Stellar Models from 0.8-SOLAR-MASS to 120-SOLAR-MASSES at Z = 0.020 and Z = 0.001. Advis. Assist. Serv. 1992, 96, 269. [Google Scholar]
- Vink, J.S.; de Koter, A. On the metallicity dependence of Wolf-Rayet winds. Advis. Assist. Serv. 2005, 442, 587. [Google Scholar] [CrossRef]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E.; Heger, A. Supernovae, Jets, and Collapsars. Astrophys. J. 2001, 550, 410. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Mazzali, P.A.; Nomoto, K.; Lazzati, D.; Cappellaro, E. The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors. Astrophys. J. 2004, 607, L17. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Nakar, E.; Berger, E.; Kulkarni, S.R. Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts. Astrophys. J. 2006, 638, 930. [Google Scholar] [CrossRef]
- Berger, E.; Kulkarni, S.R.; Chevalier, R.A. The Radio Evolution of the Ordinary Type Ic Supernova SN 2002ap. Astrophys. J. 2002, 577, L5. [Google Scholar] [CrossRef]
- Berger, E.; Kulkarni, S.R.; Frail, D.A.; Soderberg, A.M. A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae. Astrophys. J. 2003, 599, 408. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Chevalier, R.A.; Kulkarni, S.R.; Frail, D.A. The Radio and X-Ray Luminous SN 2003bg and the Circumstellar Density Variations around Radio Supernovae. Astrophys. J. 2006, 651, 1005. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Kulkarni, S.R.; Nakar, E.; Berger, E.; Cameron, P.B.; Fox, D.B.; Frail, D.; Gal-Yam, A.; Sari, R.; Cenko, S.B.; et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 2006, 442, 1014. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 453, 469. [Google Scholar] [CrossRef] [PubMed]
- Soderberg, A.M.; Brunthaler, A.; Nakar, E.; Chevalier, R.A.; Bietenholz, M.F. Radio and X-ray Observations of the Type Ic SN 2007gr Reveal an Ordinary, Non-relativistic Explosion. Astrophys. J. 2010, 725, 922. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Chakraborti, S.; Pignata, G.; Chevalier, R.A.; Chandra, P.; Ray, A.; Wieringa, M.H.; Copete, A.; Chaplin, V.; Connaughton, V.; et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 2010, 463, 513. [Google Scholar] [CrossRef] [PubMed]
- Wellons, S.; Soderberg, A.M.; Chevalier, R.A. Radio Observations Reveal Unusual Circumstellar Environments for Some Type Ibc Supernova Progenitors. Astrophys. J. 2012, 752, 17. [Google Scholar] [CrossRef]
- Chomiuk, L.; Chornock, R.; Soderberg, A.M.; Berger, E.; Chevalier, R.A.; Foley, R.J.; Huber, M.E.; Narayan, G.; Rest, A.; Gezari, S.; et al. Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9. Astrophys. J. 2011, 743, 114. [Google Scholar] [CrossRef]
- Quimby, R.M.; Kulkarni, S.R.; Kasliwal, M.M.; Gal-Yam, A.; Arcavi, I.; Sullivan, M.; Nugent, P.; Thomas, R.; Howell, D.A.; Nakar, E.; et al. Hydrogen-poor superluminous stellar explosions. Nature 2011, 474, 487. [Google Scholar] [CrossRef]
- Gal-Yam, A. Luminous Supernovae. Science 2012, 337, 927. [Google Scholar] [CrossRef]
- Moriya, T.J.; Sorokina, E.I.; Chevalier, R.A. Superluminous Supernovae. Space Sci. Rev. 2018, 214, 59. [Google Scholar] [CrossRef]
- Margutti, R.; Bright, J.S.; Matthews, D.J.; Coppejans, D.L.; Alexander, K.D.; Berger, E.; Bietenholz, M.; Chornock, R.; DeMarchi, L.; Drout, M.R.; et al. Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 yr after Explosion. Astrophys. J. Lett. 2023, 954, L45. [Google Scholar] [CrossRef]
- Maeda, K.; Chandra, P.; Matsuoka, T.; Ryder, S.; Moriya, T.J.; Kuncarayakti, H.; Lee, S.; Kundu, E.; Patnaude, D. The Final Months of Massive Star Evolution from the Circumstellar Environment around SN Ic 2020oi. Astrophys. J. 2021, 918, 32–34. [Google Scholar] [CrossRef]
- Bartel, N.; Bietenholz, M.F.; Rupen, M.P.; Beasley, A.J.; Graham, D.A.; Altunin, V.I.; Venturi, T.; Umana, G.; Cannon, W.H.; Conway, J.E. The Changing Morphology and Increasing Deceleration of Supernova 1993J in M81. Science 2000, 287, 112. [Google Scholar] [CrossRef] [PubMed]
- Bartel, N.; Bietenholz, M.F.; Rupen, M.P.; Beasley, A.J.; Graham, D.A.; Altunin, V.I.; Venturi, T.; Umana, G.; Cannon, W.H.; Conway, J.E.; et al. SN 1993J VLBI. II. Related Changes of the Deceleration, Flux Density Decay, and Spectrum. Astrophys. J. 2002, 581, 1. [Google Scholar] [CrossRef]
- Bietenholz, M.F.; Bartel, N.; Rupen, M.P. SN 1993J VLBI. III. The Evolution of the Radio Shell. Astrophys. J. 2003, 597, 374–398. [Google Scholar] [CrossRef]
- Chandra, P.; Ray, A.; Bhatnagar, S. The Late-Time Radio Emission from SN 1993J at Meter Wavelengths. Astrophys. J. 2004, 612, 974. [Google Scholar]
- Martí-Vidal, I.; Marcaide, J.M.; Alberdi, A.; Guirado, J.C.; Pérez-Torres, M.A.; Ros, E. Radio emission of SN1993J: The complete picture II. Simultaneous fit of expansion and radio light curves. Astron. Astrophys. 2011, 526, A143. [Google Scholar] [CrossRef]
- Cohen, J.G.; Darling, J.; Porter, A. The Nonvariability of the Progenitor of Supernova 1993J in M81. Astron. J. 1995, 110, 308. [Google Scholar] [CrossRef]
- Crockett, R.M.; Eldridge, J.J.; Smartt, S.J.; Pastorello, A.; Gal-Yam, A.; Fox, D.B.; Leonard, D.C.; Kasliwal, M.M.; Mattila, S.; Maund, J.R.; et al. The type IIb SN 2008ax: The nature of the progenitor. Mon. Not. R. Astron. Soc. 2008, 391, L5. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Li, W.; Cenko, S.B.; Kasliwal, M.M.; Horesh, A.; Ofek, E.O.; Kraus, A.L.; Silverman, J.M.; Arcavi, I.; Filippenko, A.V.; et al. The Progenitor of Supernova 2011dh/PTF11eon in Messier 51. Astrophys. J. 2011, 741, L28. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Fox, O.D.; Cenko, S.B.; Clubb, K.I.; Filippenko, A.V.; Foley, R.J.; Miller, A.A.; Smith, N.; Kelly, P.L.; et al. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor. Astrophys. J. 2014, 147, 37. [Google Scholar] [CrossRef]
- Ryder, S.D.; Van Dyk, S.D.; Fox, O.D.; Zapartas, E.; de Mink, S.E.; Smith, N.; Brunsden, E.; Azalee Bostroem, K.; Filippenko, A.V.; Shivvers, I.; et al. Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig. Astrophys. J. 2018, 856, 83. [Google Scholar] [CrossRef]
- Sfaradi, I.; Horesh, A.; Fender, R.; Rhodes, L.; Bright, J.; Williams-Baldwin, D.; Green, D.A. The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample. Astrophys. J. 2025, 979, 189. [Google Scholar] [CrossRef]
- Bostroem, K.A.; Valenti, S.; Sand, D.J.; Andrews, J.E.; Van Dyk, S.D.; Galbany, L.; Pooley, D.; Amaro, R.C.; Smith, N.; Yang, S.; et al. Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. Astrophys. J. 2020, 895, 31. [Google Scholar] [CrossRef]
- Maeda, K.; Chandra, P.; Moriya, T.J.; Reguitti, A.; Ryder, S.; Matsuoka, T.; Michiyama, T.; Pignata, G.; Hiramatsu, D.; Bostroem, K.A.; et al. A Multiwavelength View of the Rapidly Evolving SN 2018ivc: An Analog of SN IIb 1993J but Powered Primarily by Circumstellar Interaction. Astrophys. J. 2023, 942, 17. [Google Scholar] [CrossRef]
- Matsuoka, T.; Maeda, K.; Kimura, S.S.; Tanaka, M. Systematic investigation into radio supernovae with Markov Chain Monte Carlo analysis: Implications for massive stars’ mass loss and shock acceleration physics. arXiv 2025, arXiv:2505.06609. [Google Scholar] [CrossRef]
- Drout, M.R.; Chornock, R.; Soderberg, A.M.; Sanders, N.E.; McKinnon, R.; Rest, A.; Foley, R.J.; Milisavljevic, D.; Margutti, R.; Berger, E.; et al. Rapidly Evolving and Luminous Transients from Pan-STARRS1. Astrophys. J. 2014, 794, 23. [Google Scholar] [CrossRef]
- Pursiainen, M.; Childress, M.; Smith, M.; Prajs, S.; Sullivan, M.; Davis, T.M.; Foley, R.J.; Asorey, J.; Calcino, J.; Carollo, D.; et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2018, 481, 894. [Google Scholar] [CrossRef]
- Rivera Sandoval, L.E.; Maccarone, T.J.; Corsi, A.; Brown, P.J.; Pooley, D.; Wheeler, J.C. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 2018, 480, L146. [Google Scholar] [CrossRef]
- Margutti, R.; Metzger, B.D.; Chornock, R.; Vurm, I.; Roth, N.; Grefenstette, B.W.; Savchenko, V.; Cartier, R.; Steiner, J.F.; Terreran, G.; et al. An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophys. J. 2019, 872, 18. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Phinney, E.S.; Ravi, V.; Kulkarni, S.R.; Petitpas, G.; Emonts, B.; Bhalerao, V.; Blundell, R.; Cenko, S.B.; Dobie, D.; et al. AT2018cow: A Luminous Millimeter Transient. Astrophys. J. 2019, 871, 73. [Google Scholar] [CrossRef]
- Prentice, S.J.; Maguire, K.; Smartt, S.J.; Magee, M.R.; Schady, P.; Sim, S.; Chen, T.-W.; Clark, P.; Colin, C.; Fulton, M.; et al. The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient. Astrophys. J. Lett. 2018, 865, L3. [Google Scholar] [CrossRef]
- Perley, D.A.; Mazzali, P.A.; Yan, L.; Cenko, S.B.; Gezari, S.; Taggart, K.; Blagorodnova, N.; Fremling, C.; Mockler, B.; Singh, A.; et al. The fast, luminous ultraviolet transient AT2018cow: Extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 2019, 484, 1031. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Perley, D.A.; Gal-Yam, A.; Gal-Yam, A.; Lunnan, R.; Sollerman, J.; Schulze, S.; Das, K.K.; Dobie, D.; Yao, Y.; et al. A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients. Astrophys. J. 2023, 949, 120. [Google Scholar] [CrossRef]
- Coppejans, D.L.; Margutti, R.; Terreran, G.; Nayana, A.J.; Coughlin, E.R.; Laskar, T.; Alexander, K.D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; et al. A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy. Astrophys. J. Lett. 2020, 895, L23. [Google Scholar] [CrossRef]
- Bietenholz, M.F.; Margutti, R.; Coppejans, D.; Alexander, K.D.; Argo, M.; Bartel, N.; Eftekhari, T.; Milisavljevic, D.; Terreran, G.; Berger, E. AT 2018cow VLBI: No long-lived relativistic outflow. Mon. Not. R. Astron. Soc. 2020, 491, 4735. [Google Scholar] [CrossRef]
- Nayana, A.J.; Chandra, P. uGMRT Observations of a Fast and Blue Optical Transient—AT 2018cow. Astrophys. J. Lett. 2021, 912, L9. [Google Scholar]
- Ho, A.Y.Q.; Perley, D.A.; Yao, Y.; Svinkin, D.; de Ugarte Postigo, A.; Perley, R.A.; Kann, D.A.; Burns, E.; Andreoni, I.; Bellm, E.C.; et al. Cosmological Fast Optical Transients with the Zwicky Transient Facility: A Search for Dirty Fireballs. Astrophys. J. 2022, 938, 85. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Goldstein, D.A.; Schulze, S.; Khatami, D.K.; Perley, D.A.; Ergon, M.; Gal-Yam, A.; Corsi, A.; Andreoni, I.; Barbarino, C.; et al. Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophys. J. 2019, 887, 169. [Google Scholar] [CrossRef]
- Goobar, A.; Johansson, J.; Amanullah, R.; Cao, Y.; Perley, D.A.; Kasliwal, M.M.; Ferretti, R.; Nugent, P.E.; Harris, C.; Gal-Yam, A.; et al. The Rise of SN 2014J in the Nearby Galaxy M82. Astrophys. J. 2014, 784, L12. [Google Scholar] [CrossRef]
- Pérez-Torres, M.A.; Lundqvist, P.; Beswick, R.J.; Björnsson, C.-I.; Muxlow, T.W.B.; Paragi, Z.; Ryder, S.; Alberdi, A.; Fransson, C.; Marcaide, J.M.; et al. Constraints on the Progenitor System and the Environs of SN 2014J from Deep Radio Observations. Astrophys. J. 2014, 792, 38. [Google Scholar] [CrossRef]
- Lundqvist, P.; Kundu, E.; Pérez-Torres, M.A.; Ryder, S.D.; Björnsson, C.-I.; Moldon, J.; Argo, M.K.; Beswick, R.J.; Alberdi, A.; Kool, E.C. The Deepest Radio Observations of Nearby SNe Ia: Constraining Progenitor Types and Optimizing Future Surveys. Astrophys. J. 2020, 890, 159. [Google Scholar] [CrossRef]
- Harris, C.E.; Sarbadhicary, S.K.; Chomiuk, L.; Piro, A.L.; Sand, D.J.; Valenti, S. Radio Observations of Six Young Type Ia Supernovae. Astrophys. J. 2023, 952, 24. [Google Scholar] [CrossRef]
- Morozova, V.; Piro, A.L.; Renzo, M.; Ott, C.D.; Clausen, D.; Couch, S.M.; Ellis, J.; Roberts, L.F. Light Curves of Core-collapse Supernovae with Substantial Mass Loss Using the New Open-source SuperNova Explosion Code (SNEC). Astrophys. J. 2015, 814, 63. [Google Scholar] [CrossRef]
- Piro, A.L.; Morozova, V.S. Exploring the Potential Diversity of Early Type Ia Supernova Light Curves. Astrophys. J. 2016, 826, 96. [Google Scholar] [CrossRef]
- Panagia, N.; Van Dyk, S.D.; Weiler, K.W.; Sramek, R.A.; Stockdale, C.J.; Murata, K.P. A Search for Radio Emission from Type Ia Supernovae. Astrophys. J. 2006, 646, 369. [Google Scholar] [CrossRef]
- Horesh, A.; Kulkarni, S.R.; Fox, D.B.; Carpenter, J.; Kasliwal, M.M.; Ofek, E.O.; Quimby, R.; Gal-Yam, A.; Cenko, S.B.; de Bruyn, A.G.; et al. Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe). Astrophys. J. 2012, 746, 21. [Google Scholar] [CrossRef]
- Chomiuk, L.; Soderberg, A.M.; Moe, M.; Chevalier, R.A.; Rupen, M.P.; Badenes, C.; Margutti, R.; Fransson, C.; Fong, W.-f.; Dittmann, J.A. EVLA Observations Constrain the Environment and Progenitor System of Type Ia Supernova 2011fe. Astrophys. J. 2012, 750, 164. [Google Scholar] [CrossRef]
- Margutti, R.; Soderberg, A.M.; Chomiuk, L.; Chevalier, R.; Hurley, K.; Milisavljevic, D.; Foley, R.J.; Hughes, J.P.; Slane, P.; Fransson, C.; et al. Inverse Compton X-Ray Emission from Supernovae with Compact Progenitors: Application to SN2011fe. Astrophys. J. 2012, 751, 134. [Google Scholar] [CrossRef]
- Silverman, J.M.; Nugent, P.E.; Gal-Yam, A.; Sullivan, M.; Howell, D.A.; Filippenko, A.V.; Arcavi, I.; Ben-Ami, S.; Bloom, J.S.; Cenko, S.B.; et al. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium. Astrophys. J. Suppl. Ser. 2013, 207, 3. [Google Scholar] [CrossRef]
- Wood-Vasey, W.M.; Sokoloski, J.L. Novae as a Mechanism for Producing Cavities around the Progenitors of SN 2002ic and Other Type Ia Supernovae. Astrophys. J. Lett. 2006, 645, L53. [Google Scholar] [CrossRef]
- Patat, F.; Chugai, N.N.; Podsiadlowski, P.; Mason, E.; Melo, C.; Pasquini, L. Connecting RS Ophiuchi to [some] type Ia supernovae. Astron. Astrophys. 2011, 530, A63. [Google Scholar] [CrossRef]
- Moore, K.; Bildsten, L. Circumstellar Shell Formation in Symbiotic Recurrent Novae. Astrophys. J. 2012, 761, 182. [Google Scholar] [CrossRef]
- Harris, C.E.; Nugent, P.E.; Kasen, D.N. Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-density Circumstellar Shells. Astrophys. J. 2016, 823, 100. [Google Scholar] [CrossRef]
- Filipović, M.D.; Smeaton, Z.J.; Kothes, R.; Mantovanini, S.; Kostić, P.; Leahy, D.; Ahmad, A.; Anderson, G.; Araya, M.; Ball, B.D.; et al. Teleios (G305.4–2.2)—The mystery of a perfectly shaped new galactic supernova remnant. Publ. Astron. Soc. Aust. 2025, 42, e104. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59. [Google Scholar] [CrossRef] [PubMed]
- CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Kundu, E.; Ferrario, L. The impact of the environment of white dwarf mergers on fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 492, 3753–3762. [Google Scholar] [CrossRef]
- Kundu, E. Is FRB 191001 embedded in a supernova remnant? Mon. Not. R. Astron. Soc. 2022, 512, L1–L5. [Google Scholar] [CrossRef]
- Chatterjee, S.; Law, C.J.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.C.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. A direct localization of a fast radio burst and its host. Nature 2017, 541, 58–61. [Google Scholar] [CrossRef]
- Ravi, V.; Law, C.J.; Li, D.; Aggarwal, K.; Bhardwaj, M.; Burke-Spolaor, S.; Connor, L.; Lazio, T.J.W.; Simard, D.; Somalwar, J.; et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 2022, 513, 982–990. [Google Scholar] [CrossRef]
- Cassanelli, T.; Leung, C.; Sanghavi, P.; Mena-Parra, J.; Cary, S.; Mckinven, R.; Bhardwaj, M.; Masui, K.W.; Michilli, D.; Bandura, K.; et al. A fast radio burst localized at detection to an edge-on galaxy using very-long-baseline interferometry. Nat. Astron. 2024, 8, 1429–1442. [Google Scholar] [CrossRef]
- Hewitt, D.M.; Bhandari, S.; Marcote, B.; Hessels, J.W.T.; Nimmo, K.; Kirsten, F.; Bach, U.; Bezrukovs, V.; Bhardwaj, M.; Blaauw, R.; et al. Milliarcsecond localization of the hyperactive repeating FRB 20220912A. Mon. Not. R. Astron. Soc. 2024, 529, 1814–1826. [Google Scholar] [CrossRef]
- Dubner, G.; Giacani, E. Radio emission from supernova remnants. Astron. Astrophys. Rev. 2015, 23, 3. [Google Scholar] [CrossRef]
- Lacy, M.; Baum, S.A.; Chandler, C.J.; Chatterjee, S.; Clarke, T.E.; Deustua, S.; English, J.; Farnes, J.; Gaensler, B.M.; Gugliucci, N.; et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publ. Astron. Soc. Pac. 2020, 132, 035001. [Google Scholar] [CrossRef]
- Stroh, M.C.; Terreran, G.; Coppejans, D.L.; Bright, J.S.; Margutti, R.; Bietenholz, M.F.; De Colle, F.; DeMarchi, L.; Duran, R.B.; Milisavljevic, D.; et al. Luminous Late-time Radio Emission from Supernovae Detected by the Karl G. Jansky Very Large Array Sky Survey (VLASS). Astrophys. J. Lett. 2021, 923, L24. [Google Scholar] [CrossRef]
- Rose, K.; Horesh, A.; Murphy, T.; Kaplan, D.L.; Sfaradi, I.; Ryder, S.D.; Aloisi, R.J.; Dobie, D.; Driessen, L.; Fender, R.; et al. Late-time supernovae radio re-brightening in the VAST pilot survey. Mon. Not. R. Astron. Soc. 2024, 534, 3853–3868. [Google Scholar] [CrossRef]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef]
- Swarup, G. Giant metrewave radio telescope (GMRT). IAU Colloquium 131: Radio Interferometry. Theory, Techniques, and Applications. Astron. Soc. Pac. Conf. Ser. 1991, 19, 376–380. [Google Scholar]
- Ananthakrishnan, S. The Giant Metrewave Radio Telescope. J. Astrophys. Astron. 1995, 16, 427–435. [Google Scholar]
- Jonas, J.; MeerKAT Team. The MeerKAT Radio Telescope. In Proceedings of the MeerKAT Science: On the Pathway to the SKA, Stellenbosch, South Africa, 25–27 May 2016; p. 1. [Google Scholar]
- Robertson, P. An Australian Icon—Planning and Construction of the Parkes Telescope. arXiv 2012, arXiv:1210.0987. [Google Scholar]
- Jewell, P.R.; Prestage, R.M. The Green Bank Telescope. Ground-Based Telesc. 2004, 5489, 312–323. [Google Scholar]
- Ricci, R.; Sadler, E.M.; Ekers, R.D.; Staveley-Smith, L.; Wilson, W.E.; Kesteven, M.J.; Subrahmanyan, R.; Walker, M.A.; Jackson, C.A.; De Zotti, G.; et al. First results from the Australia Telescope Compact Array 18-GHz pilot survey. Mon. Not. R. Astron. Soc. 2004, 354, 305. [Google Scholar] [CrossRef]
- Wootten, A.; Thompson, A.R. The Atacama Large Millimeter/Submillimeter Array. IEEE Proc. 2009, 97, 1463–1471. [Google Scholar] [CrossRef]
- Pritchard, J.R.; Loeb, A. 21 cm cosmology in the 21st century. Rep. Prog. Phys. 2012, 75, 086901. [Google Scholar] [CrossRef]
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L.W. The Square Kilometre Array. IEEE Proc. 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Di Francesco, J.; Chalmers, D.; Denman, N.; Fissel, L.; Friesen, R.; Gaensler, B.; Hlavacek-Larrondo, J.; Kirk, H.; Matthews, B.; O’Dea, C.; et al. The Next Generation Very Large Array. In Canadian Long Range Plan for Astronomy and Astrophysics White Papers; Zenodo: Geneva, Switzerland, 2019; Volume 2020, p. 32. [Google Scholar]





























Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kundu, E. Radio Supernovae. Universe 2026, 12, 4. https://doi.org/10.3390/universe12010004
Kundu E. Radio Supernovae. Universe. 2026; 12(1):4. https://doi.org/10.3390/universe12010004
Chicago/Turabian StyleKundu, Esha. 2026. "Radio Supernovae" Universe 12, no. 1: 4. https://doi.org/10.3390/universe12010004
APA StyleKundu, E. (2026). Radio Supernovae. Universe, 12(1), 4. https://doi.org/10.3390/universe12010004

