Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter
Abstract
1. Introduction
2. Proposed Notch LNA
3. Verifications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Silva-Martinez, J. Low-power, low-cost CMOS direct-conversion receiver front-end for multi-standard applications. IEEE J. Solid-State Circuits. 2013, 48, 2090–2103. [Google Scholar]
- Kulkarni, R.; Kim, J.; Jeon, H.-J.; Xiao, J.; Silva-Martinez, J. UHF receiver front-end: Implementation and analog baseband design considerations. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2013, 20, 197–210. [Google Scholar] [CrossRef]
- Kim, J. Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2012. [Google Scholar]
- Behzad, R. RF Microelectronics, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998; pp. 63–70. [Google Scholar]
- Aslam, A.R.; Alessandro, P.; Peter, V.; Tyson, T. A harmonic rejection mixer robust to RF device mismatches. In Proceedings of the International Solid-State Circuit Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 66–67. [Google Scholar]
- Ru, Z.; Klumperink, E.A.M.; Wienk, G.J.M.; Nauta, B. A software-defined radio receiver architecture robust to out-of-band interference. In Proceedings of the International Solid-State Circuit Conference, San Francisco, CA, USA, 8–12 February 2009; pp. 230–231. [Google Scholar]
- Andreas, G.; Silvester, S.; Stefan, T.; Krzysztof, D.; Harald, P.; Mario, H. A harmonic rejection strategy for 25% Duty-Cycle IQ-mixers using digital-to-time converters. In IEEE Transactions on Circuits and Systems II: Express Briefs (Early Access); IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Cha, H.-K.; Kwon, K.; Choi, J.; Kim, H.-T.; Lee, K. A CMOS wideband RF front-end with mismatch calibrated harmonic rejection mixer for terrestrial digital TV tuner applications. IEEE Trans. Microw. Theory Tech. 2010, 58, 2143–2151. [Google Scholar] [CrossRef]
- Shaeffer, D.K.; Lee, T.H. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid-State Circuits 1997, 32, 745–759. [Google Scholar] [CrossRef]
- Schaumann, R.; Van Valkenburg, M.E.; Xiao, H. Design of Analog Filters, 1st ed.; Oxford University Press: New York, NY, USA, 2001; pp. 125–129. [Google Scholar]
- Lee, T.H.; Samavati, H.; Rategh, H.R. 5-GHz CMOS Wireless LANs. IEEE Trans. Microw. Theory Tech. 2002, 50, 268–280. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Huang, C.C. CMOS Dual-Wideband Low-Noise Amplifier with Notch Filter for 3.1 GHz-10.6 GHz Ultra-Wideband Wireless Receiver. In Proceedings of the 7th International Conference on ASIC, Guilin, China, 22–25 October 2007; pp. 415–418. [Google Scholar]
- Jeon, Y.; Yoon, S.W.; Kim, C.; Moon, H.; Nam, I. A Wideband Digital TV Receiver front-end with On-chip Notch Filter. Int. Conf. Electron. Inf. Commun. (ICEIC) 2019, 415–418. [Google Scholar]
- Park, J.W.; Razavi, B. A Harmonic-Rejection CMOS LNA for Broadband Radios. IEEE J. Solid-State Circuits 2013, 48, 1072–1084. [Google Scholar] [CrossRef]
- Sepidband, P.; Entesari, K. A CMOS Wideband Receiver Resilient to Out-of-Band Blockers Using Blocker Detection and Rejection. IEEE Trans. Microw. Theory Tech. 2018, 66, 2340–2355. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, S.; Son, K.Y. A Hybrid Transformer-Based CMOS Duplexer With a Single-Ended Notch-Filtered LNA for Highly Integrated Tunable RF Front-Ends. IEEE Microw. Wirel. Components Lett. 2018, 28, 1032–1034. [Google Scholar] [CrossRef]
- Hamasawa, A.; Kanaya, H. Dual-band differential outputs CMOS Low Noise Amplifier. In Proceedings of the IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 28 February 2019; pp. 661–664. [Google Scholar]
Component | Size |
---|---|
M1 | (450 m/40nm) |
M2 | (300 m/40nm) |
1.7 nH | |
500 fF | |
4 nH | |
700 fF | |
15 nH | |
(3 m/40nm) | |
(13.5 m/40nm) | |
4.2 pF | |
2.0 k |
Architecture | Frequency | Sensed at V (dBm) | Sensed at V (dBm) |
---|---|---|---|
Conventional | 2.1 (GHz) | −39.7 | −37.98 |
6.3 (GHz) | −55.64 | −65 | |
Notch | 2.1 (GHz) | −39.54 | −38.7 |
6.3 (GHz) | −65.44 | −87 |
Specification | This Work | [11] | [12] | [13] | [14] | [15] | [16] | [17] |
---|---|---|---|---|---|---|---|---|
Harmonic Rejection (dBc) | 37 | 12 | 14 | 10 | >20 | 20 | 28 | 18 |
Gain (dB) | 11 | 18.7 | 10.34 | 30 | 12–24 | 13.4–14 | 24.2 | 16.5 and 11.1 |
NF (dB) | 3.1 | 4.8 | 3 | 2.8 | 3.5–5.84 | 4.4 | 6.4 | 3.1 and 3.7 |
Supply (V) | 1.2 | 1.2 | 1.8 | 1.2 | 1.2 | 1 | 1.2 | NA |
IIP3 (dBm) | 0.5 | −2 | −27, −22 | −11 | −15 to −12 | -3.3 to −2.8 | −12.5 | −4.84 −8.31 |
P (mW) | 19 | 12.4 | 24.1 | 14 | 8.64 | 23.8 | 9.6 | NA |
Technology (CMOS) | 40 nm | 240 nm | 180 nm | 130 nm | 65 nm | 65 nm | 65 nm | 180 nm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyaang, R.; Lee, D.-H.; Kim, J. Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter. Electronics 2020, 9, 596. https://doi.org/10.3390/electronics9040596
Gyaang R, Lee D-H, Kim J. Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter. Electronics. 2020; 9(4):596. https://doi.org/10.3390/electronics9040596
Chicago/Turabian StyleGyaang, Raymond, Dong-Ho Lee, and Jusung Kim. 2020. "Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter" Electronics 9, no. 4: 596. https://doi.org/10.3390/electronics9040596
APA StyleGyaang, R., Lee, D.-H., & Kim, J. (2020). Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter. Electronics, 9(4), 596. https://doi.org/10.3390/electronics9040596