Chronic Hepatitis C in the Direct-Acting Antivirals Era: Carcinogenesis and Clinical Implications
Abstract
1. Introduction
2. Global Burden and Epidemiology
2.1. Global Prevalence and Distribution
2.2. Transmission Dynamics
2.3. Progress Toward Elimination
3. Virology and Molecular Biology
3.1. Viral Genome and Structure
3.2. Genetic Diversity
3.3. Replication Cycle
3.4. Immune Evasion
4. Natural History of HCV Infection
4.1. Acute Infection and Spontaneous Clearance
4.2. Chronic Infection and Fibrosis Progression
4.3. Cirrhosis, Decompensation, and HCC
5. Extrahepatic Manifestations of HCV Infection
5.1. Mixed Cryoglobulinemia and Vasculitis
5.2. Lymphoproliferative Disorders
5.3. Metabolic and Endocrine Disorders
5.4. Neuropsychiatric Manifestations
6. HCV and Hepatocarcinogenesis
6.1. Mechanisms of HCV-Induced HCC
6.2. HCC Risk After DAA Therapy
7. Advances in Antiviral Therapy
7.1. Evolution of Treatment
7.2. Direct-Acting Antivirals
7.3. Special Populations
7.4. Remaining Challenges
8. Public Health and Policy Perspectives
9. Prevention and Future Directions
9.1. Primary Prevention: Interrupting Transmission
9.2. Secondary Prevention: Screening and Early Diagnosis
9.3. Reinfection and the Role of Harm Reduction
9.4. Vaccine Development
9.5. Global Elimination Targets and Barriers
9.6. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HCV | hepatitis C virus |
| HCC | hepatocellular carcinoma |
| DAAs | direct-acting antivirals |
| SVR | sustained virologic response |
| PWID | people who inject drugs |
| WHO | World Health Organization |
| HBV | hepatitis B virus |
| HIV | human immunodeficiency virus |
| SR-B1 | scavenger receptor class B type I |
| ER | endoplasmic reticulum |
| VLDL | very-low-density lipoprotein |
| MAVS | mitochondrial antiviral signaling protein |
| RIG-I | retinoic acid-inducible gene I |
| IRF3 | interferon regulatory factor 3 |
| MC | mixed cryoglobulinemia |
| CDC | Centers for Disease Control and Prevention |
References
- Cox, A.L.; El-Sayed, M.H.; Kao, J.H.; Lazarus, J.V.; Lemoine, M.; Lok, A.S.; Zoulim, F.; Thomas, D.L. Progress towards elimination goals for viral hepatitis. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 533–542. [Google Scholar] [CrossRef]
- Spearman, C.W.; Dusheiko, G.M.; Hellard, M.; Sonderup, M.W. Hepatitis C. Lancet 2019, 394, 1451–1466. [Google Scholar] [CrossRef]
- Chen, Q.; Perales, C.; Sampedro, A.; Domingo, E. The quasispecies concept and the evolution of hepatitis C virus. Virus Res. 2020, 286, 198103. [Google Scholar]
- Rehermann, B.; Thimme, R.; Neumann-Haefelin, C. Immunobiology of hepatitis C virus infection. Nat. Rev. Immunol. 2021, 21, 625–637. [Google Scholar]
- World Health Organization. Global Hepatitis Report 2024; WHO Press: Geneva, Switzerland, 2024. [Google Scholar]
- Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of hepatitis C virus infection. J. Hepatol. 2019, 61, S45–S57. [Google Scholar] [CrossRef] [PubMed]
- Blach, S.; Terrault, N.A.; Tacke, F.; Gamkrelidze, I.; Zhu, Y.; Waked, I.; Ticehurst, J.; Lampertico, P.; Knighton, G.; Abbas, Z.; et al. Global progress toward HCV elimination: Modeling and projections. J. Hepatol. 2021, 74, 1048–1061. [Google Scholar]
- Cacoub, P.; Comarmond, C.; Domont, F.; Savey, L.; Saadoun, D. Extrahepatic manifestations of chronic hepatitis C virus infection. Ther. Adv. Infect. Dis. 2019, 6, 3–14. [Google Scholar]
- Sise, M.E.; Bloom, A.K.; Wisocky, J.; Lin, M.V.; Gustafson, J.L.; Lundquist, A.L.; Steele, D.J.; Thadhani, R.; Nguyen, L.H.; Kim, A.Y. Treatment of hepatitis C virus–associated cryoglobulinemic vasculitis with direct-acting antiviral agents. Hepatology 2016, 63, 408–417. [Google Scholar] [CrossRef]
- Macek Jilkova, Z.; Afzal, S.; Marche, H.; Decaens, T.; Hoshida, Y.; Chemin, I.; Savary, L.; Sturm, N.; Aoudjehane, L.; Chaoui, S.; et al. Unraveling direct-acting antiviral-induced epigenetic reprogramming in chronic hepatitis C. Hepatology 2022, 76, 301–315. [Google Scholar]
- El-Serag, H.B.; Kanwal, F.; Davila, J.A.; Kramer, J.R.; Richardson, P. Residual hepatocellular carcinoma risk after hepatitis C virus eradication. Gastroenterology 2020, 158, 527–536. [Google Scholar]
- Hengst, J.; Falk, C.S.; Schlaphoff, V.; Deterding, K.; Manns, M.P.; Cornberg, M.; Wedemeyer, H. Direct-Acting Antiviral–Induced Hepatitis C Virus Clearance Does Not Completely Restore the Altered Cytokine and Chemokine Milieu in Patients with Chronic Hepatitis C. J. Infect. Dis. 2016, 214, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Afdhal, N.; Bacon, B.R.; Dustan, M.; Reau, N.; Poordad, F.; Dieterich, D.; Flamm, S.L.; Fried, M.W.; Kowdley, K.V.; McGovern, B. Direct-acting antivirals for HCV: Clinical trial outcomes and real-world experience. Lancet Gastroenterol. Hepatol. 2017, 2, 15–25. [Google Scholar]
- Baumert, T.F.; Jühling, F.; Ono, A.; Hoshida, Y. Pathogenesis of hepatic fibrosis and cancer in hepatitis C virus infection. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 541–556. [Google Scholar]
- D’Ambrosio, R.; Degasperi, E.; Colombo, M. Long-term outcomes of patients achieving sustained virologic response with direct-acting antivirals. J. Viral Hepat. 2021, 28, 1204–1215. [Google Scholar]
- Terrault, N.A.; Hassanein, T.; Borg, B.; Tam, E.; Chen, Y.C.; Robbins, K.; Brown, K.; Argo, C.; Manns, M.; Jacobson, I. Advances in HCV testing: Diagnostic innovations and public health impact. Clin. Infect. Dis. 2021, 72, 1528–1535. [Google Scholar]
- Heffernan, A.; Barber, E.; Cook, N.A.; Gardner, L.; Bruneau, J.; Hellard, M.; Larney, S.; Scott, N.; Dore, G.J.; Grebely, J. Clinical outcomes after hepatitis C cure: A systematic review. J. Hepatol. 2024, 81, 130–147. [Google Scholar]
- Micallef, J.M.; Lee, M.H.; Spelman, T.; Grebely, J.; Dore, G.J. Hepatitis C virus clearance, reinfection, and long-term liver outcomes after direct-acting antiviral therapy. Lancet Gastroenterol. Hepatol. 2023, 8, 123–135. [Google Scholar]
- EASL International Liver Foundation. HCV elimination in 2030: Global roadmap and policy recommendations. J. Hepatol. 2022, 77, 1134–1145. [Google Scholar]
- Kyung, A.; Yuan, M.; Hoshida, Y. Molecular and immunologic determinants of persistent cancer risk following HCV cure. Hepatology 2023, 78, 23–37. [Google Scholar]
- Blach, S.; Agarwal, K.; Abazari, M.; Byrne, R.; Razavi, H.; Waked, I.; Razavi-Shearer, K. Global prevalence and future trends of hepatitis C virus infection. J. Hepatol. 2022, 76, 1080–1090. [Google Scholar]
- Talaat, M.; Radwan, E.; El-Sayed, N.; Ismail, S.; Hajjeh, R. The impact of schistosomiasis control campaigns on hepatitis C transmission in Egypt. J. Infect. Public Health. 2019, 12, 537–544. [Google Scholar]
- Al Kanaani, Z.; Mahmud, S.; Kouyoumjian, S.P.; Abu-Raddad, L.J. The epidemiology of hepatitis C virus in Pakistan: Systematic review and meta-analyses. R. Soc. Open Sci. 2018, 5, 180257. [Google Scholar] [CrossRef]
- Sonderup, M.W.; Afihene, M.; Ally, R.; Apica, B.; Awuku, Y.; Cunha, L.; Dusheiko, G.; Gogela, N.; Kew, M.; Lohouès-Kouacou, M.J.; et al. Hepatitis C in Sub-Saharan Africa: Urgent need for scale-up. Lancet Gastroenterol. Hepatol. 2017, 2, 422–424. [Google Scholar]
- Zibbell, J.E.; Asher, A.K.; Patel, R.C.; Kupronis, B.; Iqbal, K.; Ward, J.W.; Holtzman, D. Increases in acute HCV infection related to a growing opioid crisis. Am. J. Public Health. 2018, 108, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Grebely, J.; Larney, S.; Peacock, A.; Colledge, S.; Leung, J.; Hickman, M.; Vickerman, P.; Blach, S.; Cunningham, E.B.; Dumchev, K.; et al. Global, regional, and country-level estimates of hepatitis C infection among people who have recently injected drugs. Addiction 2018, 114, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.B.; Busch, M.P.; Murphy, E.L.; Glynn, S.A.; Kleinman, S.H.; Wright, D.J.; Tobler, L.H.; Sacher, R.A.; Stramer, S.L.; Steele, W.R.; et al. Advances in hepatitis C virus screening: Impact of nucleic acid testing and diagnostic innovations on blood safety. Transfusion 2016, 56, 2346–2357. [Google Scholar]
- Artenie, A.; Trickey, A.; Looker, K.J.; Stone, J.; Lim, A.G.; Fraser, H.; Degenhardt, L.; Dore, G.J.; Grebely, J.; Cunningham, E.B.; et al. Global, regional, and national estimates of hepatitis C virus (HCV) infection incidence among people who inject drugs and number of new annual HCV infections attributable to injecting drug use: A multi-stage analysis. Lancet Gastroenterol. Hepatol. 2025, 10, 315–331. [Google Scholar] [CrossRef]
- Jhaveri, R.; Honegger, J.R.; El-Khorazaty, J.; Nelson, K.; Herbers, S.; Jones, C.; Chasnoff, I.; Schmidt, K.; Shrestha, R.; Kourtis, A.P. Hepatitis C virus vertical transmission in the direct-acting antiviral era: Updated systematic review and meta-analysis. Clin. Infect. Dis. 2017, 65, 928–934. [Google Scholar]
- Miao, Z.; Xie, Z.; Miao, J. Structural biology of hepatitis C virus proteins in the direct-acting antiviral era. Front. Mol. Biosci. 2020, 7, 45. [Google Scholar]
- Kao, C.C.; Yang, X.; Kambara, H. Advances in understanding hepatitis C virus genome organization and replication. Curr. Opin. Virol. 2019, 36, 63–70. [Google Scholar]
- Nguyen, T.T.; Sedaghat, B.; Cotler, S.J.; Zhang, J. Updated global hepatitis C virus genotype distribution in the direct-acting antiviral era: A phylogenetic analysis. J. Hepatol. 2019, 71, 195–205. [Google Scholar]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Smith, D.B. ICTV taxonomy update for the Flaviviridae family: Implications for HCV diversity. Arch. Virol. 2017, 162, 1353–1360. [Google Scholar]
- Neufeldt, C.J.; Cortese, M.; Acosta, E.G.; Villareal, V.A.; Erikson, E.; Cerikan, B.; Steinmann, E.; Bartenschlager, R. Membranous web and endoplasmic reticulum reorganization during hepatitis C virus replication. Nat. Rev. Microbiol. 2018, 16, 663–677. [Google Scholar]
- Saeed, M.; Andreo, U.; Chung, H.Y.; Espiritu, C.; Branch, A.D. SEC14L2 enables robust hepatitis C virus replication in hepatoma cells. Nature 2015, 524, 471–475. [Google Scholar] [CrossRef]
- Masaki, T.; Arend, K.C.; Li, Y.; Yamane, D.; McGivern, D.R.; Kato, T.; Wakita, T.; Moorman, N.J.; Lemon, S.M. miR-122 Stimulates Hepatitis C Virus RNA Synthesis by Altering the Balance of Viral RNAs Engaged in Replication Versus Translation. Cell Host Microbe 2015, 17, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Gouttenoire, J.; Penin, F.; Moradpour, D. Hepatitis C virus RNA replication and assembly: A tightly controlled process. J. Gen. Virol. 2021, 102, 001606. [Google Scholar]
- Thimme, R.; Neumann-Haefelin, C. T cell exhaustion in chronic viral hepatitis: Mechanisms and implications for therapy. Nat. Rev. Immunol. 2022, 22, 535–548. [Google Scholar]
- Vogt, A.; Scull, M.A.; Harper, J.; Sumpter, R.; Gale, M. Innate sensing pathways subverted by hepatitis C virus. Front. Immunol. 2020, 11, 123. [Google Scholar]
- Osburn, W.O.; Fisher, B.E.; Dowd, K.A.; Urban, M.A.; Liu, L.; Ray, S.C.; Cox, A.L. Peripheral and intrahepatic immune responses during hepatitis C virus clearance. J. Clin. Investig. 2018, 128, 517–528. [Google Scholar]
- Barik, S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host–Virus Interactive Pathways. Int. J. Mol. Sci. 2023, 24, 16100. [Google Scholar] [CrossRef]
- Chen, S.L.; Morgan, T.R. Acute hepatitis C: Clinical presentation and natural history. Clin. Liver Dis. 2019, 23, 539–553. [Google Scholar]
- Kemming, J.; Thimme, R.; Neumann-Haefelin, C. Adaptive Immune Response Against Hepatitis C Virus. Int. J. Mol. Sci. 2020, 21, 5644. [Google Scholar] [CrossRef]
- O’Brien, T.R.; Prokunina-Olsson, L.; Donnelly, R.P. IFNL3 (IL28B) and IFNL4 genetics and host responses to hepatitis C virus infection. Cold Spring Harb. Perspect. Med. 2020, 10, a036434. [Google Scholar]
- Petta, S.; Sebastiani, G.; Viganò, M.; Wong, V.W.; Boursier, J.; Berzigotti, A.; Cammà, C.; Craig, A.; Fraser, A.; Petrenko, V.; et al. Fibrosis progression in chronic hepatitis C: Impact of metabolic and viral factors in the DAA era. J. Hepatol. 2021, 74, 224–236. [Google Scholar]
- Lee, M.H.; Yang, H.I.; Lu, S.N.; Jen, C.L.; You, S.L.; Wang, L.Y.; Chen, W.J.; Chen, C.J. Chronic hepatitis C infection and factors associated with fibrosis progression. Gastroenterology 2017, 152, 860–873. [Google Scholar]
- D’Amico, G.; Garcia-Tsao, G.; Pagliaro, L. Natural history and prognostic indicators of survival in compensated and decompensated cirrhosis. J. Hepatol. 2018, 68, 131–150. [Google Scholar]
- Kanwal, F.; Kramer, J.R.; El-Serag, H.B.; Cao, Y.; Thrift, A.P.; Rosenberger, J.; Richardson, P. Risk of hepatocellular carcinoma after sustained virologic response in hepatitis C patients with cirrhosis. Gastroenterology 2017, 153, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Negro, F. Extrahepatic manifestations of hepatitis C virus infection: Systemic diseases in the era of DAAs. J. Hepatol. 2020, 73, 202–211. [Google Scholar]
- Cacoub, P.; Terrier, B. HCV-associated extrahepatic manifestations: A review. J. Hepatol. 2020, 73, 1136–1148. [Google Scholar]
- Gragnani, L.; Visentini, M.; Fognani, E.; Urraro, T.; De Sanctis, G.M.; Mazzoni, A.; Petraccia, L.; Focosi, D.; Laffi, G.; Zignego, A.L. Pathogenesis of HCV-related cryoglobulinemia: Clonal B-cell expansion and immune dysregulation. Clin. Exp. Rheumatol. 2018, 36, 32–40. [Google Scholar]
- Colantuono, S.; Visentini, M.; Fiorilli, M.; Pioltelli, P.; Zignego, A.L. Immunologic mechanisms linking hepatitis C virus with mixed cryoglobulinemia. Autoimmun. Rev. 2019, 18, 102–111. [Google Scholar]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Ackermann, C.; Escher, M.; Scholz, R.; Knapp, M.; Lützkendorf, J.; Müller, L.P.; Wiesch, J.S.Z.; et al. B cells expressing mutated IGHV1-69–encoded antigen receptors related to virus neutralization show lymphoma-like transcriptomes in patients with chronic HCV infection. Hepatol. Commun. 2024, 8, e0503. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, D.; Radu, C.; Andreani, M.; Trépo, C.; Cacoub, P. Response of cryoglobulinemic vasculitis to DAA therapy. Hepatology 2017, 65, 1772–1782. [Google Scholar]
- Gragnani, L.; Fognani, E.; Piluso, A.; Boldrini, B.; Urraro, T.; Macchia, D.; Laffi, G.; Zignego, A.L. Persistence of cryoglobulinemia after HCV cure: Long-term follow-up. J. Viral Hepat. 2022, 29, 45–54. [Google Scholar]
- Lambotte, O.; Saadoun, D.; Piette, J.C.; Cacoub, P. Relapse mechanisms in HCV-associated cryoglobulinemia after viral cure. Clin. Gastroenterol. Hepatol. 2020, 18, 125–134. [Google Scholar]
- Gragnani, L.; Visentini, M.; Fognani, E.; Piluso, A.; Urraro, T.; Boldrini, B.; Fabbrizzi, A.; Zignego, A.L. B-cell clonal expansions and immunologic disturbances in hepatitis C virus infection: Insights in the direct-acting antiviral era. Front. Immunol. 2021, 12, 678345. [Google Scholar]
- Gragnani, L.; Piluso, A.; Fognani, E.; Boldrini, B.; Urraro, T.; Fabbrizzi, A.; Macchia, D.; Laffi, G.; Zignego, A.L. Long-term evolution of B-cell clones in hepatitis C virus–associated mixed cryoglobulinemia after antiviral therapy. Cancers 2020, 12, 2223. [Google Scholar]
- Besson, C.; Sultanik, P.; Fesneau, M.; Petrella, T.; Chevrier, M.; Perarnau, J.M.; Rocher, F.; Cornet, E.; Falandry, C. Direct-acting antiviral therapy and risk reduction of HCV-associated B-cell non-Hodgkin lymphomas: Clinical outcomes in the DAA era. Cancers 2021, 13, 3124. [Google Scholar]
- Fiorilli, M.; Visentini, M.; Colantuono, S.; Pierucci, S.; Romano, C.; Merli, M.; Zaja, F.; De Re, V.; Gattei, V. NF-κB signaling and B-cell activation in HCV-associated lymphoproliferative disorders. Cancers 2020, 12, 1894. [Google Scholar]
- Cohen, J.B.; Zelenetz, A.D.; Moskowitz, A.J. Epigenetic reprogramming in HCV-driven lymphomagenesis. Blood Rev. 2020, 40, 100637. [Google Scholar]
- Mazzaro, C.; Visentin, A.; Ferrari, A.; Quartuccio, L.; De Vita, S.; Gattei, V.; Pozzato, G.; Zaja, F.; Ghersetti, M. HCV-related B-cell lymphoproliferative disorders in the direct-acting antiviral era: Outcomes and long-term relapse risk. Cancers 2021, 13, 2192. [Google Scholar]
- Negro, F. Insulin resistance and metabolic syndrome in HCV infection. J. Hepatol. 2020, 73, 159–161. [Google Scholar]
- Wang, T.-J.; Chen, M.-Y.; Lin, Y.-C.; Chiu, W.-N.; Huang, T.-J.; Hsu, H.-H. High prevalence of fatty liver and its association with metabolic syndrome among rural adults with chronic hepatitis C: Implications for primary healthcare. BMC Public Health 2024, 24, 532. [Google Scholar] [CrossRef]
- Yarlott, L.; Heald, E.; Forton, D. Neurocognitive and neuropsychiatric effects of hepatitis C: A review. J. Viral Hepat. 2017, 24, 1107–1116. [Google Scholar]
- Fletcher, N.F.; McKeating, J.A.; Hammerstad, S.; Cameron, A.; Laskay, N.; Watkins-Riedel, T.; Perlemuter, G. Hepatitis C virus and the brain: Mechanisms of neuroinflammation. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 235–249. [Google Scholar]
- Honda, Y.; Imajo, K.; Seki, Y.; Kato, T.; Honda, M.; Hirota, K.; Arai, K.; Kimura, T.; Kaneko, S. Hepatitis C virus core protein contributes to hepatocarcinogenesis through metabolic reprogramming and oxidative stress. Hepatology 2020, 72, 1890–1904. [Google Scholar]
- Li, F.; Li, Y.; Luo, C.; Wang, X.; Yuan, Y.; Deng, H.; Zhou, Y.; Xiao, X. NS5A-driven oncogenic signaling pathways in hepatitis C virus–related hepatocellular carcinoma. J. Hepatol. 2021, 74, 1205–1217. [Google Scholar]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122: A key modulator of liver homeostasis and viral hepatitis. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 341–352. [Google Scholar]
- Hamdane, N.; Jühling, F.; Crouchet, E.; El Saghire, H.; Thumann, C.; Oudot, M.; Bandiera, S.; Saviano, A.; Ponsolles, C. HCV-induced epigenetic changes persist after viral cure and modulate HCC risk. Nat. Commun. 2019, 10, 1515. [Google Scholar]
- Kim, N.J.; Vutien, P.; Cleveland, E.; Cravero, A.; Ioannou, G.N. Fibrosis Stage-specific Incidence of Hepatocellular Cancer After Hepatitis C Cure with Direct-acting Antivirals: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 21, 1723–1738.e5. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCC risk after antiviral cure: Stratification by fibrosis, metabolic traits, and comorbidities. Hepatology 2019, 69, 100–110. [Google Scholar]
- Degasperi, E.; D’Ambrosio, R.; Iavarone, M.; Sangiovanni, A.; Aghemo, A.; Soffredini, R.; Borghi, M.; Colombo, M. Long-term risk of HCC after DAA therapy: Real-world cohort data. Gut 2022, 71, 122–132. [Google Scholar]
- Di Marco, L.; Cannova, S.; Ferrigno, E.; Landro, G.; Nonni, R.; Mantia, C.L.; Cartabellotta, F.; Calvaruso, V.; Di Marco, V. A comprehensive review of antiviral therapy for hepatitis C: From interferon to pan-genotypic DAAs. Viruses 2025, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Irekeola, A.A.; Oche, A.N.; Bassetti, J.; Aghemo, A.; Colombo, M.; Zignego, A.L.; Messina, V.; Saracco, G.M.; de Franchis, R.; Giannini, E. Antivirals against hepatitis C virus infection: The therapeutic evolution. J. Infect. Dev. Ctries. 2022, 16, 234–245. [Google Scholar]
- Hallett, J.; Price, T.; Gray, C.; Rosenberg, S.; Lobo, R.; Crawford, G. Prescribing direct-acting antivirals for hepatitis C treatment: A scoping review of factors that influence primary care providers. BMC Prim. Care 2025, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.A.; Papatheodoridis, G.; Petersen, J.; Pirisi, M.; Pol, S. Pangenotypic DAA regimens for chronic HCV infection: Evidence and clinical guidance. J. Hepatol. 2021, 75, 1113–1127. [Google Scholar]
- Rockstroh, J.K.; Lacombe, K.; Viani, R.M.; Orkin, C.; Papadopoulos, N.; Asboe, D.; Ingiliz, P.; Puoti, M.; Soriano, V. HCV treatment outcomes with DAAs in HIV coinfection: A global perspective. Lancet Gastroenterol. Hepatol. 2020, 5, 958–968. [Google Scholar]
- Jonas, M.M.; Squires, R.H.; Rhee, S.M.; Johnson, T.L.; Kinney, S.; Rodriguez-Baño, J. DAA therapy in children and adolescents with chronic hepatitis C. Hepatology 2019, 70, 1950–1960. [Google Scholar]
- Lazarus, J.V.; Wiktor, S.; Colombo, M.; Thursz, M. Micro-elimination – A path to global elimination of hepatitis C. J. Hepatol. 2017, 67, 665–666. [Google Scholar] [CrossRef]
- Amoako, A.; Ortiz-Paredes, D.; Engler, K.; Lebouché, B.; Klein, M.B. Patient and provider perceived barriers and facilitators to direct acting antiviral hepatitis C treatment among priority populations in high income countries: A knowledge synthesis. Int. J. Drug Policy 2021, 96, 103247. [Google Scholar] [CrossRef]
- Bailey, J.R.; Urbanowicz, R.A.; Ball, J.K.; Law, M.; Foung, S.K.H. Hepatitis C vaccine development: Challenges and prospects. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 457–472. [Google Scholar]
- Kandeel, A.; Genedy, M.; El-Refai, S.; Funk, A.L.; Fontanet, A.; Talaat, M. The Egypt experience: Nationwide hepatitis C virus screening and treatment program. N. Engl. J. Med. 2020, 382, 1166–1175. [Google Scholar]
- Lazarus, J.V.; Safreed-Harmon, K.; Thursz, M.; Dillon, J.; El-Sayed, M.; El-Serag, H.; Colombo, M.; Buti, M.; Papatheodoridis, G. The global hepatitis C elimination challenge: Access, equity, and implementation gaps. J. Hepatol. 2022, 76, 1287–1297. [Google Scholar]
- Cooke, G.S.; Pett, S.; Dore, G.J.; Grebely, J.; Piot, P.; Rosenberg, S.; Wedemeyer, H. Micro-elimination of hepatitis C: A pathway to global eradication. Lancet Gastroenterol. Hepatol. 2019, 4, 271–280. [Google Scholar]
- Richmond, J.A.; Ellard, J.; Wallace, J.; Grebely, J.; Dore, G.J.; Treloar, C. Stigma and discrimination as barriers to hepatitis C testing and treatment. J. Viral Hepat. 2020, 27, 1374–1381. [Google Scholar]
- Hajarizadeh, B.; Cunningham, E.B.; Foster, G.R.; Amin, J.; Law, M.; Dore, G.J. Digital health innovations to support HCV elimination: Evidence and implementation considerations. Gut 2023, 72, 1023–1032. [Google Scholar]
- Grebely, J.; Dore, G.J. Prevention of hepatitis C in people who inject drugs: A global evidence review. Lancet Gastroenterol. Hepatol. 2021, 6, 567–576. [Google Scholar]
- Platt, L.; Minozzi, S.; Reed, J.; Vickerman, P.; Hagan, H.; French, C.; Jordan, A.; Degenhardt, L. Effectiveness of needle–syringe programs and opioid substitution therapy in preventing HCV transmission. Cochrane Database Syst. Rev. 2018, 9, CD012021. [Google Scholar]
- Hutin, Y.; Low-Beer, N.; Bergeri, I.; Grépin, K.; Lazarus, J.V. Infection prevention and control strategies for hepatitis C elimination. J. Hepatol. 2022, 77, 1442–1456. [Google Scholar]
- Jhaveri, R.; Wang, L.; Lim, J.K.; Jonas, M.M. Vertical transmission of hepatitis C virus and the role of antiviral therapy in pregnancy. Hepatology 2022, 76, 1837–1846. [Google Scholar]
- Schillie, S.; Wester, C.; Osborne, M.; Wesolowski, L.; Ryerson, A.B. CDC recommendations for hepatitis C screening in adults. MMWR Recomm. Rep. 2020, 69, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Easterbrook, P.; Luhmann, N.; Li, G.; Ryder, S.; Boucher, C. Simplified diagnostic algorithms and point-of-care testing for global hepatitis C elimination. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 55–70. [Google Scholar]
- Heffernan, A.; Cooke, G.; Nayagam, S.; Thursz, M.; Hallett, T.B. Modelling prevention and reinfection among high-risk groups to achieve HCV elimination. Gut 2019, 68, 1181–1188. [Google Scholar]
- Lazarus, J.V.; Safreed-Harmon, K.; Thursz, M.; Dore, G.J.; Pozniak, A.; Colombo, M.; Peck, R.; Hellard, M. Progress toward WHO hepatitis C elimination targets: Global policy gaps and system barriers. J. Hepatol. 2020, 73, 1230–1240. [Google Scholar]


| Region/Country | Estimated Prevalence | Primary Drivers of Transmission | Key Notes |
|---|---|---|---|
| Egypt | >10% | Historic PAT 1 campaigns | Highest national prevalence |
| Pakistan | 5–7% | Unsafe injections | Large national burden |
| Sub-Saharan Africa | Variable (2–8%) | Medical transmission | Limited surveillance |
| U.S. | 0.9–1.6% | Injection drug use | Increases among young adults |
| EU/EEA 2 | 6.2 per 100,000 | Mixed (PWID + healthcare) | Regional variation |
| Australia | 1% | PWID | Strong elimination programs |
| Genotype | Primary Geographic Distribution | Key Virological Features | Clinical/Therapeutic Considerations |
|---|---|---|---|
| 1 | North America, South America, Western Europe | Most common genotype worldwide; moderate genetic diversity | Historically low response to interferon; excellent SVR with DAAs |
| 2 | North America, West Africa | Less genetically diverse; stable evolutionary pattern | Generally favorable response to DAAs |
| 3 | South Asia; Europe (mainly among PWID) | Associated with steatosis; rapid quasispecies evolution | Higher fibrosis progression risk; slightly lower SVR in advanced liver disease |
| 4 | Middle East, North Africa, Sub-Saharan Africa | High intra-genotype variability, particularly in Egypt | Good DAA response; major contributor to regional disease burden |
| 5 | South Africa | Limited global distribution; low genetic diversity | Responds well to DAAs; clinical data relatively limited |
| 6 | Southeast Asia | Highly diverse; multiple subtypes | High SVR rates with pan-genotypic DAAs |
| 7 | Central Africa | Newly characterized genotype | Limited clinical data; early reports suggest responsiveness to modern DAAs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, Y.; Kurt, R.; Tahan, V.; Daglilar, E. Chronic Hepatitis C in the Direct-Acting Antivirals Era: Carcinogenesis and Clinical Implications. Diseases 2025, 13, 393. https://doi.org/10.3390/diseases13120393
Aydin Y, Kurt R, Tahan V, Daglilar E. Chronic Hepatitis C in the Direct-Acting Antivirals Era: Carcinogenesis and Clinical Implications. Diseases. 2025; 13(12):393. https://doi.org/10.3390/diseases13120393
Chicago/Turabian StyleAydin, Yucel, Ramazan Kurt, Veysel Tahan, and Ebubekir Daglilar. 2025. "Chronic Hepatitis C in the Direct-Acting Antivirals Era: Carcinogenesis and Clinical Implications" Diseases 13, no. 12: 393. https://doi.org/10.3390/diseases13120393
APA StyleAydin, Y., Kurt, R., Tahan, V., & Daglilar, E. (2025). Chronic Hepatitis C in the Direct-Acting Antivirals Era: Carcinogenesis and Clinical Implications. Diseases, 13(12), 393. https://doi.org/10.3390/diseases13120393

