Recent Progress in the Design of 4G/5G Reconfigurable Filters
Abstract
:1. Introduction
2. Literature Review and Highlighting Key Sources
3. Reconfigurable Filters for 5G Applications
4. BAW, SAW and Active Reconfigurable Filters
4.1. BAW and SAW Reconfigurable Filters
4.2. Active Reconfigurable Filters
5. Important Recent Microstrip Tuneable Filter Designs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hunter, I. Theory and Design of Microwave Filters; The Institution of Engineering and Technology: Stevenage, UK, 2001. [Google Scholar] [CrossRef]
- Hong, J.-S.; Lancaster, M.J. Microstrip Filters for RF/Microwave; John Wiley and Sons: Hoboken, NJ, USA, 2004; Volume 167. [Google Scholar]
- Cameron, R.J.; Kudsia, C.M.; Mansour, R.R. Microwave Filters for Communication Systems: Fundamentals, Design and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hunter, I.C.; Rhodes, J.D. Electronically Tuneable Microwave Bandpass Filters. IEEE Trans. Microw. Theory Tech. 1982, 30, 1354–1360. [Google Scholar] [CrossRef]
- Byung-Wook, K.; Sang-Won, Y. Varactor-tuned combline bandpass filter using step-impedance microstrip lines. IEEE Trans. Microw. Theory Tech. 2004, 52, 1279–1283. [Google Scholar] [CrossRef]
- Sanchez-Renedo, M.; Gomez-Garcia, R.; Alonso, J.I.; Briso-Rodriguez, C. Tuneable combline filter with continuous control of center frequency and bandwidth. IEEE Trans. Microw. Theory Tech. 2005, 53, 191–199. [Google Scholar] [CrossRef]
- Wang, X.; Cho, Y.; Yun, S. A Tuneable Combline Bandpass Filter Loaded With Series Resonator. IEEE Trans. Microw. Theory Tech. 2012, 60, 1569–1576. [Google Scholar] [CrossRef]
- Park, S.; Rebeiz, G.M. Low-Loss Two-Pole Tuneable Filters With Three Different Predefined Bandwidth Characteristics. IEEE Trans. Microw. Theory Tech. 2008, 56, 1137–1148. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xue, Q.; Chan, C.H.; Hu, B. Low-Loss Frequency-Agile Bandpass Filters With Controllable Bandwidth and Suppressed Second Harmonic. IEEE Trans. Microw. Theory Tech. 2010, 58, 1557–1564. [Google Scholar] [CrossRef]
- El-Tanani, M.A.; Rebeiz, G.M. Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tuneable Filters. IEEE Trans. Microw. Theory Tech. 2010, 58, 956–963. [Google Scholar] [CrossRef]
- Tang, W.; Hong, J. Varactor-Tuned Dual-Mode Bandpass Filters. IEEE Trans. Microw. Theory Tech. 2010, 58, 2213–2219. [Google Scholar] [CrossRef]
- Tsai, H.; Chen, N.; Jeng, S. Center Frequency and Bandwidth Controllable Microstrip Bandpass Filter Design Using Loop-Shaped Dual-Mode Resonator. IEEE Trans. Microw. Theory Tech. 2013, 61, 3590–3600. [Google Scholar] [CrossRef]
- Serrano, A.L.C.; Correra, F.S.; Vuong, T.; Ferrari, P. Synthesis Methodology Applied to a Tuneable Patch Filter With Independent Frequency and Bandwidth Control. IEEE Trans. Microw. Theory Tech. 2012, 60, 484–493. [Google Scholar] [CrossRef]
- Xiang, Q.; Feng, Q.; Huang, X.; Jia, D. Electrical Tuneable Microstrip LC Bandpass Filters With Constant Bandwidth. IEEE Trans. Microw. Theory Tech. 2013, 61, 1124–1130. [Google Scholar] [CrossRef]
- Chiou, Y.; Rebeiz, G.M. A Tuneable Three-Pole 1.5–2.2-GHz Bandpass Filter With Bandwidth and Transmission Zero Control. IEEE Trans. Microw. Theory Tech. 2011, 59, 2872–2878. [Google Scholar] [CrossRef]
- Chiou, Y.; Rebeiz, G.M. A Quasi Elliptic Function 1.75–2.25 GHz 3-Pole Bandpass Filter With Bandwidth Control. IEEE Trans. Microw. Theory Tech. 2012, 60, 244–249. [Google Scholar] [CrossRef]
- Chiou, Y.; Rebeiz, G.M. Tuneable 1.55-2.1 GHz 4-Pole Elliptic Bandpass Filter With Bandwidth Control and >50 dB Rejection for Wireless Systems. IEEE Trans. Microw. Theory Tech. 2013, 61, 117–124. [Google Scholar] [CrossRef]
- Carey-Smith, B.E.; Warr, P.A. Distortion Mechanisms in Varactor Diode-Tuned Microwave Filters. IEEE Trans. Microw. Theory Tech. 2006, 54, 3492–3500. [Google Scholar] [CrossRef] [Green Version]
- El-Tanani, M.A.; Rebeiz, G.M. A Two-Pole Two-Zero Tuneable Filter With Improved Linearity. IEEE Trans. Microw. Theory Tech. 2009, 57, 830–839. [Google Scholar] [CrossRef]
- Athukorala, L.; Budimir, D. Compact Second-Order Highly Linear Varactor-Tuned Dual-Mode Filters With Constant Bandwidth. IEEE Trans. Microw. Theory Tech. 2011, 59, 2214–2220. [Google Scholar] [CrossRef]
- Ou, Y.; Rebeiz, G.M. Lumped-Element Fully Tuneable Band-stop Filters for Cognitive Radio Applications. IEEE Trans. Microw. Theory Tech. 2011, 59, 2461–2468. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chan, C.H.; Xue, Q.; Hu, B. RF Tuneable Band-stop Filters With Constant Bandwidth Based on a Doublet Configuration. IEEE Trans. Ind. Electron. 2012, 59, 1257–1265. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Zhang, H.; Chen, K.J. A Tuneable Band-stop Resonator Based on a Compact Slotted Ground Structure. IEEE Trans. Microw. Theory Tech. 2007, 55, 1912–1918. [Google Scholar] [CrossRef]
- Wang, Z.P.; Kelly, J.; Hall, P.S. Reconfigurable band-stop filter with wide tuning range. Electron. Lett. 2010, 46, 771–772. [Google Scholar] [CrossRef]
- Guyette, A.C. Design of fixed- and varactor-tuned band-stop filters with spurious suppression. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September 2010; pp. 288–291. [Google Scholar]
- Huang, C.; Chen, N.; Tsai, H.; Chen, J. A coplanar waveguide bandwidth-tuneable low-pass filter with broadband rejection. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 134–136. [Google Scholar] [CrossRef]
- Abbosh, A. Compact tuneable low-pass filter using variable mode impedance of coupled structure. IET Microw. Antennas Propag. 2012, 6, 1306–1310. [Google Scholar] [CrossRef]
- Levy, R.; Cohn, S.B. A History of Microwave Filter Research, Design and Development. IEEE Trans. Microw. Theory Tech. 1984, 32, 1055–1067. [Google Scholar] [CrossRef]
- Levy, R.; Snyder, R.V.; Matthaei, G. Design of microwave filters. IEEE Trans. Microw. Theory Tech. 2002, 50, 783–793. [Google Scholar] [CrossRef]
- Hunter, I.C.; Billonet, L.; Jarry, B.; Guillon, P. Microwave filters-applications and technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 794–805. [Google Scholar] [CrossRef]
- Hussaini, A.; Al-Yasir, Y.I.A.; Voudouris, K.; Mohammed, B.; Abd-Alhameed, R.; Mohammed, H.; Elfergani, I.; Abdullah, A.; Makris, D.; Rodriguez, J.; et al. Green Flexible RF for 5G. In Fundamentals of 5G Mobile Networks, 1st ed.; Rodriguez, J., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Al-Yasir, Y.I.A.; Abdullah, A.; Mohammed, H.; Mohammedand, B.; Abd-Alhameed, R. Design of Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Applications. J. Telecommun. 2014, 27, 1–6. [Google Scholar]
- Abdulraheem, Y.I.; Oguntala, G.A.; Abdullah, A.S.; Mohammed, H.J.; Ali, R.A.; Abd-Alhameed, R.A.; Noras, J.M. Design of frequency reconfigurable multiband compact antenna using two PIN diodes for WLAN/WiMAX applications. IET Microw. Antennas Propag. 2017, 11, 1098–1105. [Google Scholar] [CrossRef]
- Al-Yasir, Y.; Abdullah, A.; Ojaroudi Parchin, N.; Abd-Alhameed, R.; Noras, J. A New Polarization-Reconfigurable Antenna for 5G Applications. Electronics 2018, 7, 293. [Google Scholar] [CrossRef]
- Statement: Improving consumer access to mobile services at 3.6 GHz to 3.8 GHz. Available online: https://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz (accessed on 28 July 2017).
- Jeon, J.S.; Kang, S.T.; Kim, H.S. GA-optimized compact broadband CRLH band-pass filter using stub-inserted interdigital coupled lines. J. Electromagn. Eng. Sci. 2015, 15, 31–36. [Google Scholar] [CrossRef]
- Wang, C.; Haider, F.; Gao, X.; You, X.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.; Abd-Alhameed, R.A.; Noras, J.M.; Abdulkhaleq, A.M.; Ojaroudi, N. Design of Very Compact Combline Band-Pass Filter for 5G Applications. In Proceedings of the 2018 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2018; pp. 1–4. [Google Scholar]
- Yang, Z.; Psychogiou, D.; Peroulis, D. Design and Optimization of Tuneable Silicon-Integrated Evanescent-Mode Bandpass Filters. IEEE Trans. Microw. Theory Tech. 2018, 66, 1790–1803. [Google Scholar] [CrossRef]
- Casu, E.A.; Müller, A.A.; Fernández-Bolaños, M.; Fumarola, A.; Krammer, A.; Schüler, A.; Ionescu, A.M. Vanadium Oxide Band-stop Tuneable Filter for Ka Frequency Bands Based on a Novel Reconfigurable Spiral Shape Defected Ground Plane CPW. IEEE Access 2018, 6, 12206–12212. [Google Scholar] [CrossRef]
- Infinite Synthesized Networks. Available online: https://www.resonant.com/technology/infinite-synthesized-networks (accessed on 8 February 2012).
- Weigel, R.; Morgan, D.P.; Owens, J.M.; Ballato, A.; Lakin, K.M.; Hashimoto, K.; Ruppel, C.C.W. Microwave acoustic materials, devices and applications. IEEE Trans. Microw. Theory Tech. 2002, 50, 738–749. [Google Scholar] [CrossRef]
- Tokihiro, N.; Masafumi, I.; Go, E.; Xiaoyu, M.; Shinji, T.; Masanori, U.; Yoshio, S. BAW/SAW/IPD hybrid type duplexer with Rx balanced output for WCDMA Band I. In Proceedings of the 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 831–834. [Google Scholar]
- Yang, J.; Jiao, X.; Zhang, R.; Zhong, H.; Shi, Y. Fabrication of bulk acoustic wave resonator based on AlN thin film. In Proceedings of the 2012 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), Shanghai, China, 23–25 November 2012; pp. 191–194. [Google Scholar]
- Omori, T.; Seo, K.; Ahn, T.F.C.; Hashimoto, K. Flexible RF one-chip active filter based on recursive architecture in UHF range. In Proceedings of the 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014; pp. 1309–1311. [Google Scholar]
- Darfeuille, S.; Gomez-Garcia, R.; Lintignat, J.; Sassi, Z.; Barelaud, B.; Billonnet, L.; Jarry, B.; Marie, H.; Gamand, P. Silicon-Integrated 2-GHz Fully-Differential Tunable Recursive Filter for MMIC Three-Branch Channelized Bandpass Filter Design. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 776–779. [Google Scholar]
- Omori, T.; Nishiuma, S.; Seo, K.; Ahn, C.; Hashimoto, K.; Kamada, M. Integrated RF tunable filter based on recursive architecture and its application. In Proceedings of the 2013 European Microwave Integrated Circuit Conference, Nuremberg, Germany, 6–8 October 2013; pp. 548–551. [Google Scholar]
- Tomoya, K.; Ken-ya, H.; Tatsuya, O.; Masatsune, Y. Tunable Radio-Frequency Filters Using Acoustic Wave Resonators and Variable Capacitors. Jpn. J. Appl. Phys. 2010, 49, 07HD24. [Google Scholar]
- Wada, T.; Ogami, T.; Horita, A.; Obiya, H.; Koshino, M.; Kawashima, M.; Nakajima, N. A new tunable SAW filter circuit for reconfigurable RF. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Tilhac, C.; Razafimandimby, S.; Cathelin, A.; Bila, S.; Madrangeas, V.; Belot, D. A tunable bandpass BAW-filter architecture using negative capacitance circuitry. In Proceedings of the 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, 15–17 June 2008; pp. 605–608. [Google Scholar]
- Razafimandimby, S.; Tilhac, C.; Cathelin, A.; Kaiser, A.; Belot, D. A novel architecture of a tunable bandpass BAW-filter for a WCDMA transceiver. Analog Integr. Circuits Signal Process. 2006, 49, 237–247. [Google Scholar] [CrossRef]
- Razafimandimby, S.; Tilhac, C.; Cathelin, A.; Kaiser, A.; Belot, D. An Electronically Tunable Bandpass BAW-Filter for a Zero-IF WCDMA Receiver. In Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, Switzerland, 19–21 September 2006; pp. 142–145. [Google Scholar]
- Haiqiao, X.; Schaumann, R.; Daasch, W.R.; Wong, P.K.; Pejcinovic, B. A radio-frequency CMOS active inductor and its application in designing high-Q filters. In Proceedings of the 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), Vancouver, BC, Canada, 23–26 May 2004; p. IV-197. [Google Scholar]
- Li, X.; Yu, Y.; Dong, J.; Zhang, X. Widely tunable microwave photonic filter based on semiconductor optical amplifier. In Proceedings of the Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 8–12 December 2010; pp. 122–123. [Google Scholar]
- Coppinger, F.; Yegnanarayanan, S.; Trinh, P.D.; Jalali, B. All-optical RF filter using amplitude inversion in a semiconductor optical amplifier. IEEE Trans. Microw. Theory Tech. 1997, 45, 1473–1477. [Google Scholar] [CrossRef] [Green Version]
- Manzanedo, M.D.; Mora, J.; Ortega, B.; Capmany, J. Tunable all-optical microwave filter using Cross-Phase Modulation in Semiconductor Optical Amplifier Mach-Zehnder interferometer. In Proceedings of the 2006 International Topical Meeting on Microwave Photonics, Grenoble, France, 3–6 October 2006; pp. 1–4. [Google Scholar]
- Mora, J.; Martinez, A.; Manzanedo, M.D.; Capmany, J.; Ortega, B.; Pastor, D. Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter. Electron. Lett. 2005, 41, 921–922. [Google Scholar] [CrossRef]
- Capmany, J.; Pastor, D.; Martinez, A.; Ortega, B.; Sales, S. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Opt. Lett. 2003, 28, 1415–1417. [Google Scholar] [CrossRef]
- Hong, J. Reconfigurable planar filters. IEEE Microw. Mag. 2009, 10, 73–83. [Google Scholar] [CrossRef]
- Wong, P.W.; Hunter, I. Electronically Tuneable Filters. IEEE Microw. Mag. 2009, 10, 46–54. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Abd-Alhameed, R.A.; Ali, A.H.; Noras, J.M.; Abdulkhaleq, A.M. Design of Bandpass Reconfigurable Filter for 5G Applications. In Proceedings of the Submitted to the 49th European Microwave Conference, Paris, France, 29 September–4 October 2019; pp. 1–4. [Google Scholar]
- Kumar, L.; Parihar, M.S. A Compact Reconfigurable Low-Pass Filter with Wide-Stopband Rejection Bandwidth. IEEE Microw. Wirel. Components Lett. 2018, 28, 401–403. [Google Scholar] [CrossRef]
- Kheir, M.; Kröger, T.; Höft, M. A New Class of Highly-Miniaturized Reconfigurable UWB Filters for Multi-Band Multi-Standard Transceiver Architectures. IEEE Access 2017, 5, 1714–1723. [Google Scholar] [CrossRef]
- Zhang, N.; Mei, L.; Wang, C.; Deng, Z.; Yang, J.; Guo, Q. A Switchable Bandpass Filter Employing RF MEMS Switches and Open-Ring Resonators. IEEE Trans. Electron Devices 2017, 64, 3377–3383. [Google Scholar] [CrossRef]
- Xu, J. Compact Switchable Bandpass Filter and Its Application to Switchable Diplexer Design. IEEE Microw. Wirel. Components Lett. 2016, 26, 13–15. [Google Scholar] [CrossRef]
- Chao, S.; Wu, C.; Tsai, Z.; Wang, H.; Chen, C.H. Electronically Switchable Bandpass Filters Using Loaded Stepped-Impedance Resonators. IEEE Trans. Microw. Theory Tech. 2006, 54, 4193–4201. [Google Scholar] [CrossRef]
- Song, X.; Wei, B.; Cao, B.; Guo, X.; Zhang, X. UHF band switchable superconducting filter with pin diode switches. Electron. Lett. 2014, 50, 775–777. [Google Scholar] [CrossRef]
- Chuang, M.; Wu, M. Switchable Dual-Band Filter With Common Quarter-Wavelength Resonators. IEEE Trans. Circuits Syst. II 2015, 62, 347–351. [Google Scholar] [CrossRef]
- Chen, F.; Li, R.; Chen, J. A Tuneable Dual-Band Bandpass-to-Band-stop Filter Using p-i-n Diodes and Varactors. IEEE Access 2018, 6, 46058–46065. [Google Scholar] [CrossRef]
- Cho, Y.; Rebeiz, G.M. Two- and Four-Pole Tuneable 0.7–1.1-GHz Bandpass-to-Band-stop Filters With Bandwidth Control. IEEE Trans. Microw. Theory Tech. 2014, 62, 457–463. [Google Scholar] [CrossRef]
- Chen, C.; Wang, G.; Li, J. Microstrip Switchable and Fully Tuneable Bandpass Filter With Continuous Frequency Tuning Range. IEEE Microw. Wirel. Components Lett. 2018, 28, 500–502. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Baum, T.; Scott, J.; Ghorbani, K. Continuously Tuneable Dual-Mode Band-stop Filter. IEEE Microw. Wirel. Components Lett. 2018, 28, 419–421. [Google Scholar] [CrossRef]
- Kingsly, S.; Kanagasabai, M.; Alsath, M.G.N.; Shrivastav, A.K.; Subbaraj, S.; Selvam, Y.P.; Sivasamy, R.; Ramanarao, Y.V. Compact Frequency and Bandwidth Tuneable Bandpass–Band-stop Microstrip Filter. IEEE Microw. Wirel. Components Lett. 2018, 28, 786–788. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, J. Frequency- and Bandwidth-Tuneable Band-stop Filter Containing Variable Coupling Between Transmission Line and Resonator. IEEE Trans. Microw. Theory Tech. 2018, 66, 943–953. [Google Scholar] [CrossRef]
- Ieu, W.; Zhang, D.; Lv, D.; Wu, Y. Dual-band microstrip bandpass filter with independently-tuneable passbands using patch resonator. Electron. Lett. 2018, 54, 665–667. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Y.; Wang, X. Compact Tuneable Bandpass Filter With Wide Tuning Range of Centre Frequency and Bandwidth Using Short Coupled Lines. IEEE Access 2018, 6, 2962–2969. [Google Scholar] [CrossRef]
- Hickle, M.D.; Peroulis, D. Theory and Design of Frequency-Tuneable Absorptive Band-stop Filters. IEEE Trans. Circuits Syst. I 2018, 65, 1862–1874. [Google Scholar] [CrossRef]
- Lu, D.; Tang, X.; Barker, N.S.; Feng, Y. Single-Band and Switchable Dual-/Single-Band Tuneable BPFs With Predefined Tuning Range, Bandwidth and Selectivity. IEEE Trans. Microw. Theory Tech. 2018, 66, 1215–1227. [Google Scholar] [CrossRef]
- Arain, S.; Vryonides, P.; Abbasi, M.A.B.; Quddious, A.; Antoniades, M.A.; Nikolaou, S. Reconfigurable Bandwidth Bandpass Filter With Enhanced Out-of-Band Rejection Using pi-Section-Loaded Ring Resonator. IEEE Microw. Wirel. Components Lett. 2018, 28, 28–30. [Google Scholar] [CrossRef]
- Masood, M.H.; Suseela, S.B. Compact bandpass filter with reconfigurable X-band using stepped impedance resonator and folded structure. J. Eng. 2018, 2018, 162–165. [Google Scholar] [CrossRef]
Ref. | Filter Type | Freq. (GHz) | BW (MHz) | Reconfiguration | No. of Switches | RL (dB) | IL (dB) | Filter Size (mm3) |
---|---|---|---|---|---|---|---|---|
[62] | LPF | 1–2.2 | --- | Freq. | 4 | 20 | 0.6 | 30 × 30 × 1.52 |
[69] | BPF/ BSF | 1.7–2.9 | 40 | Freq. | 7 | 16 | 4 | 36 × 35 × 0.8 |
[71] | BPF | 1.1–2.1 | 40 | Freq. | 7 | 15–25 | 6 | 12.5 × 52 × 1.5 |
[72] | BSF | 0.66–0.99 | 80 | Freq. | 2 | 0.8 | 27 | 41 × 55 × 1.5 |
[73] | BPF/BSF | 0.8–1.5 | 215–535 | Freq./BW/BS/BP | 3 | 15/0.5 | 0.5/15 | 35 × 12 × 1.6 |
[74] | BSF | 2.8–3.4 | 0–96 | Freq./BW | 2 | 12–25 | 4 | 26 × 26 × 3.1 |
[75] | BPF | 1.8/2.9 | 20 | Passband | --- | 0.5 | 22/38 | 35 × 35 × 0.5 |
[76] | BPF | 0.5–1.1 | 60–230 | Freq./BW | 6 | 15 | 1.4–4.5 | 15 × 4.6 × 1.27 |
[77] | BSF | 1.25–2.5 | 184 | Freq. | 4 | 2 | 50 | 100 × 20 × 0.7 |
[78] | BPF | 0.76–2.6 | 75–285 | Freq./BW/Selct. | 2 | 15–30 | 1.2–4.2 | 100 × 8 × 0.5 |
[79] | BPF | 2.4 | 900–1500 | BW | 4 | 15 | 1.1 | 64 × 64 × 0.81 |
[80] | BPF | 6–11 | 400 | Freq. | 1 | 15 | 2 | 14 × 14 × 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Yasir, Y.I.A.; Ojaroudi Parchin, N.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent Progress in the Design of 4G/5G Reconfigurable Filters. Electronics 2019, 8, 114. https://doi.org/10.3390/electronics8010114
Al-Yasir YIA, Ojaroudi Parchin N, Abd-Alhameed RA, Abdulkhaleq AM, Noras JM. Recent Progress in the Design of 4G/5G Reconfigurable Filters. Electronics. 2019; 8(1):114. https://doi.org/10.3390/electronics8010114
Chicago/Turabian StyleAl-Yasir, Yasir I. A., Naser Ojaroudi Parchin, Raed A. Abd-Alhameed, Ahmed M. Abdulkhaleq, and James M. Noras. 2019. "Recent Progress in the Design of 4G/5G Reconfigurable Filters" Electronics 8, no. 1: 114. https://doi.org/10.3390/electronics8010114