Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region
Abstract
:1. Introduction
2. Methods
3. Epidemiology of Mycobacterium bovis in the MENA Region
3.1. Mycobacterium bovis in Animals
Country | Study Period | Study Design | Population (N) | Tuberculosis (TST, IGRA, ELISA) † | Samples (N) for Active Tuberculosis Testing | Health Status | BTB Identification (Culture, PCR) | Prevalence ¶ of BTB (%) | Typing Method | References |
---|---|---|---|---|---|---|---|---|---|---|
Algeria | 2007 | Cross-sectional | Cattle (7250) | Tissue (260) | Slaughtered | Culture | 88 (1.2%) | Spoligotyping; MIRU-VNTR | [31] | |
2017 | Cross-sectional | Cattle (3848) | Tissue (3848) | Slaughtered | Culture; PCR | 59 (1.5%) | Spoligotyping; MIRU-VNTR | [58] | ||
2017–2018 | Cross-sectional | Cattle (928) | Tissue (928) | Slaughtered | Culture; PCR | 13 (1.4%) | WGS | [21] | ||
2017–2019 | Cross-sectional | Cattle (3546) | Tissue (3546) | Slaughtered | Culture; PCR | 174 (4.9%) | Spoligotyping | [23] | ||
2018–2019 | Cross-sectional | Cattle (516) | 18 (3.5%) | Live | ND | [36] | ||||
Egypt | 2008–2010 | Cross-sectional | Cattle (3255) Buffalo (2950) | Cattle: 105 (3.2%) Buffalo: 85 (2.9%) | Tissue (190) Milk (520) Blood (190) | Slaughtered | Culture; PCR | 16 (0.2%) | [59] | |
2008–2010 | Cross-sectional | Cattle (1180) | 29 (2.5%) | Tissue (29) | Slaughtered | Culture; PCR | 20 (1.7%) | [60] | ||
2010–2011 | Cross-sectional | Cattle (3347) | 32 (1%) | Tissue (32) | Live and slaughtered | Culture; PCR | 21 (0.6%) | [61] | ||
2013 | Cross-sectional | Cattle | Milk (100) | Healthy | Culture; PCR | 1 (1%) | [62] | |||
2014–2015 | Cross-sectional | Cattle (2935) | 63 (2.2%) | Tissue (56) | Slaughtered | Culture | 39 (1.3%) | [63] | ||
2008 * | Cross-sectional | Camels (704) | 9 (1.27%) | Tissue (29) | Slaughtered | Culture | 5 (0.7%) | [64] | ||
2009 * | Cross-sectional | Cattle (46) | 38 (82.6%) | Milk (23) | Sick | Culture | 1 (2.1%) | [39] | ||
2014 * | Cross-sectional | Cattle (422) Buffalo (480) | Cattle: 9 (2.1%) Buffalo: 27 (5.62%) | Tissue (36) | Slaughtered | Culture | 25 (2.8%) | IS6110 RFLP | [65] | |
2015 * | Cross-sectional | Cows (420) | 8 (1.9%) | Milk (8) | Healthy | Culture; PCR | 1 (0.2%) | [42] | ||
2018 * | Cross-sectional | Sheep (18) | 4 (22.2%) | Tissue (18) | Slaughtered | Culture; PCR | 15 (83.3%) | [38] | ||
2009–2013 | Longitudinal | Cows and buffalos (1,186,772) | 1225 (0.1%) | Blood (14) Tissue (34) | Live and slaughtered | Culture; PCR | 29 (0.002%) | [32] | ||
2016–2019 | Cross-sectional | Cattle (2200) Buffalo (1500) | Tissue | Culture; PCR | Cattle 36 (1.6%) Buffalo 18 (1.2%) | [66] | ||||
2018 | Cross-sectional | Cattle (2650) | 63 (2.4%) | Tissue (63) | Healthy | Culture | 47 (1.8%) | [67] | ||
2018–2019 | Cross-sectional | Cattle (569) Buffalo (181) | Tissue (30) | Slaughtered | Culture; PCR | 9 (1.2%) | [68] | |||
2011–2016 | Cross-sectional | Cattle (1570) Buffalo (530) | 74 (3.5%) | Tissue (74) | Slaughtered | PCR | 61 (2.9%) | [69] | ||
2017 | Cross-sectional | Cattle (2710) | 215 (7.9%) | Milk (245) | Live | Culture; PCR | 68 (2.5%) | [70] | ||
2014 * | Cross-sectional | Cattle (300) | 53 (17.6%) | Blood (65) | Live and slaughtered | Culture; PCR | 13 (4.3%) | [43] | ||
2011 | Case report | Mongoose (1) | Tissue (1) | Slaughtered | Culture; PCR | 1 | [17] | |||
2015–2017 | Longitudinal | Camels (10,903) | 184 (1.7%) | Tissue (184) | Live and slaughtered | Culture; PCR | 112 (1.0%) | [19] | ||
2018–2019 | Cross-sectional | Cattle (1464) | Milk (1285); Lymph nodes (179) | Live and slaughtered | Culture; PCR | 127 (8.6%) | [71] | |||
2011–2016 | Cross-sectional | Cattle and Buffalo (2100) | 81 (3.8%) | Tissue | Live | Culture; PCR | 61 (2.9%) | MIRU-VNTR | [26] | |
2016 * | Cross-sectional | Cattle and Buffalo (6000) | 79 (1.3%) | Tissue | Live and slaughtered | Culture; PCR | 23 (0.4%) | [72] | ||
2004–2005 | Cross-sectional | Pigs (745) | Tissue | Slaughtered | Culture; PCR | 12 (1.6%) | [20] | |||
2019 * | Cross-sectional | Cattle (2600) | 47 (1.8%) | Tissue | Healthy | Culture; PCR | 40 (1.5%) | [73] | ||
2006–2008 | Cross-sectional | Cattle (3000) | 108 (3.6%) | Tissue | Slaughtered | PCR | 90 (3%) | [74] | ||
2013 * | Cross-sectional | Cattle (3474) | 78 (2.2%) | Slaughtered | ND | [75] | ||||
2013–2015 | Cross-sectional | Cattle (7064) | 242 (3.4%) | Tissue | Slaughtered | Culture; PCR | 31 (0.4%) | MIRU-VNTR; WGS | [76] | |
2020 * | Cross-sectional | Cattle (50) | 50 (100%) | Tissue | TST-positive | Culture; PCR | 45 (90%) | [77] | ||
2017 | Cross-sectional | Cattle (2710) | 444 (16.4%) | Blood and milk (444) | TST-positive | Culture; PCR | Blood: 44 (1.6%); Milk: 12 (0.004%) | [33] | ||
Iran | 2003–2005 | Cross-sectional | Buffalo (140) | Tissue (140) | Slaughtered | Culture | 0 | RFLP | [45] | |
2003–2006 | Cross-sectional | Cattle (213) | Tissue (213) | Slaughtered | Culture; PCR | 56 (26.3%) | RFLP; MIRU-VNTR; Spoligotyping | |||
1996–2006 | Cross-sectional | Cattle (488); Buffalo (140) | Tissue | Slaughtered | Culture; PCR | Cattle: 67 (13.7%); Buffalo: 132 (28.1%) | RFLP; RD-PCR; MIRU-VNTR | [24,25] | ||
2016 * | Case report | Deer (1) | Tissue | Dead | PCR | 1 | IS6110 RFLP | [18] | ||
2016 | Cross-sectional | Cattle (1700) | Tissue | Healthy | PCR | 44 (8.5%) | [44] | |||
Iraq | 2009 * | Cross-sectional | Cattle | Milk (68) | Culture; PCR | 7 (10.2%) | [47] | |||
2016 * | Cross-sectional | Cattle (300) | Tissue | Slaughtered | Culture | 4 (1.3%) | [46] | |||
2015–2016 | Cross-sectional | Cows (119) | 24 (20.2%) | Blood and milk | Live | 42 (35.2%) | [53] | |||
2019 | Cross-sectional | Cattle (106); Buffalo (90) | Cattle (12.2%); Buffalo (4.4%) | Live | ND | [34] | ||||
2010 | Cross-sectional | Cattle | Milk (102) | Healthy | Culture; PCR | 10 (9.8%) | [52] | |||
2016 | Cross-sectional | Cattle (186) | 32 (17.2%) | Live | ND | [78] | ||||
2014 * | Cross-sectional | Cattle (28) | 21 (75%) | Slaughtered | ND | [40] | ||||
2012 * | Cross-sectional | Cows (850) | 206 (24.2%) | Serum (260), Milk (45), swab nasal (45), tissue samples (98), from cattle | Live and slaughtered | Culture | 100 (11.8%) | [35] | ||
2016 * | Cross-sectional | Cattle (21) | 4 (19%) | Live | ND | [79] | ||||
Morocco | 2014–2015 | Cross-sectional | Cattle (8658) | Tissue | Slaughtered | Culture; PCR | 144 (1.7%) | Spoligotyping | [48] | |
2018 * | Cross-sectional | Cattle (1087) | 222 (20.4%) | Live | ND | [80] | ||||
2000–2001 | Cross-sectional | Cattle (78) | Tissue | Slaughtered | Culture | 40 (51.3%) | [49] | |||
1990 | Cross-sectional | Cattle (246) | 114 (46.3%) | Blood and Tissue | Live and slaughtered | Culture | 73 (29.7%) | [81] | ||
Sudan | 2007–2009 | Cross-sectional | Cattle (6680) | Tissue | Slaughtered | Culture; PCR | 12 (0.2%) | [50] | ||
2002 * | Cross-sectional | Cattle (120) | Lymph nodes and tissue | Slaughtered | Culture; PCR | 25 (20.8%) | IS6110 RFLP | [51] | ||
Turkey | 2019 * | Case report | Cat (1) | Tissue | Slaughtered | Culture; PCR | 1 | [16] | ||
2008 | Cross-sectional | Cattle (145) | Milk (145) | Live | Culture; PCR | 1 (0.7%) | Spoligotyping | [82] | ||
2011–2012 | Cross-sectional | Cattle (5018) | Tissue (95) | Slaughtered | Culture | 32 (0.6%) | Spoligotyping; MIRU-VNTR | [83] | ||
2005 | Cross-sectional | Cattle (210) | 3 (1.4%) | Nasal (198); Milk (146) | Live | PCR | 3(1.42%) | [37] | ||
2017–2018 | Cross-sectional | Cattle (ND) | Lymph nodes and tissue | Slaughtered | Culture | 38 (ND) | EIRC-PCR; RAPD-PCR; OUT-PCR; Spoligotyping | [84] | ||
Tunisia | 2005–2006 | Cross-sectional | Cattle (102) | Milk (306) | TST-positive | Culture; PCR | 5 (4.9%) | IS6110 RFLP; Spoligotyping; MIRU-VNTR | [85] | |
2014–2015 | Cross-sectional | Cattle (149) | Tissue (149) | Slaughtered | Culture | 96 (64.4%) | IS6110 RFLP; Spoligotyping; MIRU-VNTR | [86] | ||
2010–2011 | Cross-sectional | Cattle (100) | 48 (48%) | Tissue (100) | Slaughtered | Culture; PCR | 27 (27%) | Spoligotyping; MIRU-VNTR | [41] |
3.2. Mycobacterium bovis in Humans
Country | Study Period | Study Design | Population (N) | Samples (N) for Active Tuberculosis Testing | Health Status | Identification Method | Prevalence ¶ of BTB (%) | Typing Method | References |
---|---|---|---|---|---|---|---|---|---|
Algeria | 2015–2018 | Cross-sectional | ND (98) | Sputum (98) | Pulmonary TB | 4 (4.3%) | WGS | [98] | |
2017–2019 | Cross-sectional | ND (1952) | Sputum (51), Bronchial aspiration fluids (7); Gastric aspirations (25); Extra-pulmonary specimens (32) | TB patients | Culture; PCR | 7 (0.3%) | Spoligotyping; PhyloSNP | [23] | |
Egypt | 1998–2000 | Cross-sectional | ND (67) | Cerebrospinal fluid (67) | Meningitis patients | 1 (1.5%) | IS6110 RFLP; Spoligotyping | [88] | |
2010–2011 | Cross-sectional | ND (42) | Sputum (42) | TB patients | Culture; PCR | 0 | [61] | ||
2013 | Cross-sectional | Dairy workers | Hand swab (50) | Healthy | Culture; PCR | 0 | [62] | ||
2007 * | Cross-sectional | ND (45) | Sputum (45) | Pulmonary TB | PCR | 1 (2.2%) | IS6110 RFLP; Spoligotyping | [89] | |
2009 * | Cross-sectional | Farm workers (15) | Sputum (15) | Healthy | Culture | [39] | |||
2015 * | Cross-sectional | Farm workers (25) | Sputum (25) | Healthy | Culture; PCR | 1 (4%) | [42] | ||
2018 * | Cross-sectional | Farm workers (10) | Blood (10) | Healthy | Culture; PCR | [38] | |||
2015–2017 | Longitudinal | Humans in contact with camels (48) | Sputum (48); Serum (48) | Healthy | Culture; PCR | 0 | [19] | ||
2018–2019 | Cross-sectional | Farm workers (149) | Sputum (149) | Healthy | Culture; PCR | 8 (5.3%) | [71] | ||
2016 * | Cross-sectional | ND (10) | Sputum (3) | Diagnosed human | Culture; PCR | 0 | [72] | ||
2020 * | Cross-sectional | ND | Sputum (10) | Tuberculin test positive | Culture; PCR | 90% | Sequencing (Mpb70 genes) | [77] | |
Iran | 2009 | Cross-sectional | ND | Mycobacteriology bank in MRC (60) | Culture | 1 (1.7%) | MIRU-VNTR Spoligotyping | [99] | |
2004–2005 | Cross-sectional | ND (165) | Positives isolates (156) | TB patients | 15 (9.7%) | IS6110-RFLP MIRU-VNTR ETR-VNTR | [100] | ||
1995–2004 | Cross-sectional | ND (30) | Serum (30) | Patients with disseminated BCG disease | 17 (56.6%) | [101] | |||
2016 | Case report | ND (1) | Tissue | Brain tuberculoma | PCR | 1 | [102] | ||
Iraq | 2016 * | Cross-sectional | ND (186) | Sputum (186) | Healthy | Culture | 2 (1.1%) | [46] | |
2012 * | Cross-sectional | Farm workers and veterinary doctors (25) | Sputum (25); Serum (25) | Healthy | Culture | 2 (8%) | [35] | ||
Lebanon | 2004–2005 | Cross-sectional | Workers and veterinary doctors (60) | Sputum (60) | Pulmonary TB | Culture; PCR | 2 (3.3%) | Spoligotyping | [93] |
2015–2017 | Cross-sectional | ND (13) | Clinical samples (13) | Suspected TB patients | Culture | 2 (15.4%) | IS6110 insertion; Spoligotyping; MIRU-VNTR; WGS | [103] | |
2016–2017 | Cross-sectional | ND (1104) | Clinical samples (1104) | TB patients | Culture; PCR | 12 (1.1%) | Spoligotyping; MIRU-VNTR; Deeplex-TB | [90] | |
Morocco | 2000–2001 | Cross-sectional | ND (200) | Sputum (200) | Suspected TB patients | Culture | 18 (17.8%) | [49] | |
2011 * | Case report | ND (1) | Gastric specimen | Patient with erythema nodosum | Culture | 1 | [104] | ||
Palestine | 2005–2010 | Cross-sectional | ND (53) | Sputum (53); Smears (31) | TB patients | Culture | 2 (3.7%) | Spoligotyping MIRU-VNTR | [105] |
Djibouti | 1999 | Cross-sectional | ND (153) | Lymph nodes (196) | Patients with adenopathy | Culture | 1 (0.7%) | [106] | |
1997–2011 | Cross-sectional | ND (411) | Sputum (411) | Suspected TB patients | Culture | 1 (0.2%) | Spoligotyping; VNTR-MLVA; WGS | [107] | |
Saudi-Arabia | 2002–2005 | Cross-sectional | ND (1505) | Clinical isolates (1505) | Healthy | Culture | 13 (0.9%) | Spoligotyping; MIRU-VNTR | [108] |
2014–2016 | Cross-sectional | ND (2092) | Extrapulmonary clinical isolates (1003); Pulmonary clinical isolates (1089) | TB patients | Culture | Extrapulmonary: 119 (11.8%); Pulmonary: 32 (2.9%) | MIRU-VNTR | [109] | |
Sudan | 1998–1999 | Cross-sectional | ND (105) | Sputum (105) | TB patients | PCR | 1 (0.9%) | Spoligotyping | [110] |
Turkey | 2007–2010 | Cross-sectional | ND (188) | Clinical samples (188) | TB patients | Culture; PCR | 8 (4.3%) | [87] | |
2011–2012 | Cross-sectional | ND (10) | Sputum (10) | TB patients | Culture | 5 (50%) | Spoligotyping; MIRU-VNTR | [83] | |
2015 * | Case report | ND (1) | Tissue sample | NEMO-deficient patient | Culture; PCR | 1 | GenoType MTBC; Spoligotyping | [111] | |
2007–2010 | Cross-sectional | ND (2436) | Clinical samples (188) | TB patients | PCR | 8 (0.3%) | GenoType MTBC | [87] | |
2016 | Case report | Slaughterhouse worker (1) | Clinical sample | Skin lesion | Culture | 1 | GenoType MTBC | [112] | |
1996 * | Case report | Slaughterhouse worker (1) | Clinical sample | Flexor Tenosynovitis | Culture | 1 | [113] | ||
2007 * | Cross-sectional | ND (60) | Sputum (60) | TB patients | PCR | 8 (13.3%) | [114] | ||
2004–2014 | Cross-sectional | ND (220) | Clinical samples (220) | TB patients | Culture | 3 (1.4%) | Genotyping MTBC | [115] | |
2009–2014 | Cross-sectional | ND (482) | Clinical samples (482) | Pulmonary and extrapulmonary TB patients | Culture | 13 (2.7%) | Spoligotyping | [94] | |
Tunisia | 2014–2018 | Case report | ND (4) | Tissue (4) | Spondylodiscitis patients | Culture; PCR | 4 | [116] | |
2009–2013 | Cross-sectional | ND (181) | Tissues (181) | Patients with adenopathy | Culture | 4 (2.2%) | [91] | ||
2013 | Cross-sectional | ND (174) | Lymph node (174) | Patients with adenopathy | Culture; PCR | 60 (34.4%) | [117] | ||
2013–2015 | Cross-sectional | ND (170) | Lymph nodes biopsy (144); Pus and abscess (10); Cerebrospinal fluid (8); Pleural fluid (1); Tissue (5); Bone scarping (2) | TB patients | Culture; PCR | 157 (92.4%) | [92] |
3.3. Laboratory Methods for the Diagnosis and Typing of Mycobacterium bovis Adopted in the MENA Region
3.4. Antimicrobial Resistance among M. bovis Isolates in the MENA Region
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernitz, N.; Kerr, T.J.; Goosen, W.J.; Chileshe, J.; Higgitt, R.L.; Roos, E.O.; Meiring, C.; Gumbo, R.; de Waal, C.; Clarke, C.; et al. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front. Vet. Sci. 2021, 8, 588697. [Google Scholar] [CrossRef] [PubMed]
- Inlamea, O.F.; Soares, P.; Ikuta, C.Y.; Heinemann, M.B.; Achá, S.J.; Machado, A.; Ferreira Neto, J.S.; Correia-Neves, M.; Rito, T. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLoS Negl. Trop. Dis. 2020, 14, e0008081. [Google Scholar] [CrossRef] [PubMed]
- de la Rua-Domenech, R. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis 2006, 86, 77–109. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.L.; Bengis, R.G.; Keet, D.F.; Hofmeyr, M.; Klerk, L.M.; Cross, P.C.; Jolles, A.E.; Cooper, D.; Whyte, I.J.; Buss, P.; et al. Wildlife tuberculosis in South African conservation areas: Implications and challenges. Vet. Microbiol. 2006, 112, 91–100. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.; El-Shannat, S.; Kamel, M.; Castañeda Vazquez, M.; Vázquez, H. Molecular Epidemiology of Mycobacterium bovis in Humans and Cattle. Zoonoses Public Health 2016, 63, 251–264. [Google Scholar] [CrossRef]
- Michel, A.L.; Müller, B.; van Helden, P.D. Mycobacterium bovis at the animal-human interface: A problem, or not? Vet. Microbiol. 2010, 140, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Ejeh, E.F.; Raji, M.A.; Bello, M.; Lawan, F.A.; Francis, M.I.; Kudi, A.C.; Cadmus, S.I.B. Prevalence and direct economic losses from bovine tuberculosis in makurdi, Nigeria. Vet. Med. Int. 2014, 2014, 904861. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.R.; Rocha, A.D.S.; Araujo, F.R.; Fonseca-Junior, A.A.; Alencar, A.P.; Suffys, P.N.; Costa, R.R.D.; Moreira, M.A.S.; Guimaraes, M.D.C. Risk factors for human Mycobacterium bovis infections in an urban area of Brazil. Mem. Inst. Oswaldo Cruz 2018, 113, e170445. [Google Scholar] [CrossRef] [Green Version]
- Cosivi, O.; Grange, J.M.; Daborn, C.J.; Raviglione, M.C.; Fujikura, T.; Cousins, D.; Robinson, R.A.; Huchzermeyer, H.F.; de Kantor, I.; Meslin, F.X. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg. Infect. Dis. 1998, 4, 59–70. [Google Scholar] [CrossRef]
- Moiane, I.; Machado, A.; Santos, N.; Nhambir, A.; Inlamea, O.; Hattendorf, J.; Källenius, G.; Zinsstag, J.; Correia-Neves, M. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique. PLoS ONE 2014, 9, e91527. [Google Scholar] [CrossRef] [Green Version]
- Thoen, C.; LoBue, P.; de Kantor, I. The importance of Mycobacterium bovis as a zoonosis. Vet. Microbiol. 2006, 112, 339–345. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report 2021. 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 22 February 2023).
- Chapman, H.J.; Veras-Estévez, B.A. Lessons Learned during the COVID-19 Pandemic to Strengthen TB Infection Control: A Rapid Review. Glob. Health Sci. Pract. 2021, 9, 964–977. [Google Scholar] [CrossRef]
- Osman, M.; Kasir, D.; Rafei, R.; Kassem, I.I.; Ismail, M.B.; El Omari, K.; Dabboussi, F.; Cazer, C.; Papon, N.; Bouchara, J.-P.; et al. Trends in the epidemiology of dermatophytosis in the Middle East and North Africa region. Int. J. Dermatol. 2022, 61, 935–968. [Google Scholar] [CrossRef]
- Bapat, P.R.; Dodkey, R.S.; Shekhawat, S.D.; Husain, A.A.; Nayak, A.R.; Kawle, A.P.; Daginawala, H.F.; Singh, L.K.; Kashyap, R.S. Prevalence of zoonotic tuberculosis and associated risk factors in Central Indian populations. J. Epidemiol. Glob. Health 2017, 7, 277–283. [Google Scholar] [CrossRef]
- Eroksuz, Y.; Baydar, E.; Otlu, B.; Dabak, M.; Eroksuz, H.; Karabulut, B.; Incili, C.A.; Timurkan, M.O. Case report: Systemic tuberculosis caused by Mycobacterium bovis in a cat. BMC Vet. Res. 2019, 15, 9. [Google Scholar] [CrossRef]
- Matos, A.C.; Figueira, L.; Martins, M.H.; Matos, M.; Morais, M.; Dias, A.P.; Coelho, A.C.; Pinto, M.L. Mycobacterium bovis in an Egyptian mongoose. Vet. Rec. 2013, 173, 376–377. [Google Scholar] [CrossRef]
- Mombeni, E.G.; Mosavari, N.; Gravand, M.M.; Amir Rezai, A.; Keshavarz, R.; Tadayon, K.; Bakhshi, R.; Behmanesh, R. First Report of Mycobacterium bovis Isolation from a European Fallow Deer (Dama Dama Dama) in Iran. Iran. J. Public Health 2016, 45, 814–816. [Google Scholar]
- Elnaker, Y.F.; Diab, M.S.; Ibrahim, N.A.; El-Gedawy, A.; Zaki, R.S.; Radwan, A. Seroprevalence and molecular characterization of Mycobacterium bovis infection in camels (Camelus dromedarius) in the Delta region, Egypt. Vet. World 2019, 12, 1180. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.M.; El-Ella, G.A.A.; Nasr, E.A. Phenotypic and molecular typing of tuberculous and nontuberculous Mycobacterium species from slaughtered pigs in Egypt. J. Vet. Diagn. Investig. 2009, 21, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Tazerart, F.; Saad, J.; Sahraoui, N.; Yala, D.; Niar, A.; Drancourt, M. Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria. Pathogens 2021, 10, 802. [Google Scholar] [CrossRef]
- Ghebremariam, M.K.; Rutten, V.P.; Vernooij, J.C.; Uqbazghi, K.; Tesfaalem, T.; Butsuamlak, T.; Idris, A.M.; Nielen, M.; Michel, A.L. Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea. BMC Vet. Res. 2016, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damene, H.; Tahir, D.; Diels, M.; Berber, A.; Sahraoui, N.; Rigouts, L. Broad diversity of Mycobacterium tuberculosis complex strains isolated from humans and cattle in Northern Algeria suggests a zoonotic transmission cycle. PLoS Negl. Trop. Dis. 2020, 14, e0008894. [Google Scholar] [CrossRef] [PubMed]
- Tadayon, K.; Mosavari, N.; Shahmoradi, A.H.; Sadeghi, F.; Azarvandi, A.; Forbes, K.J. The Epidemiology of Mycobacterium bovis in Buffalo in Iran. J. Vet. Med. 2006, 53, 41–42. [Google Scholar] [CrossRef]
- Tadayon, K.; Mosavari, N.; Sadeghi, F.; Forbes, K.J. Mycobacterium bovis infection in Holstein Friesian cattle, Iran. Emerg. Infect. Dis. 2008, 14, 1919–1921. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M. A first insight into the application of high discriminatory MIRU-VNTR typing using QIAxcel technology for genotyping Mycobacterium bovis isolated from the Delta area in Egypt. Infect. Genet. Evol. 2019, 71, 211–214. [Google Scholar] [CrossRef]
- Lombard, J.E.; Patton, E.A.; Gibbons-Burgener, S.N.; Klos, R.F.; Tans-Kersten, J.L.; Carlson, B.W.; Keller, S.J.; Pritschet, D.J.; Rollo, S.; Dutcher, T.V.; et al. Human-to-cattle Mycobacterium tuberculosis complex transmission in the United States. Front. Vet. Sci. 2021, 8, 691192. [Google Scholar] [CrossRef]
- WOAH. Bovine Tuberculosis. Available online: https://www.woah.org/en/disease/bovine-tuberculosis/ (accessed on 22 February 2023).
- de la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006, 81, 190–210. [Google Scholar] [CrossRef]
- Ortega, J.; Infantes-Lorenzo, J.A.; Bezos, J.; Roy, Á.; de Juan, L.; Romero, B.; Moreno, I.; Gómez-Buendía, A.; Agulló-Ros, I.; Domínguez, L.; et al. Evaluation of P22 ELISA for the detection of Mycobacterium bovis-specific antibody in the oral fluid of goats. Front. Vet. Sci. 2021, 8, 674636. [Google Scholar] [CrossRef]
- Sahraoui, N.; Müller, B.; Guetarni, D.; Boulahbal, F.; Yala, D.; Ouzrout, R.; Berg, S.; Smith, N.H.; Zinsstag, J. Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet. Res. 2009, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Abdellrazeq, G.; Elnaggar, M.; Osman, H.; Davis, W.; Singh, M. Prevalence of Bovine Tuberculosis in Egyptian Cattle and the Standardization of the Interferon-gamma Assay as an Ancillary Test. Transbound. Emerg. Dis. 2016, 63, 497–507. [Google Scholar] [CrossRef]
- Elsohaby, I.; Ahmed, H.A.; El-Diasty, M.M.; Elgedawy, A.A.; Mahrous, E.; El Hofy, F.I. Serological and molecular evidence of Mycobacterium bovis in dairy cattle and dairy farm workers under the intensive dairy production system in Egypt. J. Appl. Microbiol. 2020, 129, 1207–1219. [Google Scholar] [CrossRef]
- Aliraqi, O.M.M.; Al-Jammaly, M.; AL-Hankawi, O.; Al-Farwachi, M.I.; Dahl, M.O. Preliminary Prevalence and Risk Factors of Mycobacterium bovis in Local and Imported Breeds of Cattle and Buffaloes in Mosul city, Iraq. Egypt. J. Vet. Sci. 2020, 51, 83–88. [Google Scholar] [CrossRef]
- Barak, S. The incidence of bovine tuberculosis and its public health hazards in a dairy cattle station in Iraq. Al-Anbar J. Vet. Sci. 2012, 5, 23–29. [Google Scholar]
- Djafar, Z.R.; Benazi, N.; Bounab, S.; Sayhi, M.; Diouani, M.F.; Benia, F. Distribution of seroprevalence and risk factors for bovine tuberculosis in east Algeria. Prev. Vet. Med. 2020, 183, 105127. [Google Scholar] [CrossRef]
- Solmaz, H.; İlhan, Z.; Aksakal, A.; Gülhan, T.; Ekin, I.H. Detection of bovine tuberculosis by tuberculin test and polymerase chain reaction in Van, Turkey. Turk. J. Vet. Anim. Sci. 2009, 33, 229–233. [Google Scholar] [CrossRef]
- Elnaker, Y.F.; ElSharawy, N.T.; Daib, M.S.; ElGedawy, A.A.; Ibrahim, N.A. Conventional and molecular detection of Mycobacterium bovis in Aburden angus cattle and human contact in the new valley governorate, Egypt. Assiut Vet. Med. 2018, 64, 179–186. [Google Scholar]
- Hassanain, N.A.; Hassanain, M.A.; Soliman, Y.A.; Ghazy, A.A.; Ghazyi, Y.A. Bovine tuberculosis in a dairy cattle farm as a threat to public health. Afr. J. Microbiol. Res. 2009, 3, 446–450. [Google Scholar]
- Kalaf, J.M.; Salbouk, A.J.; Salman, S.S. Detection of bovine tuberculosis in Wasit city by the use of comparative intradermal tuberculin test and antigen rapid bovine TB Ab test. AL-Qadisiya J. Vet. Med. Sci. 2014, 13, 58–62. [Google Scholar]
- Lamine-Khemiri, H.; Martínez, R.; García-Jiménez, W.L.; Benítez-Medina, J.M.; Cortés, M.; Hurtado, I.; Abassi, M.S.; Khazri, I.; Benzarti, M.; Hermoso-de-Mendoza, J. Genotypic characterization by spoligotyping and VNTR typing of Mycobacterium bovis and Mycobacterium caprae isolates from cattle of Tunisia. Trop. Anim. Health Prod. 2014, 46, 305–311. [Google Scholar] [CrossRef]
- Lobna, M.A.S.; Nasr, E.A. Conventional and molecular detection of Mycobacterium bovis in milk of cows and its public health hazard. Int. J. Adv. Res. 2015, 3, 693–701. [Google Scholar]
- Sabry, M.; Elkerdasy, A. A polymerase chain reaction and enzyme linked immunosorbent assay based approach for diagnosis and differentiation between vaccinated and infected cattle with Mycobacterium bovis. J. Pharm. Bioallied Sci. 2014, 6, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Karamian, M.; Soleimanzadeh, A.; Tukmechi, A.; Batavani, R. PCR investigation of the vertical transmission of Mycobacterium bovis in montbéliarde cattle in gonbad, northeast of Iran. Bulg. J. Vet. Med. 2022, 25, 586–592. [Google Scholar] [CrossRef]
- Mosavari, N.; Feizabadi, M.M.; Jamshidian, M.; Shahpouri, M.R.S.; Forbes, K.J.; Pajoohi, R.A.; Keshavarz, R.; Taheri, M.M.; Tadayon, K. Molecular genotyping and epidemiology of Mycobacterium bovis strains obtained from cattle in Iran. Vet. Microbiol. 2011, 151, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Al-Thwani, A.N.; Al-Mashhadani, M.S. Tuberculosis in slaughtered cattle and workers in some abattoirs of Baghdad governorate. Int. J. Mycobacteriol. 2016, 5 (Suppl. 1), S250–S251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saqur, I.; Al-Thwani, A.; Al-Attar, I. Detection of Mycobacteria spp in cows milk using conventional methods and PCR. Iraqi J. Vet. Sci. 2009, 23, 259–262. [Google Scholar]
- Yahyaoui-Azami, H.; Aboukhassib, H.; Bouslikhane, M.; Berrada, J.; Rami, S.; Reinhard, M.; Gagneux, S.; Feldmann, J.; Borrell, S.; Zinsstag, J. Molecular characterization of bovine tuberculosis strains in two slaughterhouses in Morocco. BMC Vet. Res. 2017, 13, 272. [Google Scholar] [CrossRef] [Green Version]
- Bendadda, O. Tuberculose Humaine à Mycobacterium bovis: Enquête Bactériologique et Application de la PCR à la Détection et l’identification du Complexe Mycobacterium tuberculosis. Université Sidi Mohamed Ben Abdellah Faculté des Sciences Dhar Mehraz -Fès-. 2003. Available online: https://opac.imist.ma/cgi-bin/koha/opac-detail.pl?biblionumber=24777 (accessed on 22 February 2023).
- Asil, E.T.A.; El Sanousi, S.M.; Gameel, A.; El Beir, H.; Fathelrahman, M.; Terab, N.M.; Muaz, M.A.; Hamid, M.E. Bovine tuberculosis in South Darfur State, Sudan: An abattoir study based on microscopy and molecular detection methods. Trop. Anim. Health Prod. 2013, 45, 469–472. [Google Scholar] [CrossRef]
- Sulieman, M.S.; Hamid, M.E. Identification of acid fast bacteria from caseous lesions in cattle in Sudan. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Al-Rubiaii, E.; Alwan, M.; Al-Thwani, A. Bovine tuberculosis: Diagnosis by PCR technique in bovine milk samples. Iraqi J. Vet. Med. 2013, 37, 156–159. [Google Scholar]
- Al-Fattli, H.H.H. The clinical and serological diagnosis of Mycobacterium bovis in blood and milk serums of lactating cows by IDEXX ELISA test in Wasit and Dhi-Qar provinces/Iraq. J. Contemp. Med. Sci. 2016, 2, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Early, R. 17—Dairy products and milk-based food ingredients. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 417–445. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; McKinnon, M.; Jeggo, M. One Health: From Concept to Practice; Springer Japan: Tokyo, Japan, 2014; pp. 163–189. [Google Scholar] [CrossRef]
- Merker, M.; Kohl, T.A.; Niemann, S.; Supply, P. The evolution of strain typing in the Mycobacterium tuberculosis complex. Adv. Exp. Med. Biol. 2017, 1019, 43–78. [Google Scholar] [CrossRef]
- de Kantor, I.N.; Ritacco, V. An update on bovine tuberculosis programmes in Latin American and Caribbean countries. Vet. Microbiol. 2006, 112, 111–118. [Google Scholar] [CrossRef]
- Belakehal, F.; Barth, S.A.; Menge, C.; Mossadak, H.T.; Malek, N.; Moser, I. Evaluation of the discriminatory power of spoligotyping and 19-locus mycobacterial interspersed repetitive unit-variable number of tandem repeat analysis (MIRU-VNTR) of Mycobacterium bovis strains isolated from cattle in Algeria. PLoS ONE 2022, 17, e0262390. [Google Scholar] [CrossRef]
- Alwathnani, H.; Ashgan, M.; Ihab, M. Nested polymerase chain reaction as a molecular tool for detection of Mycobacterium tuberculosis complex recovered from milk samples. Afr. J. Microbiol. Res. 2012, 6, 1338–1344. [Google Scholar] [CrossRef] [Green Version]
- Moussa, I.M.; Mohamad, K.H.F.; Marwah, M.; Nasr, E.A.; Shibl, A.M.; Salem-Bekhit, M.M.; Hatem, M.E. Comparaison between conventional and modern techniques used for identification of Mycobacterium tuberculosis complex. Afr. J. Microbiol. Res. 2011, 5, 4334–4343. [Google Scholar] [CrossRef]
- Ramadan, H.H.; El-Gohary, A.H.N.; Mohamed, A.A.; Nasr, E.A. Detection of Mycobacterium bovis and Mycobacterium tuberculosis from clinical samples by conventional and molecular techniques in Egypt. Glob. Vet. 2012, 9, 648–654. [Google Scholar]
- El-Gedawy, A.; Ahmed, H.; Awadallah, M. Occurrence and molecular characterization of some zoonotic bacteria in bovine milk, milking equipments and humans in dairy farms, Sharkia, Egypt. Int. Food Res. J. 2014, 21, 1813–1823. [Google Scholar]
- Shereen, A.; Sobhy, G.; El-Maghraby, A.S. Assessment of routine and detailed inspection of tuberculous lesions in tuberculin reactor cattle. Intern. J. Microbiol. Res. 2015, 6, 155–159. [Google Scholar]
- Manal, M.Y.; Gobran, R.A. Some studies on tuberculosis in camel. Egypt. J. Comp. Path. Clin. Path. 2008, 21, 58–74. [Google Scholar]
- Zahran, R.N.; El Behiry, A.; Marzouk, E.; Askar, T. Comparison of LCD array and IS6110-PCR with conventional techniques for detection of Mycobacterium bovis isolated from Egyptian cattle and Buffaloes. Int. J. Mycobacteriol. 2014, 3, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, M.S.A.E.; Salah, A.; Elbadee, A.A.; Roshdy, T. Real-time PCR using atpE, conventional PCR targeting different regions of difference, and flow cytometry for confirmation of Mycobacterium bovis in buffaloes and cattle from the Delta area of Egypt. BMC Microbiol. 2022, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.H.; Nasr, E.A.; Moussa, H.M. A qualitative immunoassay as complementary test with tuberculin skin test for detection of tuberculosis in dairy cattle. J. Vet. Med. Res. 2018, 25, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Borham, M.; Oreiby, A.; El-Gedawy, A.; Hegazy, Y.; Hemedan, A.; Al-Gaabary, M. Abattoir survey of bovine tuberculosis in tanta, centre of the Nile delta, with in silico analysis of gene mutations and protein-protein interactions of the involved Mycobacteria. Transbound Emerg. Dis. 2022, 69, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Amer, A. The rapid detection and differentiation of Mycobacterium tuberculosis complex members from cattle and water buffaloes in the delta area of Egypt, using a combination of real-time and conventional PCR. Mol. Biol. Rep. 2019, 46, 3909–3919. [Google Scholar] [CrossRef] [PubMed]
- Elsohaby, I.; Mahmmod, Y.S.; Mweu, M.M.; Ahmed, H.A.; El-Diasty, M.M.; Elgedawy, A.A.; Mahrous, E.; El Hofy, F.I. Accuracy of PCR, mycobacterial culture and interferon-γ assays for detection of Mycobacterium bovis in blood and milk samples from Egyptian dairy cows using Bayesian modelling. Prev. Vet. Med. 2020, 181, 105054. [Google Scholar] [CrossRef]
- Abdelsadek, H.A.; Sobhy, H.M.; Mohamed, K.F.; Hekal, S.H.A.; Dapgh, A.N.; Hakim, A.S. Multidrug-resistant strains of Mycobacterium complex species in Egyptian farm animals, veterinarians, and farm and abattoir workers. Vet. World 2020, 13, 2150–2155. [Google Scholar] [CrossRef]
- Elsayed, M.; Elkerdasy, A.; Akeila, M.; Elsayed, A. Comparison between immunological and molecular based methods for diagnosis of Mycobacterium infections in cattle, buffaloes and human in Egypt. Cell Mol. Biol 2016, 62, 125. [Google Scholar]
- Algammal, A.M.; Wahdan, A.; Elhaig, M.M. Potential efficiency of conventional and advanced approaches used to detect Mycobacterium bovis in cattle. Microb. Pathog. 2019, 134, 103574. [Google Scholar] [CrossRef]
- Mossad, A.; Akeila, M.; Radwan, G.; Samaha, H.; Nasr, E.; El-Battawy, E. Prevalence of bovine infection with Mycobacterium bovis in some Egyptian governorates. Vet. Med. J. Giza 2009, 57, 35–52. [Google Scholar]
- Elsify, A.; Nayel, M.; Hazem, S.; Tarabess, R.; Akram, S.; Allaam, M.; Hassan, H.; El Garhy, M. Sero-diagnosis of bovine tuberculosis by ELISA using bovine PPD and ST.CF. Vet. Med. J. 2013, 22, 126–129. [Google Scholar]
- Abdelaal, H.F.M.; Spalink, D.; Amer, A.; Steinberg, H.; Hashish, E.A.; Nasr, E.A.; Talaat, A.M. Genomic Polymorphism Associated with the Emergence of Virulent Isolates of Mycobacterium bovis in the Nile Delta. Sci. Rep. 2019, 9, 11657. [Google Scholar] [CrossRef] [Green Version]
- Wahdan, A.; Riad, E.M.; Enany, S. Genetic differentiation of Mycobacterium bovis and Mycobacterium tuberculosis isolated from cattle and human sources in, Egypt (Suez Canal area). Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101553. [Google Scholar] [CrossRef]
- AL-Taee, H.S. Comparative Identification of Mycobacterium bovis by Using A Serological ELISA (IDEXX) and Tuberculin Test in Cattle in Wasit Province/Iraq. J. Educ. Coll. Wasit Univ. 2016, 1, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.A. Performance of Comparative Cervical Tuberculin Test and Serological Methods with Culturing of Nasal Swab in Diagnosis of Bovine Tuberculosis in Cross Breed Cattle Baghdad Iraq: A Comparative Evaluation. Adv. Microbiol. 2016, 06, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Yahyaoui Azami, H.; Ducrotoy, M.J.; Bouslikhane, M.; Hattendorf, J.; Thrusfield, M.; Conde-Álvarez, R.; Moriyón, I.; Zúñiga-Ripa, A.; Muñoz Álvaro, P.M.; Mick, V.; et al. The prevalence of brucellosis and bovine tuberculosis in ruminants in Sidi Kacem Province, Morocco. PLoS ONE 2018, 13, e0203360. [Google Scholar] [CrossRef] [Green Version]
- Berrada, J. Mycobacterium bovis Infection in Cattle in Morocco: Preparation and Evaluation of Chemical Extracts for Use in Detection of Immune Responses; Iowa State University: Ames, IA, USA, 1993. [Google Scholar]
- Aydın, F.E.; Ulger, M.; Emekdaş, G.; Aslan, G.; Günal, S. Isolation and identification of Mycobacterium bovis and non-tuberculous mycobacteria in raw milk samples in Mersin province. Mikrobiyoloji Bul. 2012, 46, 283–289. [Google Scholar]
- Tuzcu, N.; Köksal, F. Genetic evaluation of Mycobacteriumbovis isolates with MIRU-VNTR and spoligotyping. Turk. J. Med. Sci. 2020, 50, 2017–2023. [Google Scholar] [CrossRef]
- Sahin, F.; Tarhan, G.L.; Cinoglu, H.; Kayar, M.B.M.; Yakici, G.L. Spoligotyping and polymerase chain reaction based Mycobacterium bovis strains typing with methods (enterobacterial repetitive intergenic consensus-polymerase chain reaction, randomly amplified polymorphic dnas-polymerase chain reaction and out polymerase chain reaction). Int. J. Mycobacteriol. 2022, 11, 88–94. [Google Scholar] [CrossRef]
- Ben Kahla, I.; Boschiroli, M.L.; Souissi, F.; Cherif, N.; Benzarti, M.; Boukadida, J.; Hammami, S. Isolation and molecular characterisation of Mycobacterium bovis from raw milk in Tunisia. Afr. Health Sci. 2011, 11 (Suppl. 1), S2–S5. [Google Scholar] [CrossRef] [Green Version]
- Djemal, S.E.; Siala, M.; Smaoui, S.; Kammoun, S.; Marouane, C.; Bezos, J.; Messadi-Akrout, F.; Romero, B.; Gdoura, R. Genetic diversity assessment of Tunisian Mycobacterium bovis population isolated from cattle. BMC Vet. Res. 2017, 13, 393. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, B.; Bulut, E.; Bariş, A.B.; Toksoy, B.; Dalgic, N.; Celikkan, C.; Sevgi, D. Species distribution of the Mycobacterium tuberculosis complex in clinical isolates from 2007 to 2010 in Turkey: A prospective study. J. Clin. Microbiol. 2011, 49, 3837–3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooksey, R.C.; Abbadi, S.H.; Woodley, C.L.; Sikes, D.; Wasfy, M.; Crawford, J.T.; Mahoney, F. Characterization of Mycobacterium tuberculosis complex isolates from the cerebrospinal fluid of meningitis patients at six fever hospitals in Egypt. J. Clin. Microbiol. 2002, 40, 1651–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbadi, S.; El Hadidy, G.; Gomaa, N.; Cooksey, R. Strain differentiation of Mycobacterium tuberculosis complex isolated from sputum of pulmonary tuberculosis patients. Int. J. Infect. Dis. 2009, 13, 236–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Achkar, S.; Demanche, C.; Osman, M.; Rafei, R.; Ismail, M.B.; Gaudin, C.; Duthoy, S.; Matos, F.D.; Yaacoub, H.; Pinçon, C.; et al. Zoonotic tuberculosis in humans assessed by next-generation sequencing: An 18-month nationwide study in Lebanon. Eur. Respir. J. 2020, 55, 1900513. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Mezghanni, M.A.; Hammami, B.; Zalila, N.; Marouane, C.; Kammoun, S.; Ghorbel, A.; Ben Jemaa, M.; Messadi-Akrout, F. Tuberculosis lymphadenitis in a southeastern region in Tunisia: Epidemiology, clinical features, diagnosis and treatment. Int. J. Mycobacteriol. 2015, 4, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Siala, M.; Smaoui, S.; Taktak, W.; Hachicha, S.; Ghorbel, A.; Marouane, C.; Kammoun, S.; Gamara, D.; Slim, L.; Gdoura, R.; et al. First-time detection and identification of the Mycobacterium tuberculosis Complex members in extrapulmonary tuberculosis clinical samples in south Tunisia by a single tube tetraplex real-time PCR assay. PLoS Negl. Trop. Dis. 2017, 11, e0005572. [Google Scholar] [CrossRef]
- Bedrossian, N.; Hamze, M.; Rahmo, A.K.; Jurjus, A.; Saliba, J.; Dabboussi, F.; Karam, W. Mycobacterium tuberculosis spoligotypes circulating in the Lebanese population: A retrospective study. East. Mediterr. Health J. 2013, 19, 119–124. [Google Scholar] [CrossRef]
- Çavuşoğlu, C.; Yılmaz, F.F. [Molecular epidemiology of human Mycobacterium bovis infection in Aegean Region, Turkey]. Mikrobiyoloji Bul. 2017, 51, 165–170. [Google Scholar] [CrossRef]
- Osman, M.; Rafei, R.; Ismail, M.B.; Omari, S.A.; Mallat, H.; Dabboussi, F.; Cazer, C.; Karah, N.; Abbara, A.; Hamze, M. Antimicrobial resistance in the protracted Syrian conflict: Halting a war in the war. Future Microbiol. 2021, 16, 825–845. [Google Scholar] [CrossRef]
- Osman, M.; Cummings, K.J.; El Omari, K.; Kassem, I.I. Catch-22: War, Refugees, COVID-19, and the Scourge of Antimicrobial Resistance. Front. Med. 2022, 9, 921921. [Google Scholar] [CrossRef]
- Kassem, I.I.; Osman, M.; Jaafar, H.; El Omari, K. Refugee settlements, COVID-19, pollution, and the unfolding cholera outbreak in Lebanon. J. Travel Med. 2022, 29, taac142. [Google Scholar] [CrossRef]
- Tazerart, F.; Saad, J.; Niar, A.; Sahraoui, N.; Drancourt, M. Mycobacterium bovis Pulmonary Tuberculosis, Algeria. Emerg. Infect. Dis. 2021, 27, 972–974. [Google Scholar] [CrossRef]
- Jafarian, M.; Aghali-Merza, M.; Farnia, P.; Ahmadi, M.; Masjedi, M.R.; Velayati, A.A. Synchronous Comparison of Mycobacterium tuberculosis Epidemiology Strains by “MIRU-VNTR” and “MIRU-VNTR and Spoligotyping” Technique. Avicenna J. Med. Biotechnol. 2010, 2, 145–152. [Google Scholar]
- Asgharzadeh, M.; Kafil, H.S.; Roudsary, A.A.; Hanifi, G.R. Tuberculosis transmission in Northwest of Iran: Using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods. Infect. Genet. Evol. 2011, 11, 124–131. [Google Scholar] [CrossRef]
- Paiman, S.A.; Siadati, A.; Mamishi, S.; Tabatabaie, P.; Khotaee, G. Disseminated Mycobacterium bovis infection after BCG vaccination. Iran. J. Allergy Asthma Immunol. 2006, 5, 133–137. [Google Scholar]
- Sharifi, G.; Mousavinejad, S.A.; Moradian, K.; Ebrahimzadeh, K.; Samadian, M.; Zerehpoosh, F.B.; Rezaei, O. Pineal Region Tuberculoma Caused by Mycobacterium bovis as a Complication of Bacille Calmette-Guérin Vaccine: Case Report and Review of the Literature. World Neurosurg. 2020, 133, 416–418. [Google Scholar] [CrossRef]
- Panossian, B.; Salloum, T.; Araj, G.F.; Khazen, G.; Tokajian, S. First insights on the genetic diversity of MDR Mycobacterium tuberculosis in Lebanon. BMC Infect. Dis. 2018, 18, 710. [Google Scholar] [CrossRef] [Green Version]
- Méchaï, F.; Soler, C.; Aoun, O.; Fabre, M.; Mérens, A.; Imbert, P.; Rapp, C. Primary Mycobacterium bovis infection revealed by erythema nodosum. Int. J. Tuberc. Lung Dis. 2011, 15, 1131–1132. [Google Scholar] [CrossRef]
- Ereqat, S.; Nasereddin, A.; Azmi, K.; Abdeen, Z.; Greenblatt, C.L.; Spigelman, M.; Rastogi, N.; Bar-Gal, G.K. Genetic characterization of Mycobacterium tuberculosis in the West Bank, Palestinian Territories. BMC Res. Notes 2012, 5, 270. [Google Scholar] [CrossRef] [Green Version]
- Koeck, J.L.; Bernatas, J.J.; Gerome, P.; Fabre, M.; Houmed, A.; Herve, V.; Teyssou, R. Epidemiology of resistance to antituberculosis drugs in Mycobacterium tuberculosis complex strains isolated from adenopathies in Djibouti. Prospective study carried out in 1999. Med. Trop. Rev. Du Corps Sante Colon. 2002, 62, 70–72. [Google Scholar]
- Blouin, Y.; Hauck, Y.; Soler, C.; Fabre, M.; Vong, R.; Dehan, C.; Cazajous, G.; Massoure, P.L.; Kraemer, P.; Jenkins, A.; et al. Significance of the identification in the Horn of Africa of an exceptionally deep branching Mycobacterium tuberculosis clade. PLoS ONE 2012, 7, e52841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hajoj, S.A.; Zozio, T.; Al-Rabiah, F.; Mohammad, V.; Al-Nasser, M.; Sola, C.; Rastogi, N. First insight into the population structure of Mycobacterium tuberculosis in Saudi Arabia. J. Clin. Microbiol. 2007, 45, 2467–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, B.; Enani, M.; Alrajhi, A.; Al Johani, S.; Albarak, A.; Althawadi, S.; Elkhizzi, N.; AlGhafli, H.; Shoukri, M.; Al-Hajoj, S. Impact of Mycobacterium tuberculosis complex lineages as a determinant of disease phenotypes from an immigrant rich moderate tuberculosis burden country. Respir. Res. 2018, 19, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaf-Eldin, G.S.; Saeed, N.S.; Hamid, M.E.; Jordaan, A.M.; Van der Spuy, G.D.; Warren, R.M.; Van Helden, P.D.; Victor, T.C. Molecular analysis of clinical isolates of Mycobacterium tuberculosis collected from patients with persistent disease in the Khartoum region of Sudan. J. Infect. 2002, 44, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Çavuşoğlu, C.; Edeer Karaca, N.; Azarsız, E.; Ulusoy, E.; Kütükçüler, N. Rifampicin-resistant Mycobacterium bovis BCG strain isolated from an infant with NEMO mutation. Mikrobiyoloji Bul. 2015, 49, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Mertoğlu, A.; Biçmen, C.; Karaarslan, S.; Buğdayci, M.H. Pulmonary tuberculosis due to Mycobacterium bovis revealed by skin lesion in slaughterhouse worker. Clin. Respir. J. 2018, 12, 317–321. [Google Scholar] [CrossRef]
- Bagatur, E.; Bayramiçli, M. Flexor tenosynovitis caused by Mycobacterium bovis: A case report. J. Hand Surg. 1996, 21, 700–702. [Google Scholar] [CrossRef]
- Ağaçayak, A.; Bulut, Y.; Seyrek, A. Detection of Mycobacterium species distribution in the sputum samples of tuberculosis patients by PCR-RFLP method in Elazig province. Mikrobiyoloji Bul. 2007, 41, 203–209. [Google Scholar]
- Öztürk, C.E.; Şahin, İ.; Öksüz, Ş.; Kılıç, N.; Kılınçel, Ö.; Aydın, L.; Atik, D.; Afşin, E. Investigation of Mycobacterium bovis subsp. bovis among the strains of Mycobacterium tuberculosis complex isolated in Düzce Province, Turkey. Mikrobiyoloji Bul. 2016, 50, 392–400. [Google Scholar] [CrossRef]
- Chebbi, Y.; Riahi, H.; Bouaziz, M.C.; Romdhane, E.; Mhiri, E.; Rammeh, S.; Saidi, L.S.; Achour, W.; Ladeb, M.F. Mycobacterium bovis Spondylodiscitis: Report of 4 Cases. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2019, 27, S546–S549. [Google Scholar] [CrossRef]
- Ghariani, A.; Jaouadi, T.; Smaoui, S.; Mehiri, E.; Marouane, C.; Kammoun, S.; Essalah, L.; Driss, M.; Messadi, F.; Slim-Saidi, L. Diagnosis of lymph node tuberculosis using the GeneXpert MTB/RIF in Tunisia. Int. J. Mycobacteriol. 2015, 4, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Negi, S.S.; Khan, S.F.; Gupta, S.; Pasha, S.T.; Khare, S.; Lal, S. Comparison of the conventional diagnostic modalities, bactec culture and polymerase chain reaction test for diagnosis of tuberculosis. Indian J. Med. Microbiol. 2005, 23, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Al-Thani, R.; Al Khal, A.L.; AL-Suwaidi, Z.D.; Elshafie, S.S.; El-Sheikh, N. Drug resistant Mycobacterium tuberculosis In Qatar: Comparison between the conventional and DNA-based methods. Mol. Diagn. Vaccines 2003, 1, 111–118. [Google Scholar]
- de los Monteros, L.E.E.; Galán, J.C.; Gutiérrez, M.; Samper, S.; García Marín, J.F.; Martín, C.; Domínguez, L.; de Rafael, L.; Baquero, F.; Gómez-Mampaso, E.; et al. Allele-specific PCR method based on pncA and oxyR sequences for distinguishing Mycobacterium bovis from Mycobacterium tuberculosis: Intraspecific M. bovis pncA sequence polymorphism. J. Clin. Microbiol. 1998, 36, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlokwe, T.M.; Mogano, R.M. Utility of xpert® MTB/RIF ultra assay in the rapid diagnosis of bovine tuberculosis in wildlife and livestock animals from South Africa. Prev. Vet. Med. 2020, 177, 104980. [Google Scholar] [CrossRef]
- Moström, P.; Gordon, M.; Sola, C.; Ridell, M.; Rastogi, N. Methods used in the molecular epidemiology of tuberculosis. Clin. Microbiol. Infect. 2002, 8, 694–704. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; Tang, L.L.; Lim, I.H.; Bellamy, R.; Wong, S.Y. Discrimination of single-copy IS6110 DNA fingerprints of Mycobacterium tuberculosis isolates by high-resolution minisatellite-based typing. J. Clin. Microbiol. 2002, 40, 657–659. [Google Scholar] [CrossRef] [Green Version]
- Kam, K.M.; Yip, C.W.; Tse, L.W.; Wong, K.L.; Lam, T.K.; Kremer, K.; Au, B.K.; van Soolingen, D. Utility of mycobacterial interspersed repetitive unit typing for differentiating multidrug-resistant Mycobacterium tuberculosis isolates of the Beijing family. J. Clin. Microbiol. 2005, 43, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Dippenaar, A.; Parsons, S.D.C.; Miller, M.A.; Hlokwe, T.; van Pittius, N.C.G.; Adroub, S.A.; Abdallah, A.M.; Pain, A.; Warren, R.M.; Michel, A.L.; et al. Progenitor strain introduction of Mycobacterium bovis at the wildlife-livestock interface can lead to clonal expansion of the disease in a single ecosystem. Infect. Genet. Evol. 2017, 51, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Ghavidel, M.; Mansury, D.; Nourian, K.; Ghazvini, K. The most common spoligotype of Mycobacterium bovis isolated in the world and the recommended loci for VNTR typing; A systematic review. Microb. Pathog. 2018, 118, 310–315. [Google Scholar] [CrossRef]
- Zakaria, A.; Osman, M.; Dabboussi, F.; Rafei, R.; Mallat, H.; Papon, N.; Bouchara, J.P.; Hamze, M. Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical Aspergillus species: A general review with a special focus on the Middle Eastern and North African region. J. Infect. Public Health 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Rafei, R.; Hawli, M.; Osman, M.; Dabboussi, F.; Hamze, M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa. J. Glob. Antimicrob. Resist. 2020, 22, 334–348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasir, D.; Osman, N.; Awik, A.; El Ratel, I.; Rafei, R.; Al Kassaa, I.; El Safadi, D.; Salma, R.; El Omari, K.; Cummings, K.J.; et al. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases 2023, 11, 39. https://doi.org/10.3390/diseases11010039
Kasir D, Osman N, Awik A, El Ratel I, Rafei R, Al Kassaa I, El Safadi D, Salma R, El Omari K, Cummings KJ, et al. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases. 2023; 11(1):39. https://doi.org/10.3390/diseases11010039
Chicago/Turabian StyleKasir, Dalal, Nour Osman, Aicha Awik, Imane El Ratel, Rayane Rafei, Imad Al Kassaa, Dima El Safadi, Rayane Salma, Khaled El Omari, Kevin J. Cummings, and et al. 2023. "Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region" Diseases 11, no. 1: 39. https://doi.org/10.3390/diseases11010039
APA StyleKasir, D., Osman, N., Awik, A., El Ratel, I., Rafei, R., Al Kassaa, I., El Safadi, D., Salma, R., El Omari, K., Cummings, K. J., Kassem, I. I., & Osman, M. (2023). Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases, 11(1), 39. https://doi.org/10.3390/diseases11010039