Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Determination of Serum Se, Zn, and Cu and TAS
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Globocan 2022. World Health Organization, International Agency for Research on Cancer, Global Cancer Observatory: Cancer Today 2022. 2024. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (accessed on 9 July 2024).
- Ejtehadi, F.; Taghavi, A.R.; Fattahi, M.R.; Shahramian, I.; Niknam, R.; Moini, M.; Tahani, M. Prevalence of colonic polyps detected by colonoscopy in symptomatic patients and comparison between different age groups. What age should be considered for investigation? Pol. Przegl. Chir. 2024, 96, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, R.F.; AL-Gebori, A.M.; Sulaiman, G.M. Serum levels of zinc, copper, selenium and glutathione peroxidase in the different groups of colorectal cancer patients. Casp. J. Intern. Med. 2020, 11, 384–390. [Google Scholar] [CrossRef]
- Himoto, T.; Masaki, T. Current trends on the involvement of zinc, copper, and selenium in the process of hepatocarcinogenesis. Nutrients 2024, 16, 472. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients 2015, 7, 3621–3651. [Google Scholar] [CrossRef]
- Méplan, C.; Hesketh, J. The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis 2015, 27, 177–186. [Google Scholar] [CrossRef]
- Pilat, J.M.; Brown, R.E.; Chen, Z.; Berle, N.J.; Othon, A.P.; Washington, M.K.; Anant, S.A.; Kurokawa, S.; Ng, V.H.; Thompson, J.J.; et al. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J. Clin. Investig. 2023, 133, e165988. [Google Scholar] [CrossRef]
- Ferreira, R.L.U.; Sena-Evangelista, K.C.M.; de Azevedo, E.P.; Pinheiro, F.I.; Cobucci, R.N.; Pedrosa, L.F.C. Selenium in human health and gut microflora: Bioavailability of selenocompounds and relationship with diseases. Front. Nutr. 2021, 8, 685317. [Google Scholar] [CrossRef]
- Cai, X.; Su, Y.; Ning, J.; Fan, X.; Shen, M. Research on the effect and mechanism of selenium on colorectal cancer through TRIM32. Biol. Trace Element Res. 2024. [Google Scholar] [CrossRef]
- Sohrabi, M.; Gholami, A.; Azar, M.H.; Yaghoobi, M.; Shahi, M.M.; Shirmardi, S.; Nikkhah, M.; Kohi, Z.; Salehpour, D.; Khoonsari, M.R.; et al. Trace element and heavy metal levels in colorectal cancer: Comparison between cancerous and non-cancerous tissues. Biol. Trace Elem. Res. 2018, 183, 1–8. [Google Scholar] [CrossRef]
- Pal, A.; Dhar, A.; Shamim, M.A.; Rani, I.; Negi, R.R.; Sharma, A.; Chatterjee, N.; Goyal, A.; Sadashiv, S.; Kaur, B.; et al. Selenium levels in colorectal cancer: A systematic review and meta-analysis of serum, plasma, and colorectal specimens. J. Trace Elem. Med. Biol. 2024, 84, 127429. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, M. Selenium and cancer or adenoma related to the large bowel. Postępy Hig. I Med. Doświadczalnej 2021, 75, 426–436. [Google Scholar] [CrossRef]
- Speckmann, B.; Grune, T. Epigenetic effects of selenium and their implications for health. Epigenetics 2015, 10, 179–190. [Google Scholar] [CrossRef]
- Li, T.; Xu, H. Selenium-containing nanomaterials for cancer treatment. Cell Rep. Phys. Sci. 2020, 1, 100111. [Google Scholar] [CrossRef]
- Zastrow, M.L.; Pecoraro, V.L. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014, 53, 957–978. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636. [Google Scholar] [CrossRef]
- Wang, D.Q.; Wang, K.; Yan, D.W.; Liu, J.; Wang, B.; Li, M.X.; Wang, X.W.; Liu, J.; Peng, Z.H.; Li, G.X.; et al. CIZ1 is a novel predictor of survival in human colon cancer. Exp. Biol. Med. 2014, 239, 862–870. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Zheng, L.Q.; Pan, L.J.; Guo, J.X.; Yang, G.S. ZNF217 is overexpressed and enhances cell migration and invasion in colorectal carcinoma. Asian Pac. J. Cancer Prev. 2015, 16, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.J.; Bu, P.L.; Zhang, Q.; Chen, J.T.; Li, Q.Y.; Liu, J.T.; Dong, H.C.; Ren, X.Q. ZNF281 regulates cell proliferation, migration and invasion in colorectal cancer through Wnt/β-Catenin signaling. Cell Physiol. Biochem. 2019, 52, 1503–1516. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.; Wu, Q.; Boyd, D.D. Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J. Biol. Chem. 2008, 283, 35295–35304. [Google Scholar] [CrossRef]
- Wang, X.; Ge, X.; Liao, W.; Cao, Y.; Li, R.; Zhang, F.; Zhao, B.; Du, J. ZFP36 promotes VDR mRNA degradation to facilitate cell death in oral and colonic epithelial cells. Cell Commun. Signal. 2021, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.S.; Narayan, S. Zinc stabilizes adenomatous polyposis coli (APC) protein levels and induces cell cycle arrest in colon cancer cells. J. Cell. Biochem. 2004, 93, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Skrovanek, S.; DiGuilio, K.; Bailey, R.; Huntington, W.; Urbas, R.; Mayilvaganan, B.; Mercogliano, G.; Mullin, J.M. Zinc and gastrointestinal disease. World J. Gastrointest. Pathophysiol. 2014, 5, 496–513. [Google Scholar] [CrossRef]
- Hara, A.; Sasazuki, S.; Inoue, M.; Iwasaki, M.; Shimazu, T.; Sawada, N.; Yamaji, T.; Takachi, R.; Tsugane, S.; Japan Public Health Center-Based Prospective Study Group. Zinc and heme iron intakes and risk of colorectal cancer: A population-based prospective cohort study in Japan. Am. J. Clin. Nutr. 2012, 96, 864–873. [Google Scholar] [CrossRef]
- dos Santos, N.V.; Matias, A.C.; Higa, G.S.; Kihara, A.H.; Cerchiaro, G. Copper uptake in mammary epithelial cells activates cyclins and triggers antioxidant response. Oxidative Med. Cell. Longev. 2015, 2015, 162876. [Google Scholar] [CrossRef]
- Han, J.; Luo, J.; Wang, C.; Kapilevich, L.; Zhang, X.A. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed. Pharmacother. 2024, 174, 116570. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many “faces” of copper in medicine and treatment. Biometals 2014, 27, 611–621. [Google Scholar] [CrossRef]
- Zowczak, M.; Iskra, M.; Torlinski, L.; Cofta, S. Analysis of serum copper and zinc concentrations in cancer patients. Biol. Trace Elem. Res. 2001, 82, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khoshdel, Z.; Naghibalhossaini, F.; Abdollahi, K.; Shojaei, S.; Moradi, M.; Malekzadeh, M. Serum copper and zinc levels among Iranian colorectal cancer patients. Biol. Trace Elem. Res. 2016, 170, 294–299. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef]
- Li, Y.; Browne, R.W.; Bonner, M.R.; Deng, F.; Tian, L.; Mu, L. Positive relationship between total antioxidant status and chemokines observed in adults. Oxidative Med. Cell. Longev. 2014, 2014, 693680. [Google Scholar] [CrossRef]
- Barinow-Wojewódzki, A.; Mielcarz, G. Evaluation of the effects of exercise rehabilitation on trace elements and antioxidant status of patients with non-small cell lung cancer. Contemp. Oncol. 2008, 12, 77–83. [Google Scholar]
- Zowczak, M.; Iskra, M.; Paszkowski, J.; Mańczak, M.; Torliński, L.; Wysocka, E. Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J. Trace Elem. Med. Biol. 2001, 15, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.F.; Rahman, S.N.; Agudelo, C.W.; Wein, A.J.; Lazar, J.M.; Everaert, K.; Dmochowski, R.R. Foundational statistical principles in medical research: Sensitivity, specificity, positive predictive value, and negative predictive value. Medicina 2021, 57, 503. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Speckmann, B.; Sies, H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid. Redox Signal. 2013, 19, 181–191. [Google Scholar] [CrossRef]
- Duffield-Lillico, A.J.; Reid, M.E.; Turnbull, B.W.; Combs, G.F.J.; Slate, E.H.; Fischbach, L.A.; Marshall, J.R.; Clark, L.C. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: A summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomark. Prev. 2002, 11, 630–639. [Google Scholar]
- Lener, M.; Jaworska, K.; Muszyńska, K.; Sukiennicki, G.; Durda, K.; Gupta, S.; Złowocka-Perłowska, E.; Kładny, J.; Wiechowska-Kozłowska, A.; Grodzki, T.; et al. Selenium as marker for cancer risk and prevention. Pol. Przeg. Chir. 2012, 84, 470–475. [Google Scholar]
- Dennert, G.; Zwahlen, M.; Brinkman, M.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2011, 5, CD005195. [Google Scholar]
- Huges, D.J.; Fedirko, V.; Jenab, M.; Schomburg, L.; Méplan, C.; Freisling, H.; Bueno-de-Mesquita, H.B.; Hybsier, S.; Becker, N.P.; Czuban, M.; et al. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int. J. Cancer 2015, 136, 1149–1161. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, B.; Tang, B.; Wie, Q. Selenium in prostate cancer: Prevention, progression, and treatment. Pharmaceuticals 2023, 16, 1250. [Google Scholar] [CrossRef]
- Lener, M.R.; Gupta, S.; Scott, R.J.; Tootsi, M.; Kulp, M.; Tammesoo, M.-L.; Viitak, A.; Metspalu, A.; Serrano-Fernández, P.; Kładny, J.; et al. Can selenium levels act as a marker of colorectal cancer risk? BMC Cancer 2013, 13, 214. Available online: https://www.biomedcentral.com/1471-2407/13/214 (accessed on 28 June 2024). [CrossRef] [PubMed]
- White, N.; Parsons, R.; Collins, G.; Barnett, A. Evidence of questionable research practices in clinical prediction models. BMC Med. 2023, 21, 339. [Google Scholar] [CrossRef] [PubMed]
- Lener, M.R.; Muszyńska, M.; Jakubowska, A.; Jaworska-Bieniek, K.; Sukiennicki, G.; Kaczmarek, K.; Durda, K.; Gromowski, T.; Serrano-Fernández, P.; Kładny, J.; et al. Selenium as a marker of cancer risk and of selection for control examinations in surveillance. Contemp. Oncol. 2015, 19, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.E.; Duffield-Lillico, A.J.; Sunga, A.; Fakih, M.; Alberts, D.S.; Marshall, J.R. Selenium supplementation and colorectal adenomas: An analysis of the nutritional prevention of cancer trial. Int. J. Cancer 2006, 118, 1777–1781. [Google Scholar] [CrossRef]
- Lv, S.; Ding, Y.; Huang, J.; He, Y.; Xie, R.; Shi, X.; Ye, W. Genetic prediction of micronutrient levels and the risk of colorectal polyps: A mendelian randomization study. Clin. Nutr. 2024, 43, 1405–1413. [Google Scholar] [CrossRef]
- Oteiza, P.I.; Mackenzie, G.G. Zinc, oxidant-triggered cell signaling, and human health. Mol. Asp. Med. 2005, 26, 245–255. [Google Scholar] [CrossRef]
- Lönnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Lowe, N.M.; Medina, M.W.; Stammers, A.L.; Patel, S.; Souverein, O.W.; Dullemeijer, C.; Serra-Majem, L.; Nissensohn, M.; Hall Moran, V. The relationship between zinc intake and serum/plasma zinc concentration in adults: A systematic review and dose—Response meta-analysis by the EURRECA Network. Br. J. Nutr. 2012, 108, 1962–1971. [Google Scholar] [CrossRef]
- King, J.C. Zn: An essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679S–684S. [Google Scholar] [CrossRef]
- Sugimoto, R.; Lee, L.; Tanaka, Y.; Morita, Y.; Hijioka, M.; Hisano, T.; Furukawa, M. Zinc deficiency as a general feature of cancer: A review of the literature. Biol. Trace Elem. Res. 2024, 202, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, H.; Liu, L.; Qiang, G.; Zhu, J. Serum zinc level and tissue ZIP4 expression are related to the prognosis of patients with stages I-III colon cancer. Transl. Cancer Res. 2020, 9, 5585–5594. [Google Scholar] [CrossRef]
- Lee, D.H.; Anderson, K.E.; Harnack, L.J.; Folsom, A.R.; Jacobs, D.R., Jr. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J. Natl. Cancer Inst. 2004, 96, 403–406. [Google Scholar] [CrossRef]
- Li, P.; Xu, J.; Shi, Y.; Ye, Y.; Chen, K.; Yang, J.; Wu, Y. Association between zinc intake and risk of digestive tract cancers: A systematic review and meta-analysis. Clin. Nutr. 2014, 33, 415–420. [Google Scholar] [CrossRef]
- Gumulec, J.; Masarik, M.; Adam, V.; Eckschlager, T.; Provaznik, I.; Kizek, R. Serum and tissue zinc in epithelial malignancies: A meta-analysis. PLoS ONE 2014, 9, e99790. [Google Scholar] [CrossRef] [PubMed]
- Sorribes-Carreras, P.; Torres-Feced, P. Zinc intake deficiency and colorectal cancer: What is the situation in our population? Nutr. Hosp. 2000, 15, 153–155. [Google Scholar] [PubMed]
- Silvera, S.A.N.; Rohan, T.E. Trace elements and cancer risk: A review of the epidemiologic evidence. Cancer Cause Control 2007, 18, 7–27. [Google Scholar] [CrossRef]
- Shenkin, A.; Roberts, N.B. Vitamins and trace elements. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; Burtis, C.A., Ashwood, E.R., Bruns, D.E., Eds.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 895–985. [Google Scholar]
- Zowczak-Drabarczyk, M.; Torlinska, T.; Iskra, M.; Mielcarz, G.; Matylla, G.; Torlinski, L. Serum zinc concentration in patients with colorectal cancer. Trace Elem. Electr. 2004, 21, 236–239. [Google Scholar] [CrossRef]
- Gupta, S.K.; Shula, V.K.; Vaidya, M.P.; Roy, S.K.; Gupta, S. Serum and tissue elements in colorectal cancer. J. Surg. Oncol. 1993, 52, 172–175. [Google Scholar] [CrossRef]
- Kim, K.K.; Abelman, S.; Yano, N.; Ribeiro, J.R.; Singh, R.K.; Tipping, M.; Moore, R.G. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1a in cancer cells. Sci. Rep. 2015, 5, 14296. [Google Scholar] [CrossRef]
- Tang, X.; Yan, Z.; Miao, Y.; Ha, W.; Li, Z.; Yang, L.; Mi, D. Copper in cancer: From limiting nutrient to therapeutic target. Front. Oncol. 2023, 13, 1209156. [Google Scholar] [CrossRef] [PubMed]
- Senesse, P.; Meance, S.; Cottet, V.; Faivre, J.; Boutron-Ruault, M.C. High dietary iron and copper and risk of colorectal cancer: A case-control study in Burgundy, France. Nutr. Cancer 2004, 49, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Gopčević, K.R.; Rovčanin, B.R.; Tatić, S.B.; Krivokapić, Z.V.; Gajić, M.M.; Dragutinović, V.V. Activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in different stages of colorectal carcinoma. Dig. Dis. Sci. 2013, 58, 2646–2652. [Google Scholar] [CrossRef]
- Bardelčíková, A.; Šoltys, J.; Mojžiš, J. Oxidative stress, inflammation and colorectal cancer: An overview. Antioxidants 2023, 12, 901. [Google Scholar] [CrossRef]
- Zinczuk, J.; Maciejczyk, M.; Zareba, K.; Romaniuk, W.; Markowski, A.; Kędra, B.; Zalewska, A.; Pryczynicz, A.; Matowicka-Karna, J.; Guzińska-Ustymowicz, K. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement? Biomolecules 2019, 9, 637. [Google Scholar] [CrossRef]
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the Total Antioxidant Capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Rainwater, D.L.; Vanderberg, J.F.; Mitchell, B.D.; Mahaney, M.C. Genetic contributions to plasma total antioxidant activity. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1190–1195. [Google Scholar] [CrossRef]
- La Vecchia, C.; Decarli, A.; Serafini, M.; Parpinel, M.; Bellocco, R.; Galeone, C.; Bosetti, C.; Zucchetto, A.; Polesel, J.; Lagiou, P.; et al. Dietary total antioxidant capacity and colorectal cancer: A large case–control study in Italy. Int. J. Cancer 2013, 133, 1271–1515. [Google Scholar] [CrossRef]
- Wu, R.; Feng, J.; Yang, Y.; Dai, C.; Lu, A.; Li, J.; Liao, Y.; Xiang, M.; Huang, Q.; Wang, D.; et al. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PLoS ONE 2017, 12, e0170003. [Google Scholar] [CrossRef]
- Ching, S.; Ingram, D.; Hahnel, R.; Beilby, J.; Rossi, E. Serum levels of micronutrients, antioxidants and total antioxidant status predict risk of breast cancer in a case control study. J. Nutr. 2002, 132, 303–306. [Google Scholar] [CrossRef]
- Socha, K.; Kochanowicz, J.; Karpińska, E.; Soroczyńska, J.; Jakoniuk, M.; Mariak, Z.; Borawska, M.H. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr. J. 2014, 13, 62. [Google Scholar] [CrossRef]
- Tudek, B.; Speina, E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat. Res. 2012, 736, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Yücel, A.F.; Kemik, O.; Kemik, A.S.; Purisa, S.; Tüzün, I.S. Relationship between the levels of oxidative stress in mesenteric and peripheral serum and clinicopathological variables in colorectal cancer. Balk. Med. J. 2012, 29, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, F.; Wang, Z.; Zhao, Q.; Wang, Z.; Han, X.; Xu, Z.; Yu, C.; Liu, Y.; Chang, S.; et al. Oxidative balance score: A potential tool for reducing the risk of colorectal cancer and its subsites incidences. Front. Endocrinol. 2024, 15, 1397512. [Google Scholar] [CrossRef] [PubMed]
- Kucharzewski, M.; Braziewicz, J.; Majewska, U.; Gózdz, S. Selenium, copper, and zinc concentrations in intestinal cancer tissue and in colon and rectum polyps. Biol. Trace Elem. Res. 2003, 92, 1–10. [Google Scholar] [CrossRef]
- Alimonti, A.; Bocca, B.; Lamazza, A.; Forte, G.; Rahimi, S.; Mattei, D.; Fiori, E.; Iacomino, M.; Schillaci, A.; De Masi, E.; et al. A study on metals content in patients with colorectal polyps. J. Toxicol. Environ. Health A 2008, 71, 342–347. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, B. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef]
- Christudoss, P.; Selvakumar, R.; Pulimood, A.B.; Fleming, J.J.; Mathew, G. Zinc and zinc related enzymes in precancerous and cancerous tissue in the colon of dimethyl hydrazine treated rats. Asian Pac. J. Cancer Prev. 2012, 13, 487–492. [Google Scholar] [CrossRef]
- Loh, S.N. The missing zinc: p53 misfolding and cancer. Metallomics 2010, 2, 442–449. [Google Scholar] [CrossRef]
Parameters/Formula | CRC Present | CRC Absent |
---|---|---|
Index Test Positive | True positive (TP) | False positive (FP) |
Index Test Negative | False negative (FN) | True negative (TN) |
Sensitivity = TP/(TP + FN) Specificity = TN/(TN + FP) 95% CI of AUC = AUC ± 1.96 SEM |
Study Group /Parameters | CRC (n = 30) | CRA (n = 19) | CONTROL (n = 30) | p |
---|---|---|---|---|
Age (years) | 62.5 (55.0–70.0) | 62.0 (51.0–63.0) | 56.5 (53.0–62.0) | NS # |
Gender (male/female) | 16/14 | 7/12 | 3/17 | NS # |
Smokers (n (%)) | 7 (23%) | 4 (21%) | 5 (17%) | NS # |
Se | ||||
[µmol/L] | 0.84 (0.82–0.87) | 0.92 (0.90–0.96) | 0.91 (0.87–0.94) | p < 0.0001 (CRC vs. CRA) |
[µg/L] | 66.39 (64.58–68.51) | 72.45 (70.88–75.6) | 71.66 (68.51–74.02) | p < 0.0001 (CRC vs. CONTROL) NS (CRA vs. CONTROL) |
Zn [µmol/L] | 13.01 (11.78–14.38) | 11.62 (10.09–14.08) | 13.7 (13.01–15.45) | NS (CRC vs. CRA) NS (CRC vs. CONTROL) p = 0.019 (CRA vs. CONTROL) |
Cu [µmol/L] | 17.86 (14.64–21.88) | 16.85 (14.96–18.57) | 16.13 (13.69–19.52) | NS # |
TAS [mmol/L] | 1.15 (1.09–1.37) | 1.36 (1.25–1.76) | 1.47 (1.29–1.59) | NS (CRC vs. CRA) p = 0.017 (CRC vs. CONTROL) NS (CRA vs. CONTROL) |
Study Group /Parameters | CRC N0 (n = 18) | CRC N+ (n = 12) | p |
---|---|---|---|
Age (years) | 64.5 (59.0–70.0) | 59.0 (55.0–70.0) | NS ## |
Gender (male/female) | 6/12 | 10/2 | NS ## |
Smokers (n (%)) | 3 (17%) | 4 (33%) | NS ## |
Se [µmol/L] [µg/L] | 0.84 (0.82–0.86) 66.15 (64.58–67.73) | 0.85 (0.81–0.87) 66.86 (63.79–68.51) | p < 0.0001 (CRC N0 vs. CRA) p = 0.0005 (CRC N0 vs. CONTROL) p = 0.0005 (CRC N+ vs. CRA) p = 0.006 (CRC N+ vs. CONTROL) |
Zn [µmol/L] | 13.24 (11.78–14.54) | 12.78 (11.70–13.85) | NS ## |
Cu [µmol/L] | 18.97 (15.74–22.04) | 17.40 (14.25–19.76) | NS ## |
TAS [mmol/L] | 1.15 (0.98–1.37) | 1.15 (1.09–1.41) | NS ## |
Study Group /Parameters | All Patients (n = 79) | CRC (n = 30) | CRA (n = 19) | CONTROL (n = 30) |
---|---|---|---|---|
Se vs. TAS | R = 0.473 p < 0.0001 | R = 0.383 p = 0.037 | NS | R = 0.432 p = 0.017 |
Se vs. Cu | R = −0.409 p < 0.0001 | NS | NS | R= −0.527 p = 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zowczak-Drabarczyk, M.; Białecki, J.; Grzelak, T.; Michalik, M.; Formanowicz, D. Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer. Metabolites 2024, 14, 486. https://doi.org/10.3390/metabo14090486
Zowczak-Drabarczyk M, Białecki J, Grzelak T, Michalik M, Formanowicz D. Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer. Metabolites. 2024; 14(9):486. https://doi.org/10.3390/metabo14090486
Chicago/Turabian StyleZowczak-Drabarczyk, Miłosława, Jacek Białecki, Teresa Grzelak, Mikołaj Michalik, and Dorota Formanowicz. 2024. "Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer" Metabolites 14, no. 9: 486. https://doi.org/10.3390/metabo14090486
APA StyleZowczak-Drabarczyk, M., Białecki, J., Grzelak, T., Michalik, M., & Formanowicz, D. (2024). Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer. Metabolites, 14(9), 486. https://doi.org/10.3390/metabo14090486